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1. INTRODUCTION 

The transverse coherent instability of multibunched beams has 

already been investigated by Courant and Sessler
1 

(CS) in the special 

case of dipolar coherent oscillations and of resistive vacuum-chamber 

wall. 

The purpose of the present paper is to apply and to extend the 

results of the CS investigation to the NAL main ring. 

The first of our goals is to identify the unstable mode s of a beam 

circulating in the NAL main ring for the special case of zero betatron 

frequency spread. We shall deal with the special case of full beam in 

the main ring composed of M = 1113 bunches equally spaced and with 

equal particle numbers. 

The second step of our investigation is the computation of the 

unstable modes growth time, still in absence of betatron frequency 

spread. 

Computation shows that almost all the unstable modes exhibit a 

growth time much less, or at least comparable to the acceleration 

period of 1.6 seconds in the main ring. Thus, almost all the unstable 

modes are dangerous too. 

o Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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The last of our goals is the computation of the minimum betatron 

spread required to reduce to zero the growth time of the most unstable 

mode, i. e., of that mode with the smallest growth time in absence of 

spread. 

Our computation, which is based on the exact solution of the dis-

persion relation, shows that the required frequency spread is much too 

sensitive to the tail length of the particle distribution, at least for the 

special case of the N AL main ring, so that it can be a problem to make 

a choice for the "minimum" required spread as we have not enough 

information about the particle distribution. Besides, the spread is 

depending on the (complex) beam -wall coupling factor with the effect to 

increase its uncertainty because of the uncertainty by which we can only 

compute the coupling factor. 

n. MAlN NOTATION 

R = radius of the bunch orbit 

L = bunch total length 

a = beam radius 

b = vacuum-chamber inner radius 

e = particle charge 

mo = particle rest mass 

c = light velocity 

p = particle velocity to light velocity ratio 

'I = particle total energy to rest energy ratio 
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N ~ number of particles per bunch 

Wo ~ angular revolution frequency of the beam 

(J ~ conductivity of the wall material 

FN -21 7 
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v ~ nominal betatron oscillations number per turn 
c 

III. BASIC THEORETICAL RESULTS 

The main result from the CS paper is a dispersion relation that 

can be written in the following way 

>.. I = 1 
m ' 

where I is the following dispersion integral 

J 
f(v )dv 

s s 
I = 2 2 . 

v - v 
s m 

f(v ) is the particle distribution function in the betatron wavelengths 
s 

( i) 

( 2) 

number per turn v. This function is normalized in the following way 
s 

j f (v ) dv = 1. 
s s 

v appearing at the denominator of the integral (2) is the (complex) 
m 

collective betatron wavelengths number per turn. " is one of the M 
m 

bunch eigenvalues. 

As we are only interested in the special case of bunches with the 

same number of particles ~ and equally spaced, we show below the 

expression for" for this special case as derived from the CS paper. 
m 

If the collective bunches oscillations are taken with the form 

( 3) 



we have 

where 
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m + v 
m 

M 

2 8 ~R U' =(e U/L)+-W' -
3 .".L 

and for circular geometry 

U= 
2 
2 

Y 

2 3 .r
W = (2 cj3 Ib ) /"J ""a . 

) -
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( 5) 

( 6) 

( 7) 

( 8) 

The bunching function G(2TT,X) has been investigated in more de-

tails in the CS paper. It can be defined by the following series: 

OJ 

G(2."., x) = 'i'ZL 
k=1 

-2.".ikx 
e 

Here we want to mention a fundamental property of this function. 

It is periodic in x and its imaginary part is negative when x lies in the 

first half of one period (for example, between 0 and 1/2), and positive 

when x lies in the second half (for example, between 112 and 1). 

The third term, in v , at the right-hand side of Eq. (4) is the con
m 

tribution of the internal fields that one particle suffers by effect of the 

other particles in the same bunch. This term is usually very small. 
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As we expect v to be not so much different from v , the v value 
m c s 

of the particle distribution center, we replace, in the following, v by 
m 

v at the right-hand side of Eq. (4). 
c 

In the following we shall make use also of the notation 

v =v +.6. J 

m c m 

where 6 is the complex betatron wavelength number shift. We can 
m 

split 6 in its real and imaginary part, respectively 6 
m r 

definitely assume 

161«v. m c 

From Eq. (3) we see that the stability condition is 

m 
and 6. 

1 
m 

and 

6. > O. 
1 

( 9) 
m 

A simple case to solve is the following 

f(v ) ~ 6(v - v ), 
sse 

where Ii (x) is the Dirac function. 

Insertion of Eq. (10) in Eq. (2) gives 

and if I}" 1« 
m 

2 
v , 
c 

1 
I ~ ---;C:2--""2 

v 
m 

v - v 
c m 

}" 
- m 

~ ±v +-
C 2v 

c 

(10) 

(11 ) 

As we want v to go to v when}" moves to zero, we keep the 
m c m 

upper sign at the right-hand side of Eq. (11), and we eliminate the solu-

tion with the lower sign. Thus we have 



6 
m 

-6-

"-m - z;;-
c 

and the stability condition is from Eq. (9)' 

"-. = imaginary part of)" < O. 
1 m 
m 
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( 12) 

(13 ) 

Thus if we neglect the internal forces term, and we consider only 

the case with M > > v , we have, from the theorem about the sign of 
c 

G (2'TT, x), that the modes with ~ satisfying the condition 

m +v 
c o . 5 < -M::-::---'- < 1.0 ( 14) 

are unstable, and all the others with ~ outside the range Eq. (14) are 

stable. 

The growth time, in absence of v spread, of the unstable mode 
s 

can be derived from Eq. (12). We have 

2v 
c 

T = -..,...:...-
m w O\ 

m 

IV. APPLICATION TO THE NAL MAIN RING 

We have 

v = 20.25 
c 

M = 1113 

and we derive the unstable modes from Eq. (14). They are 

537'; m'; 1092. 

( 15) 
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If we take into account the imaginary quantity in v at the right
m 

hand side of Eq. (4), only a few modes close to m = 537 are converted 

in stable modes. 

In the following we split X. in its real, X. ,and imaginary, 
m r 

m 
lI.. part. We want to compute x.. ," ,and the growth time T , in 

1 1 r m 
m m :rn. 

absence of betatron spread, for the unstable modes in the NAL main 

ring. For this purpose we take the following numbers: 

y = 10.0 

(3 1.0 

a = 0.5 em 

b = 2.0 em 

(J = 1017 s-1 

L = 100.0 em 

R 1000.0 m 

N = 4.2 x 10
10 

M = 1113 

v = 20.25. 
c 

The results are shown in Table r below. 

(16 ) 

lI.. increases and" and T decrease steadily when the mode 
1 r m 
m m 

number ~ runs from 539 up to 1092. 

The first two modes, m = 537 and 538, are stable when the internal 

forces are taken into account. The modes m;'" 539 are unstable even 

taking them into account. 



Table I. Coupling Factors 

m 

537 J 
538 

539 

540 

1091 

109Z 

X. 
r 

m 

stable, taking 

-4.73 

-4.73 

-4.60 

-4.54 

-8-

and Growth Time Vs 

x.. 
1 
m 
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Mode Number. 

1" 
m 

into account internal forces 

1.58 X 

4.35 X 

0.150 

0.ZZ9 

10- 5 

10-5 
8.5 sec 

3.1 sec 

0.9 msec 

0.6 msec 

Practically all the modes are dangerous because except for the 

very first few at the low limit, they exhibit a growth time 1" much less, 
m 

or less, or comparable to the acceleration period which is of 1.6 seconds. 

The most dangerous mode is m ~ 109Z with a growth time of about 

half a millisecond. It should be remembered that the designed synch-

rotron oscillation period in the NAL main ring is about 10 milliseconds. 

Thus only a few of the modes, and the higher ones, have a growth 

time smaller than the synchrotron oscillation period, T. The others 

exhibit a growth time either comparable to T or much longer than T, 

and hence, the CS theory used here cannot be rigorously supposed valid 

for them, as the particle motion within the bunches has been neglected. 
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It is soon seen from the Table I as >.. 
r 

m 
changes weakly, whereas 

>... 
1 
m 

is well sensitive to the mode number m. Beside s, the ratio 

>... / I>.. 
1 r 

I is very small for any of the unstable mode and has a maxi-
m m 

mum of about 0.05 at the mode m = 1092. 

We want now to discuss the computation accuracy of \. \.. 
r 1 

and hence, of'" . 
m 

m m 

The dispersion relation Eq. (1) relates together the real and the 

imaginary betatron shifts, respectively i>. and i>.. ,the nominal 
r 1 

m m 
betatron number v , the real and the imaginary form factors, respec

c 

tively, >.. and>... 
r 1 

, and two quantities, 5 and 1), characteristic of the 
m m 

particle distribution function f(v ). 
s 

6 and 1) will be described in the 

next sections; here, it is sufficient to say that 6 is a measure of the 

function width, and hence, of the betatron spread within the beam, and 

1'] is a measure of the particle concentration around the center v = v , 
S C 

and hence, of the distribution tail length. 

The dispersion relation Eq. (1) takes then a general form like the 

following: 

i>.. 
1 
m 

i>.. 
1 
m 

H (>.. 
r 

m 
>... 

1 
m 

v , i>. c r 
m 

i>.. 
1 
m 

6,1))=0. ( 17) 

A special case that will be discussed deeply in the next section is 

- 0 -, which is told also "at the limit of stability." In this case, 

is dropped at the left hand side of Eq. (17), and we should be able 

to solve for the minimum spread 6 
i>.. 

_0 6 , obtaining 
m 

1 
m 



Ii =K(\. 
m r 
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\.. 
m 

1 
m 

v , n). 
c 
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(18 ) 

Since Eq. (17) is a complex relation, it can be split in two real relations, 

one of which can be used to solve for D. This is the reason for which 
r 

D. also has been dropped in Eq. (18). 
r 

m 
Thus, keeping v and n fixed, the 

c 

m 

spread Ii is related to "-
m r 

m 
and "-. 

1 
m 

Any inaccuracy by which we know "-
r 

m 
and "-. 

1 
m 

is unavoidably 

transferred in an inaccuracy for 

We calculated "- and \.. 
r 1 

Ii 
m 

by using the ten parameters listed in 
m m 

Eq. (16). The last four (R, M, N, and v ) are sure parameters; we 
c --

know them with high accuracy. We did not observe any change of "-
r 

m 
and "-. listed in the Table I when we moved v down and up around 

1 c 
m 

20.25. y and i3 also are sure parameters, but they change with the time. 

Nevertheless, the beam in the main ring is always so relativistic that 

our assumption i3 = 1 should not affect our results. y changes from 10 

at the injection up to 210 at the acceleration top. We referred to y = 10 

to have the maxima of "
r 

and \.. ,as we know from Eq. (4), that "-
1 r 

-3 
goes like y and "-. 

1 
m 

m -1 
like y 

m m 
If we fix our attention for the moment 

to the mode m = 1092, we have that "-. / 1"-
1 r 

is 0.05 at y = 10, 1 at y 
m m 

= 45, and 22 at the top y = 210. 

The remaining four parameters (a, b, L, and oj are not sure 

parameters. We believe that the cylindric model can well be applied to 

the NAL main-ring case provided the equivalent radii ~ and!: can be 
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guessed. We observe that '\ is sensitive only on !: and not on a. 
m 

Unfortunately, the dependence on!: is of cubic power, so that if we 

double b, 

A. 
r 

m 

A.. 
1 
m 

is affected by a factor of 8 ( !). 

is sensitive on both .<::. and!:, as one can see from Eq. (7), 

but as generally .<::. is much smaller than!:, we can expect a stronger 

dependence on .<::. than on !:. 

Also, Land 0' can be only inaccurately guessed. The vacuum-

chamber steel has a well known conductivity 0' st' but other conductors 

and insulators are located around the ring circumference resulting in 

an averaged conductivity O'that we can hardly measure. The bunch 

length L is a function of the time which is still to be fixed. 

Fortunately, x.. 
1 
m 

has no L-dependence and is weakly sensitive on 

0', as only the square root enters the denominator of its expression [see 

Eqs. (4)to(8)]. 

Thus, since it depends only on ).... [ see Eq. (15) 1, the growth 
1 
m 

time T depends only on 'I, 0; and b according to 
m 

3 
T - constant x ('Ib ..ra)' 
m 

where a and L do not appear. 

A. can be split in three terms as it follows, 
r 

m 

X. 
r 

m 
(19) 
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-3 
where Cz and c

3 
have a b dependence, and c 1 a combined dependence 

on ~ and E: as given by Eq. (7). 

For perfectly conductive material «J ~ OJ), the second and third 

terms drop and 71. is given only by the first term. For L ~ 100 cm 
r 

m 
and (J ~ 10

17 
s -1, the last two terms contribute in the total only in the 

measure of 5%. In order to change appreciably 71. ,(J should go down 
r 

considerably. For instance, >
m 15 -1 

is halved at (J ~ 10 s Thus we 
r 

m 
can neglect the last two terms at the right-hand side of Eq. (19) for low 

y values, although they can contribute appreciably at higher energy. 

In the following it can be useful to refer to the coupling factor 0' 
m 

per particle defined as follows: 

Cl ~ 71. IN. 
m m 

Obviously 0' can be split in its real and imaginary parts 
m 

0' ~O' +iO'. 
m r 1 

m m 

( 20) 

It is soon seen from Eq. (4) that 0' 
r 

m 
and fr. 

1 
m 

are not depending on N. 

V. THE DISPERSION RELATION 

We state the following: 

a. f (v ) is zero anywhere except in a region around v 0 v between 
s s c 

v - s and v + s. It is symmetric around v = v . 
c c S c 

b. The total spread, Z Ii, of the distribution is defined by taking 

the total width of f(v ) at half of its maximum. 
s 

c. Ii is a very small quantity with respect to v . 
C 
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d. The collective betatron number v can be written in the 
m 

following way 

v ~ v + 6 
m c m' 

where 6 is a complex quantity whose real part 6 is supposed to be 
m r 

m 
much smaller than v . 

c 
6 

r 
m 

is expected to have the same order of 

magnitude of 8 or larger. 

e. The imaginary part, 6. ,of the v-shift 6 can take, in 
1 m 
m 

principle, any value. Nevertheless, since we want to calculate the 

minimum spread 8 ~ 8 for the instability compensation at the limit 
m 

of stability, we take 6. 
1 
m 

as a very small and negative quantity. 

dispersion integral I can be easily split in two integrals 

1 f f(v~) 1 f f(v s) 
I ~ -- dv ---

2v v - v s 2v v + v 
m s m m s m 

dv 
m 

The 

For the assumptions stated above, the second integral can be neglected 

as it contributes only weakly to 1. 

Thus, we have from Eq. (1) 

~ jV+Sf(V) m c s 
dv 1. ~ 

2v v - v s 
c s m 

v -S c 

We replaced v by v in the factor outside the integral. That is 
m c 

certainly a good approximation for the statements d and e. We shall 

replace v by v also in the expression for ~ . 
m c m 
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Changing the integral variable with 

and setting 

we have 

with 

v - v 
S C x ~ 

s Ii 

A 

L':. 
m 

x ~--m Ii 

m 
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( 21) 

(22) 

and g (x) ~ Ii f (v ) is the new scaled distribution function normalized to 
s 

unit. It is required that the function g(x) is chosen in such a way that 

1 
g (±1) ~ 2" g(O). 

We split x and A in their real and imaginary parts 
m m 

x 
m 

A 
m 

and we operate the limit 

~ x + ix. 
r 1 

m m 

~A + ill. 
r 1 

m m 

x. ---!o- 0 , 
1 
m 

so that we obtain from Eq. (21) 



where 

and 

(1\ + i 
r 

m 

F = 
r 

m 

1\. 
1 
m 

-15 -

(F 
r 

m 
+ i F. 

1 
m 

/

+Eg(X
S

) 

---=--- dx , 
x - x s 

s r 
- m 

1, 

F. = -"iT g (x ) , for Ix 1<0 
1 r r 
m m m 

= 0, for Ix I> 0-r 
m 
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We ob serve soon that F and F. 
r 1 

are only functions of the 
m m 

(23 ) 

( 24) 

(25) 

running parameter x 
r 

m 

(and of the integral limit 0, but this is only an 

artificial parameter). All the other quantities, v , the minimum spread 
c 

6 for compensation and the coupling factor ~ , enter II 
m m r 

From Eq. (23) we have, at last, 

II 
r 

m 
+ i A. 

1 
m 

F - iF. 
r 1 

m m 
2 2 

F + F. 
r 1 

m m 

m 
and 1\. 

1 
m 

(26) 

The above equation is the conformal mapping of the curve x. 
1 
m 

= " in the 

plane (x , x. ) to the plane (1\ , 1\. 
r 1 r 1 

) for the special case" - 0 . 
m m m m 

That results in a curve r in the plane (II ,1\. 
r 1 

) with x as running 
r 

m m m 
parameter. The curve r bounds a region which can be called the 

"stable region". In fact, all the experimental points of coordinates 

1\ and II. falling inside represent stable beam oscillations. The 
r 1 

m m 
points on the curve show the limit of stability. 
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The mapping depends upon the choice of the distribution function 

g (x) that, for this reason, can be called the "generatrix function. " 

In the next section we draw down conformal mapping Eq. (Z 6) for 

several generatrix functions, g (x). 

Here, we conclude by observing that the half-plane fl. < 0 is 
1 
m 

certainly a stable region as any point inside has \. < 0 which corres-
1 
m 

ponds to the stability condition. Besides, we see from Eq. (25) and 

Eq. (26) that 1\. 
1 
m 

is a positive quantity or zero, whereas 11 
r 

m 
has the 

opposite sign of -x . 
m 

Thus the boundary curve r is symmetric with 

respect to the axis A 
r 

m 
= 0 and lies surely in the upper half-plane, 

corresponding to 11. 
1 
m 

> 0, with the effect to widen up the stable region. 

VI. THE EFFECT OF THE DISTRIBUTION TAILS 

We want here to investigate the effect of the particle distribution 

tails. 

For this purpose we shall make use of several "generatrix function" 

g (x) in the integral (21). A simple way to measure the tail length of the 

distribution is to calculate the quantity 

/"+1 n =.1. g (x) dx, 
-1 

which gives the relative number of particles inside the width of the dis-

tribution. When n approaches 1, the tails vanish, and they appear and 

stretch as n decreases to zero. 
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As g (x) is normalized to unit and symmetric to x, we cannot 

expect 1] less than 0.5, corresponding to a Lorentz distribution. 

The "generatrix functions" g (x), used in our investigation are 

tabulated in Table II. 

We prepared a computer program for the numerical calculation 

of the Cauchy principal value of the integral (24), and we drew down the 

conformal mapping Eq. (25) for each of the functions in Table II. The 

results of the mapping are shown in Fig. 1. 

The straight line parallel to the f, axis and crossing the fl. 
r 1 

m m 
axis at fl. 

1 
m 

= 1 is the boundary curve r for a Lorentz function which 

has the smallest value of 1] (=0.5). The next curve met moving down 

corresponds to the gauss function with a higher 1] (=0.76). The most 

inside curve, which hence bounds the less wide stable region, corres-

ponds to the second order parabola function with the largest 1] (=0.886) 

we considered. Each curve is marked by an integer number for iden-

tification. These numbers are listed in the last column of Table II. 

One important result is the following. The distribution with 

larger tails yields to wider stable region containing entirely any other 

stable region corresponding to distributions with shorter tails. 

All the functions in Table II have the property to be continuous at 

any x. We considered also the rectangular distribution function which 

does not hold this property and thus cannot be rigorously inserted in the 

group. 
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The dashed curve in Fig. 1 corresponds to the rectangular function. 

The fact that now the curve is closed at the origin of the (1\ ,1\. 
r 1 

m m 
plane is to be indebted just to the discontinuitie s at the two side s of the 

function. 

If we know the coupling factor per unit length", , Eq. (20), the 
m 

number of particles within a bunch, N, and the v spread, &, within the 

beam, we can calculate A and 1\. for a practice case. We could, 
r 1 

m m 
then, observe whether the point of coordinate (1\ l\. is below or 

r 1 
m m 

above one of the boundary curves in Fig. 1, and thus state if the beam 

is stable or unstable. 

We wish to suggest a different method. We rewrite l\ , Eq. (22), 
m 

in the following way: 

1\ = "'m / (& IN), 
m 2v m 

c 

where we introduced the minimum spread per particle, 6 IN, required 
m 

for the beam compensation. We want to compute & IN. 
m 

For this pur-

pose we observe that the ratio A 
r 

m 
IA. 

1 
m 

is constant for a practice case 

and is given by 

1\ 
r 

m '" r m 
~= -;:-

i 1 
m m 

>.. 
r 

m =r:-
1 
m 

Then we show in Fig. 1 a straight line passing the origin and with 

angular coefficient equal to the ratio (27). 

( 27) 
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The running parameter over the straight line is now I) IN. 
m 

Changing I) IN we move simply the experimental pOint along the straight 
m 

line. 

The coordinates of the point at the intersection between the ~ 

perimental straight line and one boundary curve r can be used to cal-

culate 6 IN if we know a . 
m m 

We used this method for the computation of 0 IN in the NAL 
m 

main ring. The results are shown in Fig. 2. We have l] in the abscissa, 

and the minimum half spread per particle, normalized to Q'. 12v, in 
1 c 
m 

the ordinate. We see three curves corresponding to different ratios 

a. II a I. The computed points are shown by the thick points. The 
1 r 
m m 

plot is universal and can be applied to any practice case. 

For the special case of the NAL main ring we take 

a. / I a = 0.05, 
1 r 
m m 

and thus we see that I) IN should range in the following interval 
m 

a. 
1 
m 

2v 
c 

as l] changes from 0.5 to 1. 

a. 
1 

70~ 
2v 

c 

This gives, for the designed number of particles per bunch 

N = 4.2 X 10
10

, the minimum total spread 

0.01 < 26 < 0.8 
m 

which is really a large range! 
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But if we take into consideration a Gaussian particle distribution 

(which is not at all unphysical), we would obtain 

28 - 0.1 
m 

The same operation for the computation of 8 IN can be used to 
m 

determine the real betatron shift x The results are shown in Fig. 3. 
r 

m 
Also, here we have three curves corresponding to different ratios 

<Y. 110' 
1 r 
m m 

We observe that for distributions with long tails, it results in a 

real betatron shift L,. of several times the half-spread 8 
r m 

m 

REFERENCE 

1 
E. D. Courant, A. M. Sessler, Rev. Sci. Instr. 37, 1579 (1966). 



-21- FN -217 
0401 

Table II. Distribution Functions and Their Tail Coefficients. 

Name 

Lorentz 

Gauss 

Parabola n ~ 5 

Parabola n ~ 4 

Parabola n ~ 3 

Squared cosine 

Parabola n = 2 

Truncated cosine 

Parabola n ~ 1 

g(x) 
2 

1/'iT(1+x ) 

J i 2 ( 192) / 'iT exp (-x 1 g2) 

1 2 2" cos ('iTx/4) 

'iT 
(; cos ('iTx/3) 

a For the parabola functions it is 

(2n+1)! 
A 

n = '" n 22nH (n!)2 

"'n ~ J 1 
1 

nJ'Z 

E 

0.500 

00 0.76 

0.795 

a 
1/", 0.802 

n 

0.812 

2 0.818 

a 
1/"'2 0.835 

3/2 0.866 

a 
1/"'1 0.886 
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