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The moment equations have been studied by F. J. Sacherer 

(CERN/SI/Int.DL/70-12, 18.11.1970) up to the second moment. 

Here we extend it to higher moments. 

Let the one-dimensional no space-charge single-particle 

equations be 

(prime means d~) (1) 

and the distribution function be ~(x,p,t) which obeys the 

continuity equation 

~ + ~(x'~) + ~(p'~) = 0 at ax 3p 
(2) 

For now we shall consider k to be time independent. 

MOMENT EQUATIONS 

The equations for the various moments of the distribu-

tion can be derived simply as follows: 

First Moment 

(x)' = d~ f x ~(x,p,t) dx dp 

= J x ~ dx dp at 

= - f x [a!(x'~) + a;(p'~)l dx dp (3) 
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l ",IX(1);dxdP=X'=P 

(p)' = pI = -ki 
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where we have performed a partial integration and made use 

of the assumption that 1);+0 as Ixl+oo or Ipl+oo. We can write 

these two equations as 

where 

Second Moment 

(i2) , = 2 xx' 
(xp) I = xp' + 

(p 2) t = 2 ppt 

Or we can write 

where 

= 2 xp 

x'p = -k ? + 
._!1 
P 

= -2k xp 

020 

K2 - -k 0 1 

o -2k 0 

(4 ) 

(5 ) 

(6 ) 

Similarly, we get the equations up to, say, the fifth mo-

ment. They are summarized as 

(7) 

where 
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Xl = (:J Kl = l-: :] 
x 2 0 2 0 

X2 = xp K2 = -k 0 1 

p2 0 -2k 0 

x' 0 3 0 0 

x 2p -k 0 2 0 
X3 = K3 = 

Xp2 0 -2k 0 1 

p' 0 0 -3k 0 

X" 0 4 0 0 0 

x'p -k 0 3 0 0 

X4 = X2p2 K4 = 0 -2k 0 2 0 

: xp' 0 0 -3k 0 1 
,-
~p4 0 0 0 -4k 0 

( X5 0 5 0 0 0 0 

X4p -k 0 4 0 0 0 
I 
! X'p2 0 3 

X5 K5 = -2k 0 0 0 = 
X2p' 0 0 -3k 0 2 0 

Xp4 0 0 0 -4k 0 1 

p5 0 0 0 o -5k 0 
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DIAGONAL FORMS OF MOMENT EQUATIONS 

Either by direct computation or by decomposing Kn into 

operators similar to the creation and annihilation operators 

for Bosons and taking advantage of simple relationships be

tween these operators, we get (w 2 = k) 

K 2 + w2 = 0 
1 

K (K 2+4w 2 ) = 0 
2 2 

(K 2+W 2 ) (K 2+9w2) = 0 
3 3 

K (K 2+4w 2 ) (K 2+l6w 2
) " 0 444 

(K 2+W 2 ) (K 2+9w2) (K 2+25w2) = 0 
555 

( 8 ) 

The regularities of these equations are obvious. These rela-

tions show that the moments satisfy the following non-matrix 

(diagonal) linear equations 

x " + w2 X = 0 1 1 

(x "+4w 2x )' = X III + 4w 2X ! = 0 
222 2 

(X "+9W2X )" + w2 (X "+9W2X ) 
3 3 3 3 

= X ,," + lOw 2X " + 9w"X = 0 
3 3 3 

[ex4"+16w2X4)" + 4w 2 (X4"+16w2x 4f (9) 

= X4 v + 20w 2x 4", + 64w"x4 ! = 0 
n 

rex "+25w2x )" + 9W2 (x "+25w2X ~ 
L 5 5 5 5J n 

I + w2 ((X "+25w2X )" + 9W2 (X "+25w 2X )] 
! L 5 5 5 5 

L' = X VI + 35w2X "" + 259w"X " + 225w6X 
5 5 5 5 = 0 
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The equations for the lower moments are familiar. For 

example~ Xl equation gives 

ex)!! + w2 i '" 0 00 ) 

which simply states that the center of gravity of the dis-

tribution oscillates as a single particle. The X2 equation 

gives 

( 11) 

which is reminiscent of the equation for the Courant-Snyder 

S function. 

BILINEAR INVARIANTS 

We can define the bilinear invariants for the nth mo-

ment by 

where 

gives 

or 

In 1. X S X - 2 n n n 02 ) 

means transposition. The condition for invariance 

2 I ' = X 'S X + X S X r n n n n n n n 
(13 ) 

= X K S X + X S K X = 0 n n n n n n n n 

K S + S K = 0 n n n n 04 ) 

It can be shown directly that Sn has the following forms 
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The invariant 12 can be defined as a measure of the mean

squared emittance. 

ENVELOPE EQUATIONS 

We can define the nth envelope ~n (envelope of the nth 

moment) by 

(17 ) 

and derive second order equations for these envelopes. 

(Strictly speaking, t can be interpreted as an "envelope" 
n 

only for even values of n.) We shall demonstrate the pro-

cedure only for t2 

(x 2)" , 
I 

= 2 (xP)' = -2 w2 x2 + 2 p2 

= -2 w2 1;;2 + 2 p2 
2 

= -2 w2 ~2 2 
"2 + "[Z 

2 

(t~) " = 2 t t " + 
2 2 

Therefore 

~ " + w2 S 
2 2 

= 2 t 1;; " + 
2 2 

1 = 2 1;; t " + 
2 2 

--2 

2s 
2 

= 2 s :; II + 
2 2 S2 

2 

2 2 (--)2 
= x p - .xp = 

1:: 

2 

(2 t 2 t 2 ') 2 

[ (;Zi) 'J 2 

2 
(xp) 

(18 ) 
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Similar procedure gtves 

E 

~n " + w'~ = Cn-l) n 
(19 ) n t;,n-l 

1 n 

where I;n - (xn) n and 

EI = 0 

E2 = x' p' _ (xp)2 

E3 = x 3 xp' _(x'p)2 (20) 

E4 = X4 x'p' -(?r;l 
E5 = X

S X3 p ' _ tx4p)2 

Only the equation for 1; is useful, because E2 is iden-, 
tical to the invariant 1 2 , All other E obey rather complex 

n 

time equations. The I; equation is reminiscent of the ampli, 
tude (w = JS) equation of Courant and Snyder or the 

Kapchinsky-Vladimirsky equation in the absence of space 

charge. The 1;, equation may be called the rms envelope 

equation. 

GENERALIZATIONS 

Several straightforward generalizations should be 

pursued. 

(a) When k is time dependent k = k(t) we should 

write the single particle equation as 

[XI = a(t)p, 

~I = -b(t)x, 
KI = (0 a) 

-b 0, 

and proceed in a similar manner. 

w' _ ab ( 21) 
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(b) When space~charge force is present we write 

Jxp', :_ ap U -bx + Fx 
(22) 

where F '" F(x,t) is the space-charge force. In this 

case a condition must be imposed on F to insure the in-

variance of 1 2 . This generalization can proceed in the 

manner a la Sacherer. 

(c) The generalization to more than one coupled 

dimensions can be made in a straightforward way as 

indicated by Sacherer. 


