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Introduction

The bi-dimensional effect of a nenlinear kick supplied by
one beam to the other 1n a storage and colliding device had
already been investigated by E. Keill and J. LeDuff? in the
strong beam-weak beam approximation. The strong beam had
elliptical cross-section and bi-gaussian distributicon of the
charge. The nonlinear kick was mulfiple analyzed and a single
resonance was considered, but only the average term and the
lowest PFourier mode driving the rescnance were taken into
account. More recently, A.G. Ruggiero and L. Smith3 approached
the problem again, but with a different fechnique. They found
it possible to describe a single resconance for the case cf a
round beam taking the exact analytical expressicn of the nonlinear
kick, whilch means consldering the contribution of all multiples
of any order. Also it has been possible to take into account
the contributicon of all the higher TFourier modes driving the
same resonance. Nevertheless, their calculation was limited to
the cne-dimensional case.

The purpose of this paper 1s to extend this kind of calcula-
ficn to the bi-dimensional case. We shall still assume a round
beam with bi-gaussian distribution. The nonlinear kick is taken
to occocur over a zero length interval, namely it 1s represented
by a delta-function. The kick is centered to the eguilibrium
orbit, x = o and y = 0.

The main appllication is the calculation of the motion in

proximity of a single, isolatesd and weak resconance; the
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calculation of the resonances width; and of the stochasticity
limit.
our result for the stochastic limit is higher than the

one cohtained by Xeil.



FN-258
1500

Equations of Motion

We assume that the strong beam 1is round, has zero length
and that the equilibrium crbit of the test particle i1s centered
on the strong beam.

We shall consider both degrees of freedom. The equations

of motion are, then,

3 -u®
X"+ k_(s) x = —hn g;-i L ‘ug x 8y . (8) (1)
X
£ —u®
y" + ko(s) y = -l ﬁ L“‘::%—" ¥ 8sng(s) (2)
y
where ' = d/ds, and
5 2 2
= -—-—-—LX + . (3)
4 2
20

The r.h. side cof the above egquations has been calculated
by taking a gaussian of standard deviation g for the particle
distribution. Bcth beams are considered ultrarelativistic; i.e.
Vv o~ C. kx and ky are the two unperturbed linear focusing
functions. éint(s) is the periodic delta function which re-

presents a kick every revolution of circumference 2mnR. Also,

it is

X

*_ *_ *_ 2
g /BX = Ey/By =t/B = Nro/4ﬁ0 Y (4)

=
[}

number of particles in the strong bunch

]

T, classical radius cof the test particle, to be taken as
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positive for charges of equal sign and negative for
charges of opposite sign
vy = ratlo of the total energy of the test particle to its

oWn rest energy.

* ¥
Bx and By are constant and dencte the values of the beta-

functilons at fhe crossing peoint. £_ and gy are the usual linear

X
tune shifts per interaction (Amman's notation).

We agsume we can solve the homogeneous equations associated
to (1) and (2). The sclution of these equations i1s described

by the beta-functions BX and By and by the numbers vy and wv_ of

betatron oseillations per turn.

Transformation fo Angle-Action Variables

The transformation to the two pairs of angle-action vari-

ables wx’ IX and wy’ Iy is accomplished by intrcducing the
following generator
2 r AY)
- x| X ds
S(Xswxgyswy) - B ;COtS(IPX = R 5 +.('B ) +
X - X
B_t= 2 i AY BTN
+ X y ! _ 3 ds Y.
5 + EBy Lcotg(wy " 8 + By + 5 J\ (5)

The details of the transformatiocn are found in Appendix A.

We obtain the following first order differential equations
2

=11
A L L l—$—§———~ sin® b, 8, (8) (6)
u
>
. 1 -4 .
L' = -hr g 5 I, sin 2y &, . (8) (1)



-3- FN-258
1500
and similarly for wy and Iy replacing the index x by y.
The angle 8 = s/R 1s now the independent variable and
prime denotes, from now on, derivative with respect to 8.

Also, 1t is

2o Px tx 3 y ¥ A (8)

Fourier Expansions

The r.h. side of equations (6) and (7) and of the respec-

tive equations for wy and I are periodic functions of the

¥
angles wx’ wy and 6 with the same perilod of 2n. By performing

a triple Fourler expansion we obtain

nm Iy Iy)ei(nwx Tompy - 26) (9)

[
<
+
N

oy
HJ

'
w}( X

- (Ix’ Iy>ei(mpx + mwy - 26) (10)

H
[}
1
no
e
H
o

T )ei(nwx + mwy - L8) (11)

-
Il
<
+
PO
s
b~
L]
—~
H

Tt = m2ey T Ty, (1p, Tet (M Ty 7 O (12)
where
fnm (IX’ Iy) =
. +T o+ L e_u2 P —-in wx —im wy
= ;;5 . —-;5——- sin® v e © e dy, db, (13)
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g Iz I,0 =
+1 +7 2 \ .
-1 =iny —1my
_ 1 1 - e . X . Y g d (14
= ___.Lmz J J ——-—-——-———u2 sin 20 e e v wy )
-1 =7
and we used
s, (8) = i L 18 (14
int 27 2 : a)

The Fourier transforms fnm

and Eqm &F€ calculated in

Appendix B.

All the summatilions extend from - o to + w.

Single Isolated Resonance

We now deflne a resonance by chooslng three integer numbers,

with no common divisor, such that the quantity,
X = pwx + qu - rb,

can be considered as slowly varying,and retain in the triple
sum only terms of the form,

eis(pwX + qu - r6)

3

where s is any integer, positive, negatlve or zero. FEquations

(9) through (12) then become

wx' = v_ + U

% x séo Eg fsp,sq (Ix’ Iy) cos (sX) (15)
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v o= U3 N
I, big T, s£1 8ap.sq (Ix»Iy) sin(sX) (16)
'os + L £ 1
wy vy Ey s;o s Tsq,sp (Iy,IX) cos (sX) (17)
I' = -41 I I,I in(sX 18
y Ly Iy L) Bsq,sp (Fyoly) sin(sd) (19)
where €, = 1l except E, 7 1/2, and we have used the relations
fn,m - f—n,—m » 8am T T Bin,em 2 Boo T 0.
in particular, we also have
X' = pv,_ +qu, -1 + 4 f DR
D v, L4 By Top g (TioTy)
+ 4qg Ey fsq,sp (Iy’ IX) CEg cos(sX) . (19)

From equations (B3) and (Bll) in appendix B and equations
(16) and (18) above, it is easily seen that one invariant of

the motion is

= = !
W, o= ql, - pI, = constant ; (20)

The other invariant is the hamiltonian W2 which relates the
action variables IX and Iy to the new angle varilables

r — pa

vy  q s

with a an arbltrary real number.
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Observe that
X = an + qay
and the eguations of motion ncw are
- -
o Vy a + HEX S;O fsp,sq (Ix’ Iy) CE s(ptxX + qay) (21)
t = _ .
I, 41 g I, s£1 gsp,sq (Ix’ Iy) sin s(pocX + quy) (22)
- . L - pa -
v T Yy SRR SZO Paq,sp Iy Tx) &5 003 s(poay + qag) (23)
I ' = - 41 I si + . 2
y Sy Iy L) Bsq,ep (Tye Tx) sin slpay *+aay) (2

*
Introducing the function gsp sq (Ix’
2

equation (B10) of Appendix B and has the property (Bll), we

Iy) which is defined by

easily derive the hamiltonian W, from (22) and (24) above

—— - - B —— R —t

|
= - _ L - Pa l
W2 (vX a)IX + (vy 3 ) Iy + i
 (25)
L 2 L E v # I
- 21c% (=) } €. 8 {(I., I.) cos s(pa. + qga._). |
Take note of the quantities
#* *
ST B I
T. = s R T = 4 ¥
X 202 J 202

that have been introduced 1n Appendix B to short the writing.

As 1t is shown in Appendix C, we can also write
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l lad

W2 = (Ux - p) IX + vy Iy + 20 * ‘J = \l +
o)
—t(TX + Ty)
- e I (tt.) I (tT..) cos (LX) \ .

jSm ﬁpo X Rqo ¥ 0 |
-

Where Pys 9, and Xo are defined in Appendix C.

An important result already emerges from equaticn (2€).
In the c¢case of a single, isolated and wWezk rescnance the
moticon 1s bounded, because for large Ty and Ty the dependence
of W2 on XO vanishes, This 1s connected to the form of the
beam-~beam interaction we used in equations (1) and (2), which
has the property to decay rather fast as the particle moves
further and further away from the origin of the interaction.

The equations of motion are easily derived from eq. (26)

1
+o0
_ 2 dt _—~tl(zt_ + 1_)
IX'~ - Mpo o (ég)hJ T e X yo ) % Igp (trx)-
8 2 L=—0o o
iiqo(tTy) Sin(QXo)
1
+ce
_ 2 g_ Q_ ~t(r T )
Iyr_ - Mqo o * ‘J T v Qilm % Iﬂpo(trx)
0
I
qu(tTy) sin(2X )
1 e
B} r —t(r, + T) [1 (t1,) +
a ‘= (v, - p) + EX\J dt e X ¥ gng 20 X
0

1
- IgpO (trx)] Iﬂqo<try) cos(ﬂXoJ

(26)

(27)

(28)

(29)
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1
+w
| -t(t, + 1,)
to= + i I t +
oy Vg EY_) dt e x v liéw _,lqo( Ty)

o

— 1

quo (tTy)u Ilpo(th) cos(ﬁxo) (30)

1 =
where In (x) = dIn(x)/dX.

In particular from the last two eguations we derive

o= 't 1= +
pa., a0 €0g
1
-(t, + 1. ) T
dt e X v - !
+ DE, J =§m [?zpo(tfx) Ion (ttxi
o
1
) [ -t(1_ + T.) I £ +
Iﬁqo(tTy) cos (2X ) + qu_j dt e gzlm Rqo( Ty)
5
- ngo'(try)jlgpo(trx) cos (2X_) (31)
n = + - r.
where e = pv, + quo - T

Fixed Lines

These are defined as the ensembles of points in the

four-dimensional phase space rotating wlth the resonance, that are
unchanged under the action of the same resonance.

The equation of a fixed line 1s obtalned by setting
I.'=1.'" = o0 and X' = o,

From equations (27) and (28), we notice that there are
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two fixed lines, namely for

X =0 and X =m.

From eq. (31), then, the equations of the two [ixed

lines are, respectively,

: t( + ) e -
-t(T T _ '
pe, dt e x y 2; T (er,) = Ty, "Bt T (bt ) +
O =—0 : &) Q — o}
1 too _
-t(t_ + T.)
+ d I £ - I, (%t
g, t e x Rjgw | lqo( Ty) ra, ( Ty)
C
'Izpo<th) ey = O (32)
and
| ( ) T -
—t(1_ + T 3 ' 2
d T - I 1)+
paxjo v et T Ty T (T (8T < Ty vl T (bTy) (D)
| ( ) ]
-t{rt, + 1 |
+ dt I t - I, '(t .
qu_i e X v Rgim L Rqo( Ty) rq, ( 1:3,)_J
. L =
Ilpo(th)(—l) t e,y = O (33)

The motion around the flxed lines can be investigated
by expanding the r.h. side of egs.{(27), (28) and (31), re-
spectively around Xo = 0 and XO = 7. It is found that the

XO = 1 fixed line (eq. 33 above) 1s a stable line, in
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the sense that the motion in the proximity is stable. At
the same time the X = 0 fixed line is an unstable line,
in the sense that a particle which happened to be in its
proximlty, leaves it without performing ocscillations.
It has been proven that the condition for existence

of the fixed lines is

€
-1 <« —PR3 < ¢ (34)
PE, * A&y
except for g = o and Dy = 1 in which case the condition 1s
pv, - T (3
-] { —— < 0 . a
. 34a)

Let us consider the three-dimensional space with ¢ on the

abscilssa and Ix’ Iy on the other two axls. Eqs. (32) and (33)

represent twe surfaces in thils space. For fixed Ix and Iy

we can go from one surface tce another moving parallel to

the qu—axis. The distance Aepq which separates the two
surfaces defines the "wildth" of the rescnance at amplitude
IX and Iy. This 1s obtalned by simply subtracting (33) from
(32). We have

A =
“pq
1 (" 1 ~ -
; ~t{t_ + T.) |
=4, ¥ Jpg_ . dt e x y' oI, (er ) - I (et .
g,0dd; T L74p, X b, X
- o
! - .
! -t(t_ + 1) |
I t + v I -1 ! I t
Rqo( Ty) qu_ dt e X yo qu(tTy) ra, (tTy{J Epo( T)
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where y za=1, 3,5,
L ,0dd

To have a general idea of the motion let us observe, first
of all, that it is sufficient to consider the case of positive
p 2 |a|l. The other case of p < |ql can be reduced to this by
exchanging the variables x and y in the equations of motion.
Let us consider then the plane of cceordinates IX and Iy. We
found that (20) is an invariant, then the motion must occur
along straight lines as shown in ¥ig. la and 1b. Each straight
line corresponds to one continucus sSet of initial conditions.

For assigned ¢ eqs. (32) and (33) represent two curves,

pg’

C, and Cg, which l1ie across the invariant straight lines.

1
The case we show in Fig. la and 1b corresponds to |q0| > 1.

In this case the curves Cl and 02 cross each cther at Ix = 0
and Iy = 0. The other case with ]qo] < 1 will be considered
later. Finally a third curve, W_, is shown®  The (I Iy)
plane is divided in % regions. The first region is bounded

by the two axis and the curve Cl, and contains the origin O
which 1s always & stable fixed peoint. This region contains
all stable small amplitude oscillatlons with relatively small
amplitude and freguency perturbation, the amount of which
vanishes as the phase point is closer and closer to the origin
0. The second regicn is the regiocn of "islands" of stable
oscillations around the stable fixed line (curve 02)‘ The
boundary o¢f this regicon is formed by the curves Cl and WS
together.

*We do not know really very much about this curve.
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Figure la

7

Fipure 1b
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The third regicn, which is the remaining of the (Ix’ Iy
plane, contains stable large amplitude oscillations with
amplitude and frequency modulatlon, the amount of which
vanishes as the amplitude cf the oscillation gets larger
and larger.

This is pretty much all what we can say, from a general
pcint of view, about & single resonance.

To have a better insight of the motion one should have

a more compact expression for the summation

(try) cos(lXo)

which we have been able to derive only for some special cases

such as (a) g = o0 and (b) p = |q{, or T, =0 (see ref. [3]).
In the fgllowing we shall describe these speclal cases

but first we shall look at the so-called "first mode" approxi-

mation, where only the & = o and |&| = 1 terms are retained in

the Hamiltonlan (26).

First Mode Appreoximation

In the previocus paragraph we have calculated the width of
a resonance taking into account all the higher Fourier modes.
We have found that even as well odd order resconances are pos-
sible. This is in contrast to what we get by using the "first
mcde approximation' where only the average term £ = o and the
next 2 = |1] are retained. In this case, only even order

resconances are possible. On the other hand, in the more exact
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approach, a resonance 1s defined only when the three integer
numbers p, q and r do not have a common divisor. In con-
trast, in the "first mode approximation", the (p,q,r)-resonance
is considered independent of the (&p, %4, &r)-resonance, where
2 1s any integer.

In the "first mode approximation" the width of a resonance is

1

‘ -t(1. + T.) -
= ! X y - 1

Mgy =|bo B, at e ESGREERICREENCISE
'o 2 > 2
1
-t{t_ + 1.}
x J - I I_{t 6

+ ko g uf dt e [zgwfy) I, (my)] LT | (36)

2 2 i

Numerical calculation of the ratioc of ths width as calculated

according to eq. (36) to the width calculated taking into

acccunt all the Fourier modes, 1s made difficult by the

problem of accuracy. Nevertheless we found that this ratio 1is

substantially different from unity only for very low order of the

resonance and large Ty and Ty.
A rescnance is described also by ancother parameter, the

nonlinear tune shift. This is the distance of the center of

the rescnance from the linear ftune. I{ is cobtained by teaking

the arithmetic average of (32) and (33)., In the "first mode

approximaticn" the tune shift is



? --t(TX + Ty)r‘ - "
2p £, | dt e P e - Tqer) (T (eT,) F

| _

Q
1

; ~t(t_+ 1) 1

r2gg, ave  f Y TGey - G eny (D)

=

which 1s independent of the order of the resonance, 3imilarly

to eq. (36), also eq. (37) is accurate enough if T, and T, are

not very large.

One-Dimension BRescnances

These are defined by setting q = o. From egq. (CT7)

of Appendix C we have the following Hamiltonian

W, = - Iy 1o+ I+
2 (‘JX p) \Jy y
X - 27ms
1 o)
2 po -t{t, + 1., - 1 cog —m )
g 3 todt X v x D
+ 2 o (3g) g = [1 - Io(t'ry) e 0 ]

In this case, I_ 1s an invariant of the motion. But the

vertical tune 1s not & constant; 1t is modulated by the motiocn

cn the herizontal plane.

Reminding that it I1s

Xo = 2po %x
the phase equatlon 1s
po X - 21s
= (pv, - r) + L. &, 7 (1 - cos )
Pq 5=1 po
L =~ Zms
L 0
- ¥ - —_—
t(TX Ty T, cos B )

©jar I (et e
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X =-2n
jo
S0 X - 2Ts -(‘[_'_ + T - T cos o
= (pv, - ) + %— S (1 ~ cos —= ) e J X Py
s} s=1 Po
J” _\I
: I.(t_) 1
i 1 N v !
I (T + .o
O( 3’) Ko - 2ms (38)
+ - L
Ty Ty T, COS 5
o _-
The fixed points are cbtained by setting X' = o with X = o
(]
and XO = 7.
The analysis proceeds in the same way as outlined in another
paper3. Here we have an extra parameter, the invariant Iy, to
deal with. In the following we consider the following three
cases: (a) p =1, (b) p =2, and (¢) p = 4.
A, Case: n = 1
This resonance does not sxist in the "first mode approxi-
mation", but 1t iz resl anada can be found cnly by taking into
account all the Fourier modes. In the (x, x')-plane there
is one unstable fixed point, the origin, and two stable polnts,
diametrically opposite, with coordinate given by the equation
( ) (t )T, |
-{t._ + 271 ; I.{t )T
_ = y X .'i l \? *
r-v, =26 e Ilty) Y e (39)
y b
The fixed points exist only when
28
x a
r - 7 (A0

X
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otherwise the motien is always stable, although violent
distortions can also be expected.

This resonance can certainly be responslble for beam loss.
FParticles injected in proximity cf the origin can be spilled
out along the geparatrix as shown in fig. 2. Alsco, 1f the
colliision between two beams occurs in "adlabatic" way, the
two beams would be spllit and locked each inside their own
stable areas. In this case the separation of the two beams
would be of the order of ETX, where t_ 1is the solution of (39).

B, Case: p = 2

The motion is generally stable, except when the relation
(34a) is satisfled, in which case the flow diagram is still the
orie shown in fig. 2. The origin is again the unstable fixed
point, and the other two points are stable and symmetric, their
coordinate being st1ll obtained by solving eq. (39) with r re-
placed by r/2.

This also, of course, can cause a beam growth and then a
limitation on the luminosity achilevable.

C. Case p = 4

The flow diagram is the one shown in fig. 3. There are 4

stable and 4 unstable fixed points which exist only when

otherwise the all motion 1s stable.
The location Ty of the stable and unstable fixed polints are

obtained by solving the following respective egquations
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-{t, + 1 )¢ ., L, (1,)
(r - bv,) =4y e * 7 | Tt +-4&:%%?§— |
-2t + 1 )r ., I;(1.) A
(r = by )=lg e * Ity 5%;—%—;5 |

The moticn is zlways bounded when p > 2 and the origin is
always a stable polnt. No catastrophic effect 1s then expected

from higher ocrder resonances (p > 2).

Coupling Resonances

For @ # o, eq. (26) is a two-dimensional Hamiltonian.

Nevertheless, because of the exlstence of the first invariant
(20), it is possible to get a one-dimensicnal Hamiltonian with
a proper rotation of the (x, x', y, y') four-dimensional
phase-space around the origin. The rotation is accomplished by

means of the following generatling function

S = (po, + qay) Wt oa, W

which transforms the o0ld variables wx’ I, and wy’ Iy in the new

X

variables Xl, W, and X, W through the relations

1

!
I

pW + W

o
]

1 pa, + qa

H
I

qW

We shall investigate here oniy the case

p = |q

From eq. (C7) of Appendix C we have
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~t{t. + T.) / X = 2mws
_ X Y 2 2 o}
e Io(t Ty + Ty + ETX Ty cos —-E;—w—)

from which we derive the phase equation

88_ 63
L Po Poxogn Ty sy -(t, + 1) 7
X e b x s 1. VI (/8|
Pd 2po s=1 5 ©
-{1, + T_) p
X ¥ o -T, +t T
e X 83 88
+ ) [2pa + 2q8, Ee (pg_ 22—+ qp 32—
2p0 s=1 X v 3 x 01, ¥y 5Ty
| Il(/—s—)fé"
SENCENA T, + T
L v
where
5 5 X - 21ms
5 = Ty + Ty + 2TX Ty cos po

The fixed lines can te derived from this equation as

usual, by setting X' = o with either XO = o or XO = T.
Let us consider the lowest orders p = 1 and p = 2 and the
that = i ¥ *

case a Ex = gy, 1.e. BX = By

A. Difference Resonance, g < ©
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We have the invariant

and the new variable

On the (X, ﬁ)-plane there are two fixed points. The
crigin W= o0 is the unstable fixed polnt, and the stable

fixed point is obtained by solving the following equation

~

E -W - - ~
_B9 . o4 _ . 1
1+ opE (2pW + W) e (1 + Wy) I_(2pW + Wy) +
_ﬁl L L
- (2pW + W) I;(2pW + W) = o

Observe that the location of the unstable fixed point depends
on the invariant ﬁl' The picture of the motion on the (X, W)—

plane is thus similar t¢ the one shown in fig. 2.

B. Sum Resonance, ¢ > 0

We have the invariant

and the new variable
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On the (X, ﬁ)—plane there are two fixed points. The stable
one has for coordinate the solution of
~(2pW + wl) - Wl zl(wl)

+
€oq 2pEe 1, (W

and the unstable one has for ccordinate the solution of

opW + W.) + 2 1+
€oq (2P 1) 13 [

-(2pW + wl)

- e IO (2pﬁ + Wli]= o

Also here, the location of the fixed polints depends on the
invariant ﬁl. The picture of the motion of the (X, ﬁ)-plane is

similar to the one shown in filg. 4.

Several Crossings per Turn

We assume that there are N, crossings per turn occurring
, * #
at homologous locatlons, 1.e. same BX and the same By , and

equally spaced. In this case eq. (1l4a) is replaced by

n’

o iR.nc a
61nt(e) - 27 g ©
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All the analyses remain unchanged except the following

changes:

-EX
n, Ey'

- The only possible isolated rescnances are those with the

and Ey are ncw replaced respectively by n, Ex and

third integer number r that 1s an algebraic multiple of

n_.
c

Thus the strength of a resonance (if you want, the width)

increases by a Tactor n,s but the density of the rescnances

decreases also by the same amount.

Several Revolutions Between Crcssings

In the case the particle receives the two-dlmensional,
nonlinear kick every n, revolution, Eq. (14a) 1s replaced by

-ix
I

1 r
(8) = I e
21mr 3

6int

The only changes are the followlng:
- gx and Ey are now replaced respectively by gx/nr and
iy/nr.
- A rescnance is defined by the three numbers p g and r, where
p and g are algebraic integers (p>0), and r is any algebraic

multiple of 1/nr.
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Thus the strength of a resonance 1s now decreased by the
factor N but the densify of the resconances increases also,

of the same amount.

The Stochasticity Limit

According to Chirikovuthe stochasticity limit 1s reached
when many nonlinear rescnances overlap. As done by Kell, we
take as criterion fcor resonance overlappling that the area
covered by resonances 1in a square reglon in the (vx, vy) -
plane of unit area becomes unity.

The extension of a resonance in the (vx, vy) - plane 1is
given by the quantity Aep we have calculated above. This

q
gquantity gives the range of PV, + gv_ -~ r which is locked to

y
the resonance. The eXxtension of the same resonance along the
vx—axis is obvicusly given by Aqu/p, and the extension along
the vymaxis by Aepq/]ql;
The sum of the areas occupled by resonances is obtained
by summing all Aqu/p for resonances p > |ql|, and all Aepq/lq[.

for rescnances p < |q|, where, for obvious reasons, we agsume

p > o.

We first cbserve that the width of a rescnance, Aepq,
does not depend on the number r, also 1n the "first mode
approximation”. For assigned p and q there are exactly
p resonances all with the same width, in a square region
of the (vx, vy)-plane of unit area, if p > |g} and |q]
resonances 1f p < |qg].

Also, to calculate the sum of the area we should use

eq. (35) for the width Ac and we should sum over any p

pq’
and g, because even and odd order rescnances are possible.
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Nevertheless, cne should take into account in the sum only
those triplets (p, g, r) that have nc common diviscr.

Encouraged by the fact that the "first mode" approximatlon
gives an accurate estimate of the resonance width, we shall use
eq. (36) instead of eq. (35) in our summation. But in this way,
odd order resonances dc¢ not give any contribution. To balance
this, we shall sum over all possible triplets (p, q, r)
ineluding those that do have common divisors.

Dencting the sum by S, we have

® Ae © Ae 1
s- 5 b (%) e T el (3R (i)
p=2 lq|<p P pZo |al>p 4 P
where p and g are all even integers, and ep = 1 but €, = 1/2.

By inserting (36) in (41), we obtain the upper limit

|1
© 4 ' -t(T + 1)
S i
T legl I p|) ate 7 [IE (t,) +
p=2 g=te |y :
o 4o
- I mr)]l () |+ &g, ] 2 7 e lal
<} X 9 y ¥ = o P
5 p=C g
1
l \ -t('rX + 7))
R v r _ 1
J dt e I_IQ (try) Ig. (tTY):}IR (trx)
&} 2 2 |
l i
By using the relations
+0 x
I (x) =e
nf-w o

and
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n I (x) = g[xom + Ilm]

He-1 8

n=1

where, in both summations, n is any 1integer, odd or even, we

finally have

S € Mg, T(T.) + Mg T(r) (42)

where the function

T(x) = e™* {?O<x) + Il(x>] (43)

1ls plotted in fig. 5.

It is not difficult to see, by inspecting (41), that all
the conftributions to S come cnly from the one-dimensional
resonances, namely the g = o resonances contribute fto the flirst
term, in Ex’ and the p = o resonances to the second term, in gy.
No explanation is offered, at the moment, why the bi-dimensionail
resonances (p # o and @ ¥ ¢) do not contribute to the sum 8.

In the case one cf Bx* and By* 1s much smaller than the
other, the corresponding term at the r.h. side of (U42) can be
neglected. The stochasticity limit (S=1) is then reached for
£ ~ 0.25. Conversely, 17 BX* = By*, the stochasticity limit
is reached for § ~ 0.125. 1In both cases, the limit occurs at
X =y = o.

We cannot avoid to observe that most of the contribution to
the function T(x), plotted in fig. 6, comes mostly from the
lowest order rescnance p = 2 or ¢ = 2. Indeed 1f the contri-
bution of this resonance 1s ignored, T{x)} is smaller and given

by the lower curve in fig. 5. In this case the stochastic limit



-26- FN-258
1500

*

*
is reached at 7 =11 = 1.25, for ¢ ~ 0.8 if, say B, >> By s

¥

* %
and for £ ~ 0.4 1f BX ~ B

J
This result is in disagreement wlth Keil's results. The

disagreement can be stated in the following way. We found

that the contribution of the higher order resconance is smaller
than the contribution cf the few lowest order resonances. Keil
found just the opposite. The dilscrepancy can be due tc (a) the
different definition of the resonance width, and/or (b) to the
fact that Kell performs multiple expanszion of the nonlinear kick
and stops the summation to the order 30.

If we are to believe our result, (which, we believe, is in
much better agreement with the experimental observations) we
infer that the experimental beam-beam 1limit is mainly caused by
few low-order resonances, and that it is rather belcw the
stochastic limit.

In the case cof cone kick every I, revolutions or n, kicks
every revoluticn, we would still obtain the same result if the
summation of the resonance widths is taken over a square of ares,
respectively, l/nr2 and nca.

Clearly, what is more important, especially in the second
cagse, is a local summation of the widths. Likely the sftochastic
limit 1s a function & tune. To prove this, we limifed ourselves
to the one dimensional case (By* =0 and ¥y = o), then we summed
the widths of those resonances that fall in a smaller interval
cf tune, let us =ay, between 0.1 and 0.2, or 0.2 and 0.3, and sc
cn. The results are shown In the next table where the maximum
tune shift gmax allowable is reported versus the tune. The am-

plitude Thax 5 also shown in the table.
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Range of the tune 13 2T
(inel.) - {excl.} max max

0.0 - 0.1 0.050 0.0
0.1 - 0.2 0.984 4.9
6.2 - 0.3 0.473 1.4
0.3 = 0.4 0.984 4.9
0.4 - 0.5 2.884 19.0
0.5 = 0.6 0.050 0.0
0.6 - 0.7 0.984 h.g
0.7 - 0.8 0.473 1.4
0.8 - 0.9 0.984 4.9
0.9 - 1.0 2.884 19.0
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Appendix A

The action variables are related to the angles and to the

old variables through the operator (5) bty means of the relations

Qs

S 33
I, = - z= and I = - = -
z LA y 3y

Similarly, the variables Py and py canonically conjugated,

respectively, to x and y,are gilven by

_ 35 _ 38
Py T35z and Py 53
This yields
————— Y
i - _ux ds
x ={oI 8. sin (y, - g s+fBX) (A1)
/1 - v
YA Vx ds
Py —VE g cos (¢ =- z S +_f8 )+
X - X
BxT v ds B
Pgosin (- g s D)

and similarly for y and py.
The equations of motion (1) and (2) are derived from the

Hamiltonian
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_ 1 2 1 2 1 2 1 2
H_2px+2py+2kx(S)X+2ky(s)y+
+ Uy §¥ Sint (s) F (x,v)
where

3 F 1l -e

5"}'{—— P X (A2)
u

o _ 1 - e

ay = u2 Y (AB)

u® being given by (3).

The new Hamiltonian derived by means of the generator (5)

is
S g4 28
Hl = H + 5
v v
= X 3 E_
= IX + = I‘_y + Ux B* 6int (s) F (x,y) (AL)

where, now, ¥ and y are functions, respectively, of wx,

I and wy, I

% and c¢f the independent variable s, a3 shown,

y)
for instance by {(Al).

To obtain (Al), we have made use of the known relationshilp
1+ 8"/l

= 8"
kB - == = - 5

Observe that the function F{x, y) at the r.h. side of (A4) is

multiplied by a delta-function. It 1s, then, possible tc replace
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the explicit dependence on s with the value of F{x, y) at
fhe lccation of the kicks. With a prcper choice of the origin

we have at every kick

X ds _ vy ds

V

__S._. —— T — a— ——

R BX R By
By taking ¢ = s/R as independent variable instead cf s, which
is accomplished by multiplying the Hamiltonian by R, we have

finally the new Hamiltonian

+ U4 & s (6) F(/2T. 8* sin o, /21T 8% sin p.)
EF int x "x x y Uy y

where we have used the fact that Bx and By are both periodic
functions of 6 with period 2.

The equations (&) and (7) (and the similar for wy and Iy)
are obtained from

. 8H,

3H2
Y, = 5= and I! = = —
X BIX X awx

and by using (A2) and (A3).
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Appendlix B
Let us make the followlng expansion
2 +oo
-1 - . 2
5 =J Flo)el@™  au® (B1)
u —_ 00
where
T -X
e - 1 1l -e
Flw) = = J 5 cos wx dx
o]
I R (B2)
o ~78 e

and let us insert (Bl) with {(B2) in equations (13) and (1Y)

+oo > + +T 5
_ 1 w + 1 lwu 2
L -§;§ .j dw(log ——;5——) J J e sin® ¢
—o -n -7
-iny ~imy
' x Y
e e ay, v, (B3)
N +ea wz .1 +m 47 iwu2
8m = §—§ ~J dw(log ““‘E__) J .J € sin wa
T W
-0 =T -
-iny -imy
. X ¥y
e e dwx dwy (BY4)

where u° is given by equation (8).
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Let us introduce the quantities
8 1 Y 1
T, = X 2X and T. = —K—gl . (B%)
26 J 20
We can write
. 2 . \ \
iwu iw(t, + t.) -iwt_ cos2 ¢ -iwt_ cos 2y
e = g X y a X ‘X‘e y y
Tw(t, + 1) .
= e X y o (—i)k+h JK(wTX) Jh (wt. )
kyh | y
—_ L

1

21 (kg + By )

_‘ (B6)
-

L

where the double summaticn is from -« fto 4+« and JK {x) 1s the
Bessel function of first kind and x-th order.
In deriving {(B6) we have made use of the following relation
e1X cos v o_ Z . K ik

i JK (x)e .

By inserting (B6) in (B3) and (B4), by expanding

eElwx _ e—Ele
gin 2¢X = 5T
21y -2
X X
.2 _ 2 - e - e
sin wx = n

and by making use of the relations

(x) + J

i
oy
™

A

Jn—l n+l (x) = X n

J (x) = J

n-1 n+l (x) = n
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where prime denotes derivation with respect to the argument,

we finally obtain

oo 5 m+n
_ .1 o dw(T, + T wo + 1y, .y 2
£ = T x y’ (log % Y(=1) JE_(wTy)
oo 2
I (mTX) - i J; (wTX) dw (B7)
2 2
too 5 m+n
i + + 2
= ) T s 0
Zw w
J_o(wt.) J_ (wt.) ndw {B8)
- “n x’ “m v owT,
2 2

for n and m both even numbers, otherwise

fnm = gl’lIIl -

In particular equation (B8) can also be written as

_ no #
gm Iz Ly) = s F1. &m (Txo Iy) (B9)
X X
where
+w o m+n
¥ 1 lw(t, + ) w™ + Ly 2
Eam T T x = "y’ (log ——;§~—)( 1)
Ty lety) T Cer) 22 (310)

rop s
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This function has clearly the property
* I %
S (IX, y) = &mn (Iy, IX) . (B11)
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Appendlix C

The Hamiltonian W, 1is given by eqg. (25). Observe that
as sald in Appendix B, g:p,sq is not identically zero only
when sp and sg are both, at the same time, even integer
numbers. Thus, if p and q are both even, the summation at
the r.h. side of (25) is over all s 2 o. 0On the other side,
if at least one of p and q is odd, the summation i1s carried

only cver the even values of s, lncluding s = o.

Inserting eq. (B10) of Appendlix B in eq. (25) gives,

with r ra and p > o,

x X vy v
o° £ Tt 4 Ty) 1+ du
- 21 1—T—_ (B ) :L = log w2 G(w) —w'-“ (Cl)
where
= s{p, + q,)
Glw) = SLO € (~1i) Jspo(er)JSqo(mTy) cos (SXO) (C2)
X, = 2(pgo, + qoay) (C3)

and
p = EpO, g = 2qo, if both p and g are even,

P =Pgs 4 7 44, 1f at least one of p and g is odd.

By using the integral representation of the Bessel functilon
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,-n +T
TalX) = 57
~T
we have
- 1 e T iw(TX cosH!
Gw) = == | | e
Y \.J J
-T =T
ot t 1" oy S(po * qo
G(a',® ,XO) = 7 (-1)
=0
+o00
_ § [b (8" + 7) +
T} o
n...._oo
+ 6 [pc(e' +T) -
+ 6 [PO(B' +om) -
+ 8 [p (6" + m) +
e

Let us insert (C5) in (C4)

' and €" by m. We obtain
+x e

Glw) = 1 Z f
161D ¥,

o

0 N=-w

de!

jﬂ
o)

ag"
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J eiX cos8 cos(ne) 48

+ 1. cosé'")
G(e',8",X ) 46’ de" (Ch)
)
Eg cos(spoe') cos(sqoe") cos(on)
q (8" + m) + X _ + QW?] +
q (8" + m) + X+ ZNHJ +
g (6" + m) - X - Eﬂé] +
qo(a" + 7)) - X, ~ QW?] (C5)

and shift the integral variables

— 1 T
1w(‘cx cose' + T, cosg™)

=
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q_ 6" + X, + 27n qoe” - XO - 27Tn
§(a' + ) + &(6" - +
Py Po
g " + X + 2mn g 8" - X - 2mn
+ 5(9" - G o ) + {5(8' + © = )
Py Py
We perform first the integration over 6'. At this purpose

we observe that the number of delta-functions falling in the
interval between ¢ and 2w 1s independent of the angles 8" and

XO. This number ig obvicusly Dy Thus we have

b 27 qoe + XO ~ 218
1 o} -ilwt, coss -imrx cos
Glw) = T ) de e J e Py +
o] 5=] A
] qoe - Xo + 278
—lwr, cOSs
+ e Ps . {(CB)

We insert now (C6) in (Cl) and we remind that, denoting

with R a constant,

+ 1
2 -tR
1 iwR wo + 1 dw _ . 1l - e
5= e log—2-—7—1j = dt
W
—-—C0 o
We have
27 1
£ 3 Py -tH -tH
No = g = p) Tu * vy Iy ¥ g (*)ZJdGJ’ £ dt
o B s=l . .

where
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+ T, (1 - cose)‘

Let us perform first the integration over €

1
- s (&) at - _

Wy = vy = 3) Iy + vy I+ * J = [1 PL.(%) P_(t)] (c7)
C

where

_ qg. 8 + X + Z27s
] t(T + T ) PE 2m o S o tty cosB
Pp.(t) = J o e ée
+ SN 51

Let us remind the expansion

+oo
ex cos § - z

k=aco

ik8
IK(x) e
where IK(x) is the modified Bessel function of flrst kind and
the k-th order. It should not be confused with the action
variables I_ and I

X ¥

Using the fact that

Py orie S— Py for « = 4p, , & integer
Q
I e =
s=1
o , otherwise
we have
am
e-t(Tx + Ty) +o0 iiRXO try cos 8 12q_8

Pi(t) = T £=§m Iipo(tT Ye J e e as.

O
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But it is
au £T. cos& 1ifq 9
1 = 1 v o
Rqo(tTy} 5 ~J e e ds
0
then we have
1 _t(TX + 7. ) 4= iiﬂXo
Pt(t) =ze ng Iﬁpo(th) quo(try) e
and

—t(T, + T ) 4+
X v ) Ilpo(tTX) ngo(try) COS(QKO) (C8)

R:‘_m

P(t) + P_(t) = e

Inserting (C8) in (C7) yields eq.{(26). We believe there
is no way to get a more simpliflied, general form for the

Hamiltonian Wg.
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