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Since many questions regarding synchrotron phase motion 

can be answered using a linear approximation for the restoring 

force, it is of some interest to cast this approximation into 

the form used in betatron motion~ Two examples of the utility 

of this formalism are given--motion in the adiabatic region 

and motion near transition. 

SYNCHROTRON PHASE MOTION 

In the usual approximation 2 for synchrotron phase motion the 

energy gain per turn is 

dE 
dn = V sin (1) 

where V is the peak voltage per turn and wRF the angular 

frequency of the radio frequency, his the harmonic number and 

e angular position of the particle. Since the revolution 

frequency is 

dn 
dt = 

w = 27f 
( 2) 
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where w is the angular revolution frequency it is customary to 

introduce the variable 

IeV-sec] (3) 

If one also introduces the phase of the particle relative to 

the radio frequency phase 

( 4) 

one has 

. v 
P = - 211 sin <P (5) 

and 

~ = hw - wRF. ( 6) 

REFERENCE MOTION 

The designation reference motion is used to distinguish 

between the motion of a particle satisfying Eqs. (5-6) and a 

particle which is approximately synchronous (hw ~ wRF). Since 

there are more unknowns in Eqs. (5-6) than equations it is 

possible to choose the reference motion in many ways. For 

example, exactly synchronous acceleration will be executed if 
. 
P and V are constants. Adiabatic turn-on provides an example 

in which the reference motion is only approximately synchronous. 

In any case, if the reference motion is designated by the sub-

script R, one has 
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. v 
PR = -2'1T 

• 
ij>R = hwR 

sin <J>R 

- wRF. 
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(7) 

(8) 

The deviation of the general motion from this reference 

motion may be determined by examining the difference P - PR. 

If, instead of using this difference as a variable, one 

chooses 

P - PR = hJ (9) 

the variables (J,¢) will be canonically conjugate. Thus, 

Eqs. (5-9) give 3 

J• v ( . • . 
= - 2'1Th sin .,,-sin (10) 

( 11) 

Even in this general motion it is customary to linearize Eq. 

(11) by expanding the actual angular frequency about the refer-

ence angular frequency and retain only the first term. Thus 

one obtains 

. v ( . J = --- sin ¢-sin ¢R) 2'1Th 
( 12) 

2 2 . . h WRKR 
<!> = <J>R + J, 

ER 
( 13) 

where 

2 2 
YT - YR 

KR = 
2 ( 2 

YT YR - 1) 
(14) 
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Here YT is the value of YR at transition and ER is the total 

energy of the reference particle. 

LINEARIZED SYNCHROTRON PHASE MOTION 

If one designates the difference phase ¢ - ¢R by 

n = ¢ - <Ii R 
(15) 

and expands Eq. (12), retaining only the term linear in n one 

obtains for the canonically conjugate variables (J,n) 

. v cos <jlR 
J = - n 211h (16) 

and 

2 2 
• h WRKR 
n = J. 

ER 
(17) 

To bring out the similarity of Eqs. (16-17) with those of 

betatron motion it is necessary to change the independent variable. 

Thus, let 

[ (eV-sec)-l] ( 1 B) 

Then, designating differentiation with respect to s by a prime 

one has 

J' = -Kn (19) 

n' = J ( 20) 

where 



K = 

-5-

ERV cos <f>R 

2rrh
3w;KR 

Thus, Eqs. (19-20) become 

n" + Kn = o 

[ (eV-sec) 
2
] 
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( 21) 

( 2 2) 

and the similarity to betatron motion is evident. The solution 

of Eq. (22) may be put in the form of that used in betatron 

motion. 4 

n = 128W sin (f: ~s + y) ( 23) 

where the constants of the motion W, and y, have been chosen 

such that the Jacobian 

a (J, n) 
Cl (W,y) = 1. ( 24) 

The function 8 satisfies the second order nonlinear differential 

. 4 
equation 

1 8"" - 1 8'2 + 82K = 1 2 µ 4 ( 25) 

as is the case in betatron motion. An instantaneous frequency, 

the synchrotron angular frequency, may be introduced as is clear 

from the phase in Eq. (23): 

(26) 
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INVARIANT BOUNDARY CURVE 

Since J = n' one has 
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+ 1 s' 
2 sin ( J: ~s + y)] . [eV-sec] 

(27) 

Eliminating the phase Js 
0 

ds 'S"" + y between Eq. 

has 

w = 1 SJ2 - 1 S'Jn + 1 
2 2 213 

2 
n ' 

( 2 3) and ( 2 7) one 

[eV-sec] ( 28) 

which since W is a constant of the motion, one recognizes Eq. 

(28) as the invariant curve of Courant and Snyder. 4 The phase 

area contained within this boundary ellipse is (area of beam 

within one bucket not h buckets) 

E =ff dJdn. [eV-sec] (29) 

But since (W,y) are canonically related to (J ,n), Eq. (24) 

gives 

E =fl dWdy = 2rrW, (30) 

the interpretation being that the phase area associated with 

the boundary curve is a constant. Thus all the notions related 

to betatron motion have been carried over to the linearized 

synchrotron phase motion. One must, however, construct the 

!>-function for the general case. 
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CONSTRUCTION OF THE $-FUNCTION 

FN-244 
0302 

Let n1 and n2 be two real independent solutions of Eq. (22). 

Thus 

" n 2 + Kn 2 = o, ( 31) 

from which one may show that 

( 32) 

Choose, then, any two real independent solutions such that 

(33) 

By direct substitution into Eq. (25) one may show that 

(34) 

is the general solution if 

AC - B2 = 1 ( 35) 

where A, B, and C are dimensionless constants. 

Since the B-function is related to the boundary curve, the 

two remaining constants may be found by specifying the initial 

orientation of the ellipse. 
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The properties of the ellipse 5 are in particular 

( 36) 

=1s' =.!.2a' f'!,W. 
JT 2 i3 11 R " 'I/ f3 (37) 

Hence, if llR(O) and JT(O) are given, one may find S(O) and 

S' (0). Once the specific solutions 11
1

and11 2 have been chosen, 

the constants A, B, and C may be found. 

SYNCHROTRON MOTION IN ADIABATIC REGION 

The adiabatic regime is defined as motion in which the 

coefficients in Eqs. (16-17) do not change appreciably in one 

synchrotron oscillation. This condition is satisfied for 

synchrotron motion except in the region near transition. Thus 

under this condition and assuming that one desires to populate 

the phase plane within the invariant ellipse such that it is 

approximately upright and does not tumble, the solution of 

Eq. (25) becomes (B" and S' neglected) 

l s = vK = 

Eq. (23) becomes 

where Eq. (26) gives 

(38) 

( 39) 
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Q 
hKRVcoscj>R 

( 4 0) = WR 2'1TER 

Eq. (39) demonstrates that the adiabatic damping of the phase 

oscillation varies as 

IS = ".l µ TK ( 41) 

SYNCHROTRON MOTION INCLUDING TRANSITION 

Herrera6 has calculated this motion recently. It is of 

interest to see how it fits into the preceding formalism. 

His basic assumption apart from using a linear theory is that 

the reasonable variation of y near transition (here taken to 

be at t = 0) 

• 
y = YT + YT t ( 4 2) 

giving 

2 2 
h WRKR 

= -Mt 
ER 

(43) 

where 

M = [ -1 -3] (eV) -sec (44) 

provides an M which may be taken as constant for all times. 

Thus, Eq. (18) becomes 

s = -~ M t
2

• [cev-sec) -lJ ( 4 5) 
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Eq. (21) becomes (V and ¢R assumed constant) 

K(s) = l 

,;::s 
[ceV-sec) 2] 
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( 46) 

If the reference phase changes from ¢R prior to transition to 

11-¢R just after transition, Eq. (46) is valid both above and 

below transition if ¢R is the reference phase below transition 

at the "time" (-s) away from transition. For convenience let 

Eq. (22) becomes 

a2 
n" + n = o. 

,1-s 

Two independent solutions which satisfy Eq. (33) are 

and 

where 

Eq. (34) gives 

~ 1/2 
nl = -{3 (-s) J2/3 (v)' 

v = 4a (-s)3/4. 
3 

( 4 8) 

(49) 

(50) 

( 51) 
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The choice of A, B, and C is made as follows. One wants 

the boundary curve to be approximately an upright ellipse 

for large (-s). For large (-s) Eq. (52) becomes 

S = ;a(-s)
1

/
4

[A + C + 2B sin(2v-~'IT)+ (A-C) cos(2v-~'IT)] (53) 

For no tumbling the coefficients of the trigonometric terms 

must be zero. Thus B=O and A=C. Eq. (35) then gives 

A = 1 B = 0 c = 1. 

Thus 

S = ni + n~ = ;'IT (-s) [J~/3 (v) + N~/3 (v) J 

Near transition, Eq. (55) becomes 

8'IT(3 )
4
1

3 
1 l s = 9 2a r 2 (~) + ,13 (-s) + .... 

Hence, at transition 

For the 

s ( 0) 
8TI =g (

3 )4/3 1 
2a r 2 (~) 

s'<oi=-A 

NAL booster one has approximately 

v = 654 kV/turn 

<f>R = 70° 

YT = 5.4458 

ET = 5.1096 GeV 

(54) 

( 55) 

( 5 6) 

( 5 7) 

( 5 8) 
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h = 84 

• 
yT = 396. 6/sec. 

For these parameters 

8(0) = 7.08/eV/sec 

8'(0) = -1.15 
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Detailed numerical studies by Lee7 following the trapping and 

subsequent acceleration of many particles indicates that the 

trapped particles indeed may be put into an upright ellipse 

and that at transition the ellipse is characterized by 

8(0) = 7.26/eV/sec 

8'(0) = -1.19 

in reasonable agreement with the analytical results above. 
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