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DESIGN OF QUADRUPOLES WITH LINEARLY SEGMENTED PROFILES 

S. c. Snowdon 
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SUMMARY 

1 Danby and Jackson have. given an empirical procedure £or 

designing quadrupoles with profiles made up of straight line 

segments. In this note it is demonstrated that conformal 

transformations may be employed to give a theoretical basis 

for designing these quadrupoles. The median plane fields 

compare favorably with those obtained from LINDA using the 

profile suggested by the transformation. 

METHOD 

Following the method outlined previously2 one may begin 

by expressing the complex potential W in the A-plane due to 

current filaments that are imaged to produce a line of constant 

flux, U = O, for !Al = 1. Figure 1 indicates the details £or 

one such current filament and its images. 
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Fig. 1 Magnetostatics for Single Current Filament 
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If N such current filaments are located at A = Aok' then 

( 1) 

The A-plane is transformed to the s-plane using 

s = (2) 

and is shown in Fig. 2 where it is considered as the starting 

plane for a Schwartz-Christoffel transformation. 

'fu? 

Fig. 2 Geometric Details of Starting s-plane 

The real axis of Fig. 2 is bent at the points indicated to 

produce a polygon with verticies having interior angles shown 

in parentheses. Figure 3 shows the resulting z-plane. Since 

the line U = 0 is a line of constant flux, the desired profile 

of one half of the pole has been formed. 

Fig. 3 Geometric Details of Final z-plane 



The transformation is 

z = 
J

S 1 

G(s) 
T 

ds 
3/4 1/2 , 

(s-T) (s+T) 
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( 3) 

where the form of the arbitrary constant has been chosen for 

later convenience and 

G(s) (l+s)l/2 

1+~)1/4 '1+~)1/2 . 
a \ Y1 

If a w-plane is formed using 

Eq. (3) may be written as 

z = 

ds 
3/4 1/2 (s-T) (s+T) 

dw 

f 

w 

G (s) 
0 

( 4) 

(5) 

( 6) 

where a is considered as the half aperture as shown in Fig. 3. 

Thus 

To evaluate Eq. (5) let 

S = T - 2T t 4 . 

w = 

• 7T 
l-

4 4A1e 
4 
l2T 

rt 
i dt 

J 0 J1-t4 

(7) 

(8) 
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or 

w = 
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( 9) 

where K is the complete elliptic integral3 and en is the Jacobi 

elliptic function. 3 For convenience choose w = i1T for s = -T 

or t = 1. Thus 

(10) 

and Eqs. (7), (9), and (10) give 

( 11) 

Figure 4 indicates the relations in the w-plane. 

Fig. 4 Geometric Details of w-plane 

For w = i<jl (Path Pl) , s varies from T to -T. 

For w = irr + p (Path p 2) ' s is real and negative. 

For <P = p (Path P
3
), s is real and positive. 
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If in Eq. (6) one integrates along path P 1 from 0 to in and 
• 7T 
1.-

associates iTI with z = ae 
4 

one finds 

(12) 

where 

s = T - 2 T en 
4 

[ K (J) ( 1 - *) , J J · (13) 

The pole profile is given by Eq. (6) using an integration first 

along path P1 and subsequently along path P2 . Thus the contour 

is 

z = 
[ 

• 7T 
1.-

a e 4 + ( 14) 

where s is given by Eq. (11) using w = iTI + p. On the median 

plane of Fig. 3 the relation between x and p in thew-plane is 

given by integrating Eq. (6) along path P3 . Thus 

_ a /2 f P dp 
x - -c;:- G(s) , (15) 

0 

where s is determined from Eq. ( 11) using w for which ¢ = p. 

Thus 

(16) 
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which by properties of the Jacobi elliptic function is real. 

MAGNETIC FIELD 

Since the imaginary part of the complex potential W has 

been chosen as the magnetostatic potential, if one lets 

* H 
.dW . = J_- = J. dz 

dW - . dA. 
dA. ds 
ds • dw 

dw 
dz · 

After obtaining the various derivatives from Eqs. (1), (2), 

(5) , and (6) one finds 

where 

* H 
v 

. 0 = J.- • 
TI 

( 17) 

( 18) 

C (A.) =_}_Y(1 + 
2N k=l A. - _l_ 

1 1 1. ( 19) 

. A. 
ok 

The gradient of the magnetic field may be found from 

* dH dH* ds 
dz = ds • dw 

dw 
dz · 

Taking the imaginary part on the median plane (y = O) gives 

I 

H (x) 
y 

where x is the real part of A. and 

(20) 

( 21) 
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In designing a quadrupole it is customary to specify the 

I 

central gradient Hy(O) instead of the excitation V
0

• From Eq. 

(21) for s = T and x = 1 

Thus 

I 

H (x) 
y 

HI (O) 
y 

I 

-B . 
0 

{ [ (
1 1 1 1 l l jl frii_ 

= l + 4 (s-T) 2 l+s - { a+s - 2 y+sJJ ,J2T 

+ 4 {f:-:r fc(x)-D(x)J} • G~(S) • l+~(l) .V"2"T" L G (T) 

PARAMETER ADJUSTMENT 

The profile design is accomplished by finding the constants 

p
0

, pe' a, y, T and the set w01 , w02 , ... w0N where p
0 

and pe 

are the values of p in the w-plane corresponding to the maximum 

field gradient and the gradient at the "good field limit," and 

w
0

k is the location of the kth current filament in the w-plane. 

The design data is considered to be B~, B~ax' B~nd' a, xend' 

and the set z 01 , z 02 , •.. z 0N where z
0

k is the location of the 

kth current filament in the z-plane. 

( 22) 

(23) 

( 24) 
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Since the design is independent of the level of excitation, 

there are five dimensionless constants plus the current fila-

ment locations w
0

k to be determined from four dimensionless 

input numbers plus the desired coil locations zok' one other 

condition may be imposed on the unknowns. A condition of the 

type imposed previously in connection with a continuously 

curved profile2 is not possible for the present contour. 

Instead of removing the duodecipole term, one may find a 

y that yields a given slot width. The remaining parameters 

are adjusted by Newton's method as explained previously. 

NUMERICAL RESULTS 

The relations developed here have been coded for the CDC 6600. 

The parameters are adjusted by alternating between adjustment of 

p , a, T in the main routine and adjustment of the current 
e 

filament locations w
0

k in a subroutine. After an adjustment 

has been found another subroutine calculates the contour, the 

field along the contour, the accumulated flux along the contour, 

and the gradient along the median plane. For confirmation, 

the contour determined by the complex variable transformation 

was inserted into an iterative magnetostatic program LINDA. 

The median plane gradients agree within .1 percent. 



-9-

REFERENCES 

1. G. T. Danby and J. W. Jackson, Theory, Design, and 

Measurement of the Brookhaven Narrow Quadrupoles, 

IEEE Trans. Nucl. Sci. NS-14, No. 3, 414 (1967). 

2. S. C. Snowdon, Magnet Profile Design, IEEE Trans. 

Nucl Sci. NS-18, No. 3, 848 (1971). 

FN-253 
2221 

3. M. Abramowitz and I. A. Stegun, Eds., Handbook of 

Mathematical Functions, National Bureau of Standards 

Applied Mathematics Series 55, Sections 16 and 17 (1964). 

Use formula 17.4.52. 


