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Longitudinal space charge forces within bunched beams 

are exactly computed in the presence of vacuum chamber wall 

material with general electric and magnetic properties. 

The forces can be split in two terms. The first one 

does not depend on the wall material properties and corre-

sponds to the usual forces in the presence of a perfectly 

conductive wall. These forces suffer the magnetic cancel

lation and hold the y-2 factor. The second term is the 

effect of the induced current at the wall and of the poten-

tial distribution they produce by crossing the equivalent 

surface characteristic impedance of the material. These 

kind of forces do not hold any y-factor, so that their con-

tribution can be large at a very high beam energy. 

Application is done to the special case of resistive 

vacuum chamber wall. 

It is shown that the resistive forces are negligible 

at any frequency and at any energy in the NAL Booster. 

It, is shown, also, that they can be neglected at the 

injection and at the transition crossing in the NAL Main 

Ring, but that they are predominant at the top energy of 

200 GeV. 
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1. NOTATION 
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Let us consider the case of one bunch of N particles 

circulating in a cyclic accelerating machine. We shall de-

note by R the radius of the bunch orbit. 

The beam and the vacuum chamber wall are approximated 

by infinitely long straight cylinders of radii a and £, 

respectively. 

We shall make use of the cylindric system of coordinates 

~, 1, ~, with ~ along the pipe and beam axis. 

The charge density of the beam bunch is written as 

where 

p = Ne f (z-vt) Q (a-r) 
7Ta2 

Q (x) = 0 for x < 0 

= I x > 0, 

(1) 

e is the particle charge and v the bunch velocity. t is the 

time. 

f(x) is the longitudinal particle distribution function. 

It is normalized to unity. 

We take the vacuum chamber wall with very large thick-

ness so that only the boundary conditions at the inner pipe 

surface are required. Besides, we take homogeneous wall 

material with the most general electric properties. 

We are interested only in fields with cylindrical sym-

metry (independent of ~). These are E ,E and H~; whereas r z 'f 

H = H = E = O. The fields can therefore be expressed in z r ¢ 
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terms of a vector potential which has only a z component. 

We write 

Az (r,z,t) ; S V (r,z,t) 

A<jl ; Ar ; 0 (2 ) 

where S is the ratio of the bunch velocity v to the light 

velocity c. 

In terms of the scalar potential V we have 

= .... ( a + ~ L) V az c at 

av = - ar 

(3) 

It is advantageous to use the Fourier transform, fn' 

of the distribtuion function f(x). We have 

where 

and 

f (z-vt) = 

nR 

J 
-nR 

1 
2nR 

+00 
I 

n= .... 00 

f e i (kz-wt) 
n 

x 
-in R dx 

f(x) e 

k = n/R, w = n ~O 
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with ~O = viR the bunch angular velocity. 
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In the following we shall denote by the tilde and the 

index g the Fourier transform of any function in x = z-vt. 

with 

In particular, we have from Eq. (3) 

2. 

The wave 

d 2V __ n_ + 
dr 2 

= -

Hep = - i3 
n 

d V 
n 

dr 

THE WAVE EQUATION INTEGRATION 

FOR THE TRANSFORMED 

equation 

I -r 
dV

n 
dr -

2Nef
n 

. 2 
'ITa R 

for V is n 

k 2 -
-V = -2 n y 

Q (a-r) 

POTENTIAL 

41TPn 

(4 ) 

(5 ) 

The solution of (5) which is bounded at r = 0 and satis

fies the continuity of Vn and dVn at r = a, is 
dr 

+ a , (r<a) 
n 

+ an Sa (~~), (r>a) (6) 



with 

a = n 

S (Dr \ na [Kl yR) = yR a 
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2Ne (~) fn 'TfR 

(~~) I (nr) + I (na) o yR 1 yR KO (~~)J 
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(7) 

(8) 

and I , K are the modified Bessel function of order m and m m 

of the first and second kind, respectively. 

The constant Pn is to be determined by the boundary 

condition at the inner vacuum chamber wall, r = b. 

We postulate the general electric properties of the 

wall material can be described by an equivalent surface 

characteristic impedance ~n' at the angular frequency 

w=n nO' such that the following fields normalization holds 

or in terms of Vn from Eq. (4) 

- ~ B n 

which gives for Pn 

P
n 

= 

with 

- a 
n 

, (at r=b) 

(~~) 
(~) 'Tf l 

/ I (nb) o yR 

(9) 

(10 ) 

(ll ) 
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IJn~) 
~~ 

inb \ o yR 
Ta I-I = - isnBY \yR:' 

l-i1; flY n 

t 
S a 
S a 

II 

10 

(~~1 
(~~) 
(nb) yR 

(~~) 
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(12 ) 

where Sa denotes derivates with respect to the total argu-

ment. 

3. THE LONGITUDINAL SPACE CHARGE 
FORCES FOURIER TRANSFORMS 

The longitudinal space charge forces within 

are, from (4 ) and ( 6 ) , 

F e E -i 
k 

{an + P 10 (~~) } = = 2 e z z n n n Y 

or, from (9) , 

F = -i 
k 

{I - (TIl - TI 2 ) 10 (~~) } 2 e a. z n n Y 

We split F in two terms z n 
I II 

F = F + F z z zn n n 

with 

I k f-F = - i e ct TIl 10 
Z 2 n n y 

and 

the bunch 

(13) 



II 
F =-i 

zn 
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(14 ) 

The first term, F I , does not depend on s and never vanishes. 
n 

In the following 

charge forces. 

and is zero for 

z n 
it 

The 

the 

will be referred to as the reactive space 

- II 
second term, F z ,is sensitive on ~n' 

n 
particular case of perfect conductive 

wall (~n=O). It will be referred to as the dissipative space 

charge forces. Let us refer now to the special case 

nb «1 
yR 

for which we can use approximated expressions for the modi-

fied Bessel functions. We have 

Thus, 

with 

S (nr)::; 
a yR {l+2 In ~ 

Sa t (~~) : ~ (~~) {l- (~) 2} 
2 

IO(x) : 1 + if- + 

II (x) : ~ + ---- . 

inserting (7) and (10) in (13) 

I R Ne 2 -F = -i :2 2'1TR fn g(r) z n y 

g(r) = 1 + 2 In b (~t -a 

yields 

(15 ) 
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g(r) is a weak function of r for usual values of a and 

b. In the following it will be kept as constant and simply 

denoted by g. 

For the computation of F II we insert Eqs. (10) and (12) 
zn 

in (ll) and Eqs. (7) and (ll) in (14). 

with 

and 

1 - H*f g(O) 

1 - H~~)2 g(b) 

b (ba)2. g(b) = 1 + 2 In - -a 

1 (na\ 2 1-4-yRJ g(r) 

1 . Q nb 
- ll;;n" 2R 

(16) 

(17) 

If g(b) does not take too large value, and Il;;n l is enough 

small in order to verify the condition 

Il;;n I S ~~ «1 , 

(17) can be replaced by the following simpler equation 

(18 ) 

Inspection of Eqs. (15) and (16) shows that F I has a 
Z 

-2 II n 
linear y dependence that FZn has not. That means the 

reactive forces are predominant at relative low energy but 

there is an energy above which the dissipative forces become 

more important. This energy is given by equating (15) and 

(16) , 
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A second result is the following. The reactive forces 

are linear in the frequency, whereas the frequency response 

of the dissipative forces is the same of the material intrin-

sic impedance s . 
n 

4. APPLICATION TO THE RESISTIVE WALL 

Let us consider the case of wall material with finite 

conductivity c. G is supposed to be so high as to be al-

ways much larger than any frequency w = n~O of interest. If 

the magnetic permeability is close to 1, we can define the 

material resistivity in the following way 

and the resistive wall characteristic impedance as 

I;; = (I-i) If . (I9 ) 

Comparison between the reactive and the dissipative 

forces can be easily done by inspecting the ratio c1n/g. 

From (18) and (19) we have 

c!n = -(l+i) G -g F 
, (20) 

with 

2 S3 cR 
G = L 

g 211Gb 2 
(21) 
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The resistive forces could be predominant at small fre-

quencies, but their contribution is reduced at very high fre-

quencies. 

The total space charge forces are obtained by anti-

- I II 
transforming F and F 

zn zn 
We have 

x 
F I = L F I e inFf 

Z Z n n 
(22) 

FII II 
in~ 

L F R = e 
Z Z n n 

(23) 

From 05 ) and (22) it is easy to obtain 

F I 2 2 0+2 b df 
= -Ne O-S ) ln -) 

dx Z a (24) 

The reactive forces are linearly depending on the local 

particle density. 

From (16) and (23) we have 

Ne 2 S3 c/b2 x 
FII ;;; in-

= -O-i) L f R 
2'1TR e 

Z 2'1TR<J n n 

It can be shown that 

.. 
d B(x) d f fez) dz dx = dx 

/z-x 
, 

x 
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so that 

F II = Ne 2 ..£ Jsc' ---2. B(x) 
Z TIb rr dx 
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(25) 

This force depends on the amount of charge ahead of the point 

in consideration. 

Usually a parabolic particle distribution was taken 

for f(x) which leads to an expression for Fz
I linear in x. 

Let us continue to use this approximation. We have 

f(x) = 6 
L3 

which inserted in (24) gives 

F I 
z ln~) x. 

Neglecting the effect of several bunches, we have for B(x) 

B(x) 

from which 

dB( x) 
dx 

= 

= 

6 
L3 

4 
L3 

L/2 
L2/4_z 2 
"'-L-'-----"'_ d z J 

x 

2 2 
3L -8x -2xL 

5 

2xL+L2_8x 2 

J~ - x' 

Inserting this in (25) we obtain 

2xL+L 2_8x 2 

j~ - x' 



from 

and 
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5. APPLICATION TO THE NAL CYCLIC ACCELERATORS 

a) Booster 

a = 0.5 cm 

b = 3 cm 

g = 4.6 

R = 75.4717 m 

(J = 5 10 16 -1 sec 

which and Eq. (21 ) 

G = l ;;'3--' 
1. 95 x 10- 3 

in particular 

G = 0.001 at injection, y = 1. 2132 

G = 0.055 at transition, y = 5.373 

G = 0.175 at ejection, y = 9.5264. 

FN-219 
0402 

Inserting these values in (20), it results that the 

resistive forces are always much smaller than the reactive 

forces, at any energy and at any frequency of interest. So 

that they can be neglected in any further investigation where 

the total longitudinal space charge forces are required. 

b) Main Ring 

a " 0.5 em 

b " 3 em 

g = 4.6 

R - 100.0. m 

(J = 5 . 1016 sec -1 

from which 



G 

and in particular 

G = 0.64 at 

G '" 2.75 at 

G '" 327. at 
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2 P 7.11 x 10-3 
'" '( 

injection, y = 9.5264 

transition, y = 19.612 

ejection, y = 214.2 
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The resistive forces are very small at the injection 

in the Main Ring at any frequency of interest. At the tran-

sition energy they contribute weakly and only at low fre-

quencies. But they are comparable and even larger than the 

usual space charge forces in presence of perfectly conductive 

wall, at the top energy of 200 GeV. 

In Fig. 1 the longitudinal electric field per unit 

of charge is plotted for the three cases of injection, tran

sition and ejection energy. The bunch half-length L/2 and 

yare listed beside each plot. The internal scaled longi-

tudinal coordinate 2x/L is in the abscissa, the electric 

field per unit charge E/Ne in the ordinate. The continuous 

line corresponds to the reactive beam-wall field, the dashed 

line to the resistive field component. 
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