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SUMMARY

The beam debunching problem 1s approached directly by
writing down the rms bunch length equation in the presence
of space charge forces. Besildes the usual reactive beam-wall
coupling field, the wake filelds caused by the resistivity of
the wall material and the RF accelerating cavities are also
taken into account,

The rmsg length egquation is integrated for the special case
of the NAL main ring with special attention to detuning cof the
cavities. The result is a debunching criterion which can be

easily fulfilled for ordinary coperating conditions.

THE RMS AMPLITUDE FPHASE
OSCILLATICN EQUATION

We assume a particle beam composed of h bunches all with
the same number of partficles N. Let x = ¢ - ¢S be the devia-
tion of the phase angle of a particle from the synchronous
value, and fk(x,t) the particle distribution function of the

k—-th bunch normalized to unity.

¥This paper is to be presented at the 1971 Particle Accelerator
Conference, March 1-3, 1971, Chicago, Illinois.
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If we denote by Ek = xf, (x,t)dx the phase of the
center of mass of the bunch, according to F. J. Sacherer’
it 1s possible to derive a differential equation for the rms

~

length Vi of the k-th bunch defined by
~2 - 2
v” = (x=%)° £ (x,t)dx

For the phase oscillation in presence of space charge

forces the equation can be written as

d2§k 2n nhwsz 2 82 nhm82 ;“; -
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k k
where
Q = phase oscillation angular frequency,
we = bunch angular velocity,
h = RF harmonic number and number of bunches,
E = particle total energy,
A = ratic of bunch veloeity to light velcecity, e,
e = particle charge,
n = Yt_g - Y_E, with
y7% =1 - 8%,
Yo = ratic of transition energy to rest energy,

and S 1s the rms phase space area of a single bunch. In the

fellowing 3 is supposed to be known and constant in time.

Denoting the rms energy spread by (AE)k’ we have for a

bunech having the shape of a right ellipse

s = §k(AE)k/mS. (2)
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The quantity

yF, = [ yE (3)5 (y,t)ay

with y = x - Ek

the gpace charge.

in the last term of (1) glves the effect of

The space charge function Fk(y) for a particle in the
k—-th bunch inecludes interactions with particles both in the
same bunch and in other bunches., If Fk(y) is known, Eq. (1)
can be integrated for §k which then shows whether the beam

wlll debunch.

THE SPACE CHARGE FORCES
Let 0 be the angular coordinate around the beam orbit
of radius R and w{e—mst) the longitudinal particle distribu-
tlon function. Integration of Y over one bunch 1s normalized
fto unity so that integration of ¢y over the whele beam glves h.

The beam current 1s

T = Newsw(e-wst)

+ o0
_ e
= o7 Ys ) l‘I"n

where
tm ~inz
v, = [ ¥lz)e dz
-1

Let us introduce the beam-wall coupling impedarnce per turn

Zn' Then, the electric field asscociated with I 182
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E(B-w_t) = -~ ‘ Z Y e
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in(ﬁ—wst) ’

The rate of change of energy of a particle at 6 = w t + z(t)

is

This gives for a particle in the k~th bunch,

Fk(C) = E/ewg
(3)
- Ne ing
N @ W E Za¥ne

Equation (3) can be evaluated easily for the following three
speclal cases

1. Perfectly conductive wall

For concentric cilrcular vacuum pipe and beam respectively

of radius b and a, we havez’3

7 = 2min 1+21g(b/a)

n 2

Bey
and
, +
P () = Ne it2ig(b/a) d .,
k Ryz dg

2. Resistive wall

For the same concentric c¢lrcular geometry and denoting

by o the conductivity of the wall material we have®’S
2Tw
= R |7 7s
Zy = (3-1) cb y o

and
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F (z) = - Ne B [7s & f- y(z)dz (4)
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3. Lumped resonator
For a resonator

;- inws/C

n 2 2 2

n + inw /T - w
Wy s/ o}

where C is the capacitance, T the damping time and W, the
resonating angular frequency of the resonator.

IT the quality Q@ = 1 W, of the resonator is not too
small, we get

o

Fk(c) = g%ﬁ e—Fh(Z_C)coslbh(z—;ﬂ w(z) d= (5)
g
where
I' = a/2Q, a = wo/msh

For a particle in the k-th bunch

X = hg, ik = h Ek and y = h(c—fk)
The function $(g) in Equation (5) is the sum of the distribu-
tions of the h particle bunches, 1l.e.

wlz) = ) ¥3{g) = h ) £.(y)
z % 1z % 1y

el

Let us calculate yFk

the contributions from the k-th bunch and the other bunches

for these three speclial cases keeping

Separate.

A, Contribution from the k-th bunch

1. Perfectly conductive wall

This is the only contributicn fer this case.
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where we have assumed an fk(y) symmetric around y = 0. The
gquantity €0 1s a coefficient describing the shape of the dis-
tribution. Tor rectangular distribution: €, = 1/2!?1

2. Resistive wall

For this case,

£ o(yt)dy!
_ Ne g [Ys .3/2 4 k
f ) = -5 bjo dyf STy

¥
which gives, again assuming a symmetric distribution
w £
—""—_ﬂééfﬁ 3/2 °r
Y =7 vds B Iz (7
Tk

where e = /6 /3718 for a rectangular distribution.

3. Rescnator
For this case y Kk is rather complex even for a rectangular
distribution. Without loss of important physical informstion,

we can assume for fk(y) two delta-functions spaced by §k‘ This

gives
N ~T(y'-
B () = 355 [T Veos iy )] 1 (r 1y
v
and A
~ "'gry
— _  Ne k
yFk = -mag Yy cos(2uyk) (8)

B. Contribution from all other bunches

We shall teke delta-functions for the particle distribu-

ticns for all other bunches on the right-hand side of (4) and (5).
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1. Perfectly conductive wall

Becauge of the absence of wake field there is no contri-
bution of this type in this case.

2. Reslstive wall

If y << 2mm, m = 1,2,....
143 L

Ne B |% ,3/2 & 2 Zrm
F (y) = -2 & /—~ h j —2emm
k 2T b Jo n=1 (2ﬁm)3/2

and

—— _ 3 Ne g (% 3/202 ¢ -5/2

y Kk - —)_T T b g h .Vk .5_: (2ﬂm) (9)

m=1
where
T (2mm)™2/2 = 0.0136
m=1
3. Resonating circult
_ Ne s -T{2mm=~y)
Fk(y) = 575 Z e cos[}(Eﬂm—yﬂ
m=1

and

—_— N ~ ~ ~

yF, = §%€ i {%(F,G)Sinh(ryk)cos(ayk)

(10)
+ B(T,u)Cosh(F§k)sin(a§k%}

Where

A(T,a) = 7§ ewzﬂmrcos(Qﬂma)

m=1
B(T,a) = 1} e 2™l g5 (2mma)
m=1

Equations (8) and (10) can be applied tc¢ the case of

the RF accelerating cavity for which o« v 1, and we introduce
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the detuning factor g = a=1. Generally, ng is very small

for all values §k of interest, so (8) becomes

_ Ne =» ~
Fi, = ~g-g ¥, cos(2y,), (11)

o

and, since for |q|>>1/2Q2 or q = 0

_ o/ _ 2qQ°/n
A= 575 3 B 55 o
1+4g°Q 1+4g°Q

(10) becomes
~ ~ 2 . ~
 Ne = ¥ cosy, + 4q4Q siny,
Py = 750 vy 575 (12)
Y=g 1+49°Q

b

4. Beam Debunching Equations

We assume that at time € = 0 the RF cavity is turned ofTf
for the beam to debunch. Hence, for ¢t z 0, @ = 0. Lguation

(1) can be written as two first order equations (dropping the

index k)
@ . 3
dr P
" (13)
g‘B:-;I.'._-+ o
g = T3 * Ks(y)
y
where T 18 the scaled time
nhws2
T = —5— St, (14)
B™H
2.2
K..—.l_\T_e___B_.,_.E_ (15)
2a2
nhws 3

and g is the function of § obtained by summing (6), (7), (9),

(11) and (12), namely
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g(y) = -x5 + 375 - agy - gyeos(2y) +
¥y Yy
Ao e 2
+ 5 Ycosy * 4gQ siny
1+ ug%g°
where
£
4 = po LF 2lg(b/a) _c
1 R 2 2
Y
_ 32 8 %
2, =h bfo =
fw
- 3 0.0136 . 3/2 B i's
83 ° T T b b Jo
1 1
a = s a =
4 87wC 5 HWQC

We assume that at time t = 0 the bunches have the shape of
right ellipses, so that (2) applies. Denoting the bunch rms
length by §o and the rms energy spread by AEO, at &t = 0, we have
for the constant value of S

S =y LE /ug,
and the quantity 5, whiech 1s a measure of the obliquity of the
bunch, is taken to be p = 0 at t = 0.

5. Application fo the NAL Main Ring

For the NAL Main Ring

1+ 2lg(b/a) = 4.5 h = 1113
® = 10° cm y = 214
b = 4 em 8 = 1.000
g = 5.1016 sec” T wg = 3.105 sec™T
y. = 0.1
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and
C = 16 cm, for a total of 16 cavitlies and taking
13 chm fer the characteristic imped-
ance of each cavity.

Substitutling these parameters we get

a; = 1.8 . 10—4 em™ 1
a, = 1.3 - 1073 em™t, ag = 7.4 1072 em %,
a, = 2.5 ° 1073 cm—l, ag = 1.6 * 1073 em™ L.

Two possible modes of coperation were studied: (a) Leave the
RF cavities tuned to the ejection freguency (q = 0). (b)
Detune the RF cavities back down to the inJection frequency
(g = -0.37 %).

The results for mode (b) which turns out to be the more
limiting of the two are shown in Figure 1. The rms amplitude
§ is plotted against r/§o for several wvalues of XK. If we take
as debunching criterion that § > 7, the results yield the con-
dition

K < 58 ¢enm

cr from (15)

-—-li-7§ < 2.3 - 1018
(Ap/Dp)

In normal operation the number of particles per bunch is

N = 4.5 - 1010, and the rms momentum spread Ap/p is expected
to be v 8 - 10”“. This gives
N - 0.07 - 10%°
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so that there is a very large margin of safety Tor the beanm
debunching.
As the actual value of K is much smaller than 58 cm,
the debunching time, T, can be calculated using the K = 0

curve. We have from (14) and T/yo =

T = w(nthAp/p)_l = 4.5 msec
This time can be reduced 1f the cavities are detuned to a
frequency above the ejJection frequency to give q = + 1/2Q.
But numerical calculation shows that this reduction of T is

only ~ 10%.
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