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retaving rest-Iframe. may fe analyz=zd Intc cppositely
rotating components. Only tne component which rotates in the
same zense and at approximat=_; the zzme angular zpeed a3 the

_>- -
vertical orescession of s can troduce z large secular hori-

zontzl precessicn or "depolarization'.

C. The frequency of precession about the vertical field
component BV is

geB -, B -
QE;.-..Y.:E...Y.___Y. E'Yw’

2me 2 myc 2 Yo (3)

As the procton 1s acceleratea 7 sweeps =

[

ross component re-
guencies of ﬁh and "depolarization™ occurs. These resonances

oceur at 0 = w or
552Y = 1.79y = k * v (k = integer). (4)

They must be crossed rapidly to avoid sizable "depolarization".
D. Eg. (1) is identical Zo a rigid rotation with angular
velocity f%% B. Thus, for a unique 2 the distribution of § is
retained throughout the moticn. If, tefore a resonance, the
spins of alil prectons with the same amplitude and phase of ver-
tical coscillation, hence same amplitude and phase of ﬁh(hence,
a unique ﬁ) are distributed cver a vertical cone C (Fig. 1) with
semi-vertex angle 80 {(initilal polarization PO = coseo), after
crossing the resonance the svins must be distributed over a
similar cone, say, C' which may be inclined from the vertical.
Of course, cone C' must be presessing about the vertical (z)
direction, thereby sweeping cut a ring sector between two ver-

tical cones with semi-vertex =ngles Ae:eo. Because of the

cylindrical symmetry AG must e independent of the phase of
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ﬁh which gives only The zero-point of the zzimuthal angle of

§h in the zy-plane. {x along direction of moticn, y in
radially outward normal direction). Hence for all phases but

a unique amplitude cf the verticai betatron oscillation the

final peclarization F. is
4
D = =
Pa cos@o coshg PO COSAS (5)
where A8 depends only on the vertical amplitude. Therefore,

for a given amplitude Pf will have a definite value between PO
and -PO. The only '"smearing" or true depolarization is caused
by the spread of the vertical amplitudes in the beam.

E. Suppose we start with a beam having a spread of vertical
ampliftude but the same polarization Po' After crossing a strong
rescnance, protons with zero amplitude will still have polari-
zation Po' Protons with some definite amplifude AO will have
ARG = % and zero polarization; protons with amplitude > EAO will
have A6 ~ 7 and polarization ~ —PO. If, now, we slow-extract
the bear by a scheme which extracts beam with various vertical
amplitudes sequentially in time (such as a vertical rescnant ex-
traction system) protons with different polarizations between
PO and “Po will be scorted out in time during the spill. One has
to make sure, however, that the polarization versus time dis-
tributicn of the slow-spilled beam is nct convoluted by the
momentum spread in the beam or fhe extraction mechanism.

II. Soluticn of Eguation (1)
A. To calculate AS acroés a given rescnance, let us write

(see Fiz. 2 for the cccrdinates used)
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1 sin(Jﬂdt+¢) + 3 cos([@dt+m) 5in® + K cosd
J - - (6)

-~ r % A
. Lo e 4 s LB
3 Bh(l z sjwat J 51bedt) B,

mi
fl

jus s
n

where we have taken only the relevant rotating component of

3

Substituting Zg. (5) in Eq. (1) we get for the three

e
components
8 sin{fﬁdt+¢) + ¢ tané cos{[ﬁdt+¢) = Qr sigf@dt
?é cospfﬂdt+¢) - $ tand sin((ﬂdt+¢) = Qr cosj@dt {(7)
o

Lé = Qr cos['kﬂ-m)dt+¢]

where r = Bh/Bv measures the "strength" of the resonance.

Egs. (7) are equivalent to the two equatilons

[ 8 Qr cos[j}ﬂ—w)dt+%j

1. - (8)
¢ tanf = - Or sini‘jkn-w)dt+¢]

or the single complex equation

1 (Q-w)dt

_i¢) = Qr cosf e . (9)

d \
55(51n8 e

Note that sinse e'i¢ is the projectilon of the‘spin on the equil-
torial plane referred to coordlnates rotating with the vertical
precession, When r = 0 both 8 and ¢ are constants.

B. For a simple case we assume that in the neighborhood of

the resonance

fQ-w = a°t where
2 d (10)
La = EE(Q-m) = constant which measures the "speed" of

crossing,

and define
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_ _ fr
T = at, K:? (ll)
Then Eqg. (%) becomes
2
. 11
é%(sine e %) 2 K cose e 2, (12)

This equation is difficult to integrate in general, but the
quantity of interest, cosA8 (2=0 at t=-=, and 6=A86 at T=+w), can

be obtained in closed form:

T2 T, 2
AB R h
cos2y = . or cosA8 = 2e -1. (13)

2

For ¥ = 0.664 cosAB 7 and the beam is totally "depolarized",
For K > 0.66k ccsA€ is negative and the polarization is flipped.
To get cosAB < -0.9 we need K > 1.381.

C. We can estimate the order-of-magnitude of r for an
azimuthally uniform gradient machine (k=0). 1In this case the
horizontal field is purely radial; hence transverse to the motion,
and identical in Lorentz transformation and in the additional
Thomas precessicon term to the transverse vertical field. In the
laboratory frame, in a quarter oI a vertical c¢scillation the
vertical angie turned 1is %; where A = vertical amplitude and
R = ring radius, and the horizontal turning angle around the
ring is . Therefore, remembering that Bh is the amplitude of

ev

one rotating component, we have

»=_n_Llf{m vertical angle Y _ Av (1)
3. 2 \2 horizontal angle /| 2R

r o= sg G (15)
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where Gk is a geometrical factor depending on the ring-magnet

. . 2 . ,
lattice. The guantity v /R, hence the resonance strenzth r,

is generally an order of magnitude larger for strong fcecusing

machines than for weak {ocusing machines.

J. The guantum mechanical spin esquation in the rest-frame

ithy = - 0-By = - 25

2me

o] £

g -By

]

- . -
where 1 = magnetic mcment of protcn, o

¥ = 2-component spin state vector; has the soclution

o
§§ Qdt+d)

(16)

2x2 spin matrices, and

e cosx ié S up
¥ = ‘e = .\ j (17)
/
\ —%{fﬂdt+¢) ] / down
le sing
where
Y cos8 + ¢ = 0 (18)
and 6 and ¢ are given as before by Zq. (8) cor Egq. (9). The
rolarization defined by
2 2
pz lupl” - |down|  _ cosh (19)
lup|® + |down|®
is identical to that given before. It 1s interesting to note

that the irrelevant phase y never appeared in the classical

treatment.

III., v-Jump Scheme

A. To avoid excessive "depolarization” cne can use v-jump

auadrupcles to cross the resonance rapidly as was done success-

fully on the Argcnne ZGS. Crossing a resonance more rapidly one
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increases a (defined by Ea. {(10}), hence reduces X (defined by

Eg. (11)). TFrom Eags. (2) and (3) we get, with v-jump

X = fir - % Yo TT
T e B
_ %“’o Yr _ 2.7% V27 yr
= = (20)
/-;_:i&__ _14;92) /1. 79dY g;
2 2 dn dn
whers é% denotes change per revolution. Zg. (20) gives the
required directiocn (;Qﬁ,> 0) and speed (+—— should be large
- enough to reduce K, hence A8, to an acceptably ‘small value.).
of the v-jump.
B. We can estimate the range Av of the v-Jump required.
From Q-w = (l.?9?$ﬁ)mot we get
%? = [(2-w)as - (1.79&:6)m0%§ = (1.79%?6)MO(GY;2
2v
or
sv = [2n(l 193% = 39 | e Pl (21)
The major contribution tc A® comes from within -2<t<2. Thus,
a tetal v-jump range of
-1/2
Av = 2(8v with |t]=2) = M%E m(1. 79dY g;’l)] (22)

is adequate.

C. Jow we analyze the strongest 8-v (x=8) resonance of the ZGS.
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("Acceleration of Polarized Protons to 8.5 GeV/c¢c", T. Khoe

et al, ANL Revort, May 1974.) Without v—jump (%% = 0) an
initial pelarization of P_ = 65% is reduced to P, = 20%.

o
This gives

20 _ . .
cosAfg = g5 = 0.308 and X

0.520 (from Eg. (13)).
Egs. (20) and (15%) then give

4

r = 0.783x10" and A = 0.776 cm
where we used the parameters v = 0.8, v = 4.016, R = 27.4 m,
ay . 10_5, and 38 = 0.864% given in the reference mentioned above.

an
This A value correspcnds to an average vertical amplitude of
~ 1.0 inch at injection (50 MeV) as expected.
With v~jump and fcr the fast crossing %% = 0.00116 {(Av = 0.04

in 20 usec or 33.7 revoluticns). This gives

K = 0.0633 and cosA® = 0.987

showing essentially no "depclarization". The required range of

the v-jump is given by Egq. (22) to be
Av = 0.055.

The applied range of Av = 0.04 is a little too small but not

unreascnably s0.

¥Two errors in the computaticon of G8 in the reference were
corrected. 5 N

(1) The Thomas precession term - Z(y-1)B. where E;is the
transverse field component in the labo%atory frame, must be
added to give B in the rotating rest-frame.

(2) Across a straight section B_=0 and there is no ver-
tical precession. The contribution to By from the horizontal
ffleld components at the ends of a straight sectlion must be
treated specially.
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When the v-jump 1s fimed early =so that the resonance 1is
\ dv . .
crossed on the negative an side, the crossing is slower and

the "depolarizaticn™ ig larger than without v-jump, resulting

in a maximum negative polarization of P? = - 23%. This gives
_ 25 _
cosAg = - 6—5’ = - 0.385,
K = 0.866,
and
dv o9 14x107°,
dn

This is the maximum negative slope compared to an averages slope

of %% = — 0.8x107° (Av = - 0.04 in ~ 3 msec or ~ 5000 revolu-
tions). If the fall-time of the v-jump quadrupoles can be
shortened to give %% close to - 1.79%% = - 1.79}(10"5 cne can
obtain a total flip tc give Pf = - PO = - 65%.

Here, we studied only the "intrinsic" rescnances cdue to
vertical oscillations. The "error" rescnances due to closed-

Fal

orbit distortions are generally unimportant for weak focusing
machines, but can be rather destructive for strong focusing
machines. They must be eliminated (making Bh = 0, hence r =

K = 0) by using correcticn dipcles.
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Appendix Analytical Soclution
The solution of the guantum mechanical equaticn can be ex-
pressed in terms of parabolic cylinder functiocns.

Substituting B from Eq. (6) in Eq. (16) we get

q ( 1fwdt’
id = - = at+rge ’
/ a
with ¥ = i
. a -ifwdt B |
ig = - 5 -B+rae
Let
%det
J’a = Ae
L —%fwdt
B = Be

and we get

- i
TA = §[(Q—w)A+QrB]

<

LB

%[—(Q—w)B+QrA]

For the simple case, after transformed by Eqs. (10) and (11)

this becomes

J’_A‘ Z(TA+XB)
prime = 4 .

L

1
§(KA'TB)

(A-1)

(A-2)

(A-3)

(A1)

Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission
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Geing to the uncoupled second crder eguations we get

12,1 %
AT+ [-ﬁ-T -_(E_%J)]A—O

(A-5)

These are in the standard Jcrms of parabolic cylinder eguations
(see e.g. "Handbook of Mathematical Functions", National Bureau of

Standards, 9th printing, 1970, p.p. 685-720). Take the fA-equation

1.2 _ . 1 X
A" 4 (F17-2)A=0 R (A-6)
The two standard solutions are the parabolic cylinder functions
%
E(x,T) and E (A,T)

4 : ; 2
We are interested in their asymptotic values. For 1 -w

5 i(%Tz—KlﬂT+%¢2+%W)
E(A,T) »//: e K

where
1l . .K2
¢2 = anF(E”Fll) = argF(—1E~)
. 2
With A = % - %— we get at T-w

. 2 i(T2+K2£nT+2¢ +m)
v w5 s /277 ST 2
A2 T L T

’L"‘)'GJ

2

e%(T2+K AnTH20,+7)

=/2 (A-T7)

i, 2, .2
. 2 : -p(TT+K " AnTt+2¢ ,+m)
. ooF 1K //E LT 2
1im E (—g-r,‘l’)‘* T/?e =0

T>—@®



and at 1+-=

> NKE %
{lim E(%—-%—, )2 eE e
[ Tr—e
L2
¥ 3 .
Llin (3 -, )0
’t+—00

Cur initial condition is

Al = cosg = 1 at
2

Hence the solution is

L
1 7K .2
AlT) =‘f§ e E(%-—%—, T)
At T=+= then
y| P
~TK
[A(+e) ]| = cos%g = e N

agreeing with Eq. (13).

+K22n|T|+2¢2+w)

FN-267-A
2100

(A~8)

(4-9)

(A-10)

(A-11)

It is interesting to note that in the quantum mechanical treat-

ment the wave functionsg are given by linear eguations which fre-

quently have solutions expressible in terms of known functions.

In the classical treatment one deals with the amplitudes of the

wave functlcons,

hence with more complex nonlinear equations.
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