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::ence, 

( 1 ) 

the r..agne 1:: c :--:..eld and ~ ~~e ~yrama~netic 

ratio of the proton. 

I. Several qualitative observations are interesting: 

A. If the proton travels entirely in the midplane .no closed-

orbit error and no ~-e~t~c~l tetatron oscill2:~~n1 ~ is ~urelv 

vertical. The spin ; will simply precess about the vertical ~ 

and ~~e vertical polariz2t~cn :·rill be conser7sd. 

''Depolarizat~::-nn _..; ~ausea. 2-? 2 prec::::::.:ic:--i :._co 1J.:: ·1 hori-

::ont2..::.. :'ield ;'.':·moor.e~-::: ~xists 

vertical oscillations er with nonvanishing closed-orbit errors. 

We shall consider here only "intrinsic" effec-:s due r:c vertical 
~ 

oscillations. In this case, ~h is oscillatory with frequency 

components 

w = (k±,;+y)w 
' 0 

( 2 ) 

~here k = inte;er, v = vertical ~une, w
0 

= revolution ~~e-

1uency in the rest-frame. ~he ~erm kw
0 

arises ~~om the ~agnet 

latt!ce structure, =~w~ ~8mes ~~om the vertical oscil:ation, 

and ·:~ cor~es~cnds :~ c~e ~~o~as ~recession :erm ~n ~~e 
• A 

C Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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+ 
rota:~ng rest-frame. Eh oa~ ~e analyzed ~nto oppositely 

rota=ing components. Only :~e componen~ which rotates in the 

same sense and at a~proxima~~~; ~he sa~e anfular speed as the 

+ 
vert!2al ~rescession of s ca~ ~roduce ~ large secular hori-

zont2.l precessisn or 1·deool3.:-:'...zationn. 

0 
v. The frequency of precession about the vertical field 

component 3 is 
v 

geB 
v 

ft! - 2mc = 
;:y 
2 

As the proton is accelerated ~ sweeps across comconent fre-

quencies of Bh and "depolari=ation" occurs. These resonances 

occur at Q = w or 

g2 2Y = l.79y = k ± v (k = integer). 

( 3 ) 

( 4) 

They must be crossed rapidly to avoid sizable ''depolarization''. 

D. Eq. (1) is identical :o a rigid rotation with angular 

ge "' velocity 2mc ti. Thus, for a unique B the distribution of! is 

retained throughout the moticn. If, tefore a resonance, the 

spins of all protons with the same amplitude and phase of ver­

tical oscillation, hence same amplitude and phase of Bh(hence, 

a unique B) are distributed ever a vertical cone C (Fig. 1) with 

semi-vertex angle 8
0 

(initial ~olarization P
0 

= cose
0

), after 

crossing the resonance the spins must be distributed over a 

similar cone, say, C' which ~ay be inclined from the vertical. 

Of course, cone C' must be presessing about the vertical (z) 

direction, thereby sweeping cut a ring sector between two ver-

tical cones with semi-vertex ~ngles 68±8
0

. Because of the 

cylindrical symmetry 66 must ·ce independent of the phase of 
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\·1hici: g:ives only the zero-point o;' ';he azimuthal angle of 

in tr:e xy-plane. (x along direction of motion, y in 

radiallv outward normal direction). 3ence for all phases but 

a unique amplitude cf the vertical betatron oscillation the 

final ~clarization ?~ is 
" 

where 68 depends only on the vertical amplitude. Therefore, 

for a given amplitude Pf will have a definite value between p
0 

and -P . The only ''smearing'' or true depolarization is caused 
0 

by the spread of the vertical amplitudes in the beam. 

( 5 ) 

E. Suppose we start with a beam having a spread of vertical 

amplitude but the same polarization P . After crossing a strong 
0 

resonance, protons with zero amplitude will still have polari-

zation P
0

. Protons with some definite amplitude A
0 

will have 

Tr 68 = 2 and zero polarization; protons with amplitude > 2A will 
0 

have 68 - rr and polarization - -P . If, now, we slow-extract 
0 

the bea~ by a scheme which extracts beam with various vertical 

amplitudes sequentially in time (such as a vertical resonant ex-

traction system) protons with different polarizations between 

P and -P will be sorted out in time during the spill. One has 
0 0 

to make sure, however, that the polarization versus time dis-

tributicn of the slow-spilled beam is not convoluted by the 

momentum spread in the beam or the extraction mechanism. 

II. Solution of Equation (1) 

A. To calculate 68 across a given resonance, let us write 

(see Fig. 2 for the coordinates used) 
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I;:;= i sin(J><dt+rjJ) + J coscJridt+iD)_ sine+ k case 
I 

'1 -+ 
: B = j sin(wdt) 

J 

+ B ,, 
v 

where we have taken only the relevant rotating component of 

Bh. Substituting C:q. (6) in Eq. Cl) we get for the three 

components 

e sinCj>ldt+rjJ) + rjJ tane cos cf >Jdt+rjJ J = >Jr sinJwdt 

\ e cos cf >Jdt+rp i - rjJ tane sinC(>ldt+rjJ) = >Jr cos (wdt 

I J J . 
'-e = >Jr cos[ CiJ-w)dt+rjJ] 

where r = Bh/Bv measures the "strength" of the resonance. 

Eqs. (7) are equivalent to the two equations 

f e = nr cos[Jc>J-w)dt+rp= 

l ~ tane = - >Jr sin[J<>J-w)dt+rjJ] 

or the single complex equation 

' 
i 'CD-wlctt 

e J 

Note that sine e-irjJ is the projection of the spin on the equi-

( 6) 

( 7) 

( 8) 

c 9) 

torial plane referred to coordinates rotating with the vertical 

precession. When r = 0 both 8 and rjJ are constants. 

B. For a simple case we assume that in the neighborhood of 

the resonance 

- 2 jrl-w =at where 
< c 10) 
~a 2 = d~(n-w) = constant which measures the "speed" of 

crossing, 

and define 
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L - at, 

Then Sq. (9) becomes 

d~ (sine e -i<t> ~ = , 

Qr 
K - -a 

K case 

This equation is diffiGult to integrate in general, but the 

(11) 

(12) 

quantity of interest, :ostie (S=O at T=- 00 , and 8=tie at T=+00 ), can 

be obtained in closed form: 

-~K2 
4 = e or costie = 

-~K2 
2 

2e -1. (13) 

For v . ' = 0.664 costie = c and the beam is totally "depolarized". 

For K > 0.664 costie is negative and the polarization is flipped. 

To get costie < -0.9 we need K > 1.381. 

c. We can estimate the order-of-magnitude of r for an 

azimuthally uniform gradient machine (k=O). In this case the 

horizontal field is purely radial; hence transverse to the motion, 

and identical in Lorentz transformation and in the additional 

Thomas precession term to the transverse vertical field. In the 

laboratory frame, ~n a cuarter of a vertical cscillation the 

vertical angle turned is A: where A = vertical amplitude and 

R = ring radius, and the horizontal turning angle around the 

ring is 2:. Therefore, remembering that Bh is the amplitude of 

one rotating component, we have 

i3h 
r = 3 = 

v 

In general we can write 

_
2
1 ( ~2 vertical angle 

horizontal angle 

Av 2 
r = r. 

2R "k 

(14) 

(15) 
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where Gk is a geometrical factor depending on the ring-magnet 

lattice. The quantity v 2 /R, hence the resonance strength r, 

is generally an order of magnitude larger for strong rccusing 

machines than for weak focusing machines. 

J. The quantum mechanical spin equation in the rest-frame 

ih'I' = - J·3'1' ..£\'.!:.. !'!.2 a . 8 'I' 2mc (16) 

where µ = magnetic moment of proton, t = 2x2 spin matrices, and 

'I' = 2-component spin state vector; has the solution 

where 

~( -lldt+¢) 
8 e · cos2 . x. 

' l2 
'I' =, ·e 

\ -~<J ndt+¢) 8 } 
ie sin2 

x case + ¢ = O 

up 

- \down j 

and e and¢ are given as before by O:q. (8) or Eq. (9). The 

~olarization defined ty 

P I up 1
2 

-
- I up 12 + 

jdowni
2 = 

JdownJ
2 case 

is identical to that given before. It is interesting to note 

that the irrelevant phase x never appeared in the classical 

treatment. 

III. v-Jump Scheme 

(17) 

(18) 

(19) 

A. To avoid excessive "depolarization" one can use v-jump 

auadrupoles to cross the resonance rapidly as was done success-

fully on the Argonne ZGS. Crossing a resonance more rapidly one 
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increases a (defi~ed by Eq. (10)), hence reduces K (defined by 

Eq. (11)). From 

K = 

= 

Eqs. ( 2) and ( 3) '.'ie 

;;;. 
"r 2 = 

d 
/dt (rl-w) .,JWO 

/ 2 
/ wo(£:l dy + dv) 

I 2ir 2 dn dn 

get, ·.-11th 'J-jump 

w yr 
0 

d c£::l dt 2 y+v-k) 

= 
2.79 /21[ yr 

/1.79~~ + ~~ 

where d~ denotes change per revolution. Eq. (20) gives the 

required direction (+~~ > O) and speed (+~~ should be large 

enough to reduce K, hence ll6, to an acceptably small value.) 
' -,-.. 

of the v-jump. 

B. We can estimate the range Liv of the v-jump required. 

From n-w = (l.79y+v)w
0

t we get 

2 ;-- -J (rl-w)dt 
. - . t 2 = (l.79y+v)w0~ = 

or 

2 
(1. 79)-+v)w (ov~ 

0 . 
2v 

The major contribution to 68 comes from within -2<T<2. Thus, 

a total v-jump range of 

tw = 2(ov with [T[=2) 

is adequate. 

(20) 

(21) 

C. ~ow we analyze the strongest 8-v (~=8) resonance of the ZGS. 
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("Acceleration of Polarized Protons to 8.5 GeV/c", T. Khoe 

et al, ANL Report, May 1974.) Without v-jump (~~ = 0) an 

initial polari=ation of P
0 

= 65% is reduced to Pf= 20%. 

This gives 

cosL'l8 = 
20 

= 0.308 t5 

Eqs. (20) and (15) t'1en give 

and K = 0.520 (from Eq. (13)). 

8 -4 r = 0.7 3xl0 and A = 0.776 cm 

where we used the parameters v = 0.8, y = 4.016, R = 27.4 m, 

~~ = 10-5 , and 08 = 0.864* given in the reference mentioned above. 

This A value corresponds to an average vertical amplitude of 

- 1.0 inch at injection (50 MeV) as expected. 

dv With v-jump and for the fast crossing dn = 0.00119 (L'lv = 0.04 

in 20 µsec or 33.7 revolutions). This gives 

K = 0.0633 and cos68 = 0.987 

showing essentially no "depolarization". The required range of 

the v-jump is ;iven by Eq. (22) to be 

L'lv = 0.055. 

The applied range of L'lv = 0.04 is a little too small but not 

unreasonably so. 

*Two errors in the co~putation of c8 in the reference were 
corrected. 2 + 

( 1) The Thomas preces·sion term - .,-(y-l)B.,_ where B.,_is the 
transverse field component in the laboFatory frame, must be 
added to give Bin the rotating rest-frame. 

(2) Across a straight section Bv=O and there is no ver­
tical precession. The contribution to Bh from the horizontal 
fleid components at the ends of a straight section must be 
treated specially. 
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When the v-jump is timed early so that the resonance is 

crossed on the negative ~~ side, the crossing :'._s sl·::>wer and 

the ''depolarization" is larger than without v-.jump, resulting 

in a maximum negative polarization of P~ = - 25%. This gives 

and 

cost.8 = - ~ 

K=0.866, 

dv 
dn 

= - l.14xlo-5. 

0.385, 

This is the maxi~um negative slope compared to an average slope 

dv 8 -5 4 · of dn = - 0. xlO (t.v = -- 0.0 in - 3 msec or - 5000 revolu-

tions). If the fall-time of the v-jump quadrupoles can be 

shortened to give~~ close to - 1.79~~ = - l.79xlo- 5 one can 

obtain a total flip to give Pf ; - P
0 

= - 65%. 

Here, we studied only the ''intrinsic'' resonances due to 

vertical oscillations. The 11 error 11 resonances due to closed-

orbit distortions are generally unimportant for weak focusing 

machines, but can be rather destructive for s:rong focusing 

machines. They must be eliminated (making Bh = 0, hence r = 

K = 0) by using correction dipoles. 
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The solution of the quantum mechanical equaticn can be ex-

pressed in terms of parabolic cylinder functions. 

Substituting B from Eq. (6) in Eq. (16) we get 

Q ( ifwdt\ 

{ 
i

ia

13

·• _= -- 2 \ a+rSe 1/ 

~ ( -S+rae-ifwdt) 

Let 

and we get 

I• 
A = 

< 

Li3 = 

Ae 
~f wdt 

-~f wdt 
Be 2 

~[ ( Q-w) AHlrB] 

~[-('2-w)B+QrA] 

with ~ _ ( : ) 

For the simple case, after transformed by Eqs. (10) and (11) 

this becomes 

fA' 
= ~(i:A+KB) 

ls• = ~( KA·-i:B) 

d 
Prime = d< 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

C Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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Going to the uncoupled second order equations we get 

' 2 . ,,2 
~ -' ,, + r"'" ( i " ) ] A 0 ~ L4T -- 2- J"l" = 

1 2 . 
lB" + (lfT -(-~-

? 1;;:-
ij·) JB=O 

FN-26 7-A 
0100 

(A-5) 

These are in the standard forms of oarabolic cylinder equations 

(see e.g. "Handbook of Mathematical Functions", '.Jational Bureau of 

Standards, 9th printing, 1970, p.p. 685-720). Take the A-equation 

(A-6) 

The two standard solutions are the parabolic cylinder functions 

and * E (;\,T) 

We are interested in their asymptotic values. For 2 
T -+oo 

qi 
2 

= ar gr ( ~ + i >- ) 

'.•Ii th A i K
2 

= 
2 

- 4 TtJe get at T-+00 

= /2 (A-7) 

.,. 0 



-3- FN-267-A 
::noo 

CLnd at T-+-oo 

. K2 
f'1· "'(l ) '""2 i lffi u 2 - 4 ' T -+ I' cc 
I T-+-00 

) * . K2 
'- lim E (~- 4, T)+O 

T+-co 

Our initial condition is 

e = cos2 = 1 

Hence the solution is 

A(T) = 
1 

12 

At T=+oo then 

[A ( +oo) [ '= 

agreeing with Eq. ( 13). 

(A-8) 

at T=-oo • (A-9) 

(A-10) 

(A-11) 

It is interesting to note that in the quantum mechanical treat-

ment the wave functions are given by linear equations which fre-

quently have solutions expressible in terms of known functions. 

In the classical treatment one deals with the amplitudes of the 

wave functions, hence with more complex nonlinear equations. 
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