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The bunch length equation (envelope equation) near tran-

sition for phase oscillation with space charge was derived by 

A. S¢renssen (CERN MPS/Int. MU/EP 67-2, 1967) and used by 

E. D. Courant (NAL Report FN-187, 1969) for a preliminary study 

of the yt-jump scheme for bunch length matching at transition. 

For completeness we shall give a brief outline of the deriva-

tion of the envelope equation here. 

The equations for small phase oscillations of individual 

particles are 

~ = aw dt 

dw 
dt = -bl/l 

a = a(t) h 2 
= -2-

mR y 

b = b(t,8) (1) 

where l/I and ware small deviations of the phase and the con-

jugate "momentum" variable from their synchronous values. The 

first equation is a kinematic (geometric) relationship and does 

not depend on the space charge. The second is a dynaJnic equa-

tion where b is the sum of two terms: 
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RF term: This term is proportional to the time-slope of 

the cavity voltage at the synchronous phase and, therefore, 

changes sign at the RF phase jump. 

Space charge term: This term is proportional to the 

second derivative of the linear charge density of the beam 

bunch. For the lowest moment of the linear charge density 

this term is proportional to 1- where e is the bunch half­
e3 

length (envelope of ~). 

The envelope equation of Eq. (1) is 

d 
dt ( 1:. ~) a dt + be - (

S)2 a = 0 
1T e3 

(2) 

where S(>O) is the phase space area occupied by the beam bunch 

in w~ unit. At transition a = 0, t = O. Near transition a 

is approximately proportional to t. Since the dependence of 

a on the transition Yt is through the factor ~ - 1 2 , to in­

corporate yt-jump we shall write 
Yt Y 

2h2y 
( 1 

Yt \ 
t a At const > O. a = 

R2 Ii - -\ - a = 
Y ) 0 0 

m Y 
\ . 

Without yt-jump, A = 1 and a o is just a. With yt-jump 

A = A(t) > 1. To simplify the problem we shall assume that 

the yt-jump is turned on and off suddenly and that during the 

jump A = const > 1. 

For b we shall write 

b = ±b o 
+ B = 
~ 



where 

r 
b = ev 

Icos 21Th 0 

6 r +1 cos 

t 
= \ 

L-l cos 

i 
2 

B = ~> 2 Ry2 

CPs' = 

CPs < 

CPs > 

0 (g 

-3-

const > o. 

0, after RF phase jump 
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0, before RF phase jump 

= geometrical factor % 4.5) 

The envelope equation (2) becomes 

d 
dt ( ! de) 

t dt + a b A o 0 

2 

( B) (aOs \ 2 t 
6 + b e3 e - 1;:-) A ~ = o. 

o 

Now, we change the scale of t and e to kill the complicated 

constants. Let 

t = Tx and e = Ky 

and rewrite Eq. (3) as 

(3) 

sL (1 ~) + a b T3 A 
dx x dx 0 0 

x = 
y3 

o. (4 ) 

3 aoS T2 
Setting a b T = 1 and --- -- = 1 we get 

o 0 1T K2 

'13 = 

and the equation 

1 
at' o 0 

d 
where prime means dx' and 

1/2 
a o IS)· 3/2 

= b 0 \rr 

( 5 ) 
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r 0 
:+1 cos CPs < 0, after RF phase jump 

\ = 
~-l I cos CPs > 0, before RF phase jump 
\. 

• 
Yt 

<I A = 1 - -• 

l 
Y 

C 
B B f1!.) 3/2 = 

b K3 
= 

a 1/2 IS 
\ 

0 0 

When all the parameters are substituted and reduced we get 

r T3 = l~ (w/ 1 

I 
2 3 • 

Icot cps/ w y 

I (T = same time scale factor used 

~ 
by S¢renssen) 

, 
8 , 

i K 
0 , = i k I 

I c = k3n 
\. 0 

where 

k 
31 / 6 

= 0.91749 = 1/2 r(2/3) 
'IT 

8 3 k 3 (*)3/2 S3/2 1/2 
1 = ;- (~) 0 2 /cot cpsi 

I (8 = bunch half-length at transition 
" 0 ! 
~ without space charge) i 
l 
1 
I 

, 3/2 r I \.1/2 

i L 
no = f~) -I2.~ tW

\ = S¢renssen 
k 3 \2 R s3/2 • f 

P 
y! 

parameter no (0) 

r = classical proton radius = 1.53 x 10-18 
m p 

N = total number of protons 
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l
s = total phase space area in ~~ unit = hS

R P mc mc 

hcS w = RF angular frequency = ~ 

Aside from the change in the sign-convention and the inclu­

sion of Yt (for treating yt-jump) Eq. (5) is identical to that 

given by A. S¢renssen. This equation is solved by numerical 

methods on a computer . 
. 

A. For Ixl + 00 Yt = 0, A = 1 and we can neglect the deriva-

(Yx')'· tive term This gives the algebraic equation 

4 oy + Cy - x = o. 

This equation gives the matched adiabatic solution of Eq. (5) 

at large Ixl. Hence, starting with the solutions of this 

equation at some large values of Ixl as initial conditions 

and integrating Eq. (5) to x = 0 we can get the matched solu-

tions for both below and above transition. 

B. With no = 0 (no space charge), A = 1 (no yt-jurnp) and 0 

changing sign at x = 0 (RF phase jump at transition) the matched 

solution above transition is simply the reflection about the 

x = 0 axis of the matched solution below transition which is 

plotted in Figure 1 as Curve (0). Since y'(x = 0) = 0 the 

matched solutions above and below transition are automatically 

matched at transition. 

C. With n = 3.8 (value for the NAL booster) and A = 1 (no 
o 

yt-jump) the matched solutions below and above transition are 

shown as Curves (I) and (II) in Figure 1. The mismatch at 
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transition caused by space charge effect is indicated by the 

values 

YI(x = 0) = 1.502, YII(x = 0) = O. 

D. Starting the yt-jump before transition does not change 

y(x = 0) significantly. For example starting a yt-jump with . 
1 

Yt - - = • 
Y 

5 at x = xl we get for various values of xl A = 

xl y(x = 0) 

0 1. 50214 

-0.1 1. 50210 

-0.2 1.50245 

-0.3 1.50537 

-0.4 1. 51455 

-0.5 1.53433 

-1. 0 1.80331 

The conclusion is that starting the yt-jump before transition 

does not significantly change the status of mismatch at x = o. 

We have, therefore, confined ourselves to cases where the 

yt-jump starts at transition. (In practice, since the start 

of yt-jump cannot be abrupt we will have to start the yt-jump 

just slightly before transition.) 

E. Because y'(x = 0) = 0 to integrate across x = 0 we have 

to invoke the continuity of ~(x = 0) or yll(X = 0). With 
x 

A = 1 (no yt-jump) and 6 changing sign at x = 0 (RF phase jump 

at transition) the continuation of YI above transition is 

plotted as Curve (III) in Figure 1 which shows the familiar 

bunch length oscillation due to space-charge mismatching. 
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With A = 5 and 6 changing sign at x = 0 we get Curve (IV). 

Note that the first minimum of Curve (IV) is now above 

Curve (II). By adjusting A we obtain for A = 2.446 Curve (V) 

which is tangent to Curve (II) at x = x
2 = 0.879 near the 

first minimum. Thus, with A = 2.446 and turning off the yt-jump 

at x 2 = 0.879 the bunch length will be perfectly matched to 

Curve (II). For the NAL booster y = 0.407 x 10 3 sec- l and 

T = 0.281 x 10-3 sec, this value of A gives 

Yt = -1.446Y = -0.589 x 10 3 sec- l 

and this value of x 2 gives the corresponding real time 

~t = Tx = 0.247 x 10-3 
2 

Together they give a total yt-jump of 

which is rather modest. 

sec. 

F. The strings of dots leading away from the first minima of 

Curves (III), (IV), and (V) in Figure 1 show the effects of 

delaying the RF phase jump. Delaying the RF phase jump to 

x = x3 for Curve IV, for example, means integrating Eq. (5) 

with A = 5, 6 = -1 from x = 0 to x = x3 and, then, with A = 5, 

6 = +1 from x = x3 on. The dots give the positions of the 

first minima of the respective curves for x3 = 0.1, 0.2, 0.3, 

The following conclusions can be drawn: 

For A = 5 matching can be obtained with x3 ~ 0.96 at 

x
2 
~ 1.8. 
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For A = 2.446 another matching exists with x3 ~ 0.77 at 

x
2 

~ 1.67. 

For A = 1 (no yt-jump) delaying RF phase jump cannot pro­

duce matching; however, it can reduce the amplitude of the 

bunch length oscillation. Detailed computation shows that at 

the optimum x3 = 0.92 the maximum bunch length is reduced by 

about a factor of 1.4 from the case without RF phase jump 

de lay ( x 3 = 0). 

In any case it is evident that delaying RF phase jump does 

not significantly relax the requirement on the yt-jump; in 

particular, it does not reduce the total jump ~Yt' 

To summarize for the NAL booster (no = 3.8) we should 

1. Start the Yt-jump at or near transition. 

2. Jump the RF phase at transition. 

3. The total Yt- jump is ~Yt = -0.145 

4. The total time for the yt-jump is ~t = 0.247 msec. 

5. After the yt-jump the jump quadrupoles can be turned 

off (Yt returns to its. value before the jump) slowly 

(adiabatically) some time (say, 5 msec) after tran-

6. 

sition. 

With the small ~Yt the simple v -jump (from v = 6.7 x x 

to v =6.555) scheme is possible. However, the x 

scheme of quadrupoles proposed in FN-207 giving a 

yt-jump without affecting Vx is still desirable. Of 

course, the required gradient B' for the quadrupoles 

is much smaller than indicated in that report. 
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For the NAL Main Ring n = 7.2 the corresponding solu­o 

tions of Eq. (5) are plotted in Figure 2. The parameters 

producing matching are 

A = 2.180 x = 0.864 2 

The interesting point to note is that for n o 
'" > 2.5 the values 

of A and x 2 for matching do not change significantly with no. 

To understand this we observe that the effect of the yt-jump 

is to produce matching after the phase f1ellipse" has rotated 

. t 1 90 0
• apprOXlma e y In a crude manner of speaking the ~-enve-

lope before the yt-jump is matched onto the w-envelope after 

the yt-jump. One can~ therefore, appreciate that although 

the mismatch in bunch length (~ envelope) increases sharply 

with n , this particular mode of matching would not necessarily o 

impose increasingly more stringent requirements on A and x 2 as 

no increases. However~ the increased sharpness of the minima 

of Curves (III), (IV) and (V) in Figure 2 indicates that the 

precision of the yt-jump turn-off time x 2 required for matching 

becomes more critical with increasing no. 

For the Main Ring y = 0.135 x 10 3 sec- l and T = 2.44 x 

10-3 sec. The above values of A and x 2 give 

-1.180 y -0.159 10 3 -1 
Yt = = x sec 

fit = TX2 = 2.11 x 10-3 sec 
. 

-0.336 flY t = ytflt = 

which is, again, not excessive. 
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W. Hardt pOinted out an error in our report FN-215. The 

after-transition Curves (II) given in Figures 1 and 2 of that 

report are matched solutions corresponding to Yt values before 

the jump (Yto ). In Equ. (5) of FN-2l5 the origin x = 0 is 

defined as the "time" when a = 0; namely, when Yt intersects 

y. The matched curve for the after-jump value of Yt (Ytf or 

~o A D ?tc IE r-- ----
I rtF -- -- --
IB c 
I 

() ('.2 
..!I 

( I) Or") 

Figure 1 

C Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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line BC in Figure 1) should be Curve (II') with origin shifted 

to point F. Curve (V) is clearly not matched to Curve (II'). 

A. First we want to show that if the yt-jump quadrupoles 

can indeed be turned off abruptly at x2 so that Y
t 

jumps from 

Ytf back to Yto (B to D) infinitely fast, Curve (V) is a 

fairly good match to Curve (II). 

For infini te ly fas t Y t -jumps A = '" Therefore we rewrite 

Equ. ( 5) of FN-215 as 

, 
(0 + ~3) y -(f) + f = 0 

y3 

or 

I y' = fpy 

< f (0 + ~) y L P~ = 
y3 - , y3 , 

where 
Y - Yt 

f = f(x) =' y' 

Equation (1) or (2) avoids the troubles of infinite A and 

shifting origins. Furthermore, it can be shown that 

)6 = 

\ 
I W = L 

envelope of ~ = Ky 

envelope of w K = 
a

o
T2 

( 
2 1 )112 p +-
Y y2 

It is interesting to point out that matching only e and W 

( 1) 

( 2 ) 

leaves an ambiguity in the sign of Py. This corresponds to 

the two possible orientations of an ellipse with given area 

inscribed in a given rectangle. Therefore we must match y and 
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py or y and y' when there is no discontinuity in f. 

For a step-function discontinuity in f Equ. (1) or (2) 

shows that p = ~ is constant. The effect of the jump from 
y " 

E to D is thus to produce a kink in Curve (V) at x 2 . The 

slope after the kink is reduced to 

y' 
V 

= 1 , 
A yv 

which is no longer equal to YII at x2 . However, since the 

slope of Curve (V) is increasing very rapidly at x 2 it is 

easy to find a point a little beyond x2 where yV = AYII and 

'" where yv is still = YII' As a matter of fact we can always 

reduce A slightly and increase x 2 slightly to re-establish 

perfect matching after the kink. The matched values for the 

NAL booster (no = 3.8, y' = 0.11445, T = 0.2812 x 10-3 sec) 

are given in the second boxed row in Table 1. 

If one allows Ytf to be different from Yto perfect match­

ing can be obtained with any prescribed A value. These values 

for the NAL booster are also given in Table 1 where ~Yt and 

TABLE 1 

A x 2 ~Yt aY t 

1 1.1780 0 0.0753 ~[ Case 1 

1.5 1.0448 -0.0598 0.0424 

2.0 0.9606 -0.1099 0.0175 

2.416 0.9096 -0.1474 0 Case 2 

2.5 0.9004 -0.1546 -0.0033 

3·0 0.8540 -0.1955 -0.0213 
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OYt are defined in Figure 2. Aside from the case of A = 2.416 

where oYt = 0 the other interesting case is that of A = 1. 

o 

Figure 2 

n--­
Srt = '}tf -Ito 

.J) _i---lL----- rtf 

In this case Yt simply continues the value Yto = 5.4458 to 

x 2 = 1.178 where it is jumped up (infinitely rapidly) by 

oYt = 0.0753 and, then, stays at the value Ytf = Yto + oYt = 

5.5211. 

Although the jump from B to D (Figure 2) is treated as 

infinitely fast, in practice, a jump which completes in, say, 

~x = 10-2 (~t ~ 10-2 T = 2.8 ~sec for NAL booster) is quite 

adequate. Nevertheless, this rapid jump together with the 

high precision required on the "timing" x 2 of the jump make 

these matched solutions impractical. 

B. It is clear that by adjusting the parameters it is 
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possible to obtain perfect matching even with finite-speed 

return jumps. To limit the number of possibilities we con-

centrate on only two simple cases corresponding to the two 

boxed cases in Table 1. 

Case 1 - Here we continue Yto to a given x 2 , jump Yt 

upward at x2 with slope Yt to x4' The value Ytf at x 4 is, 

then, held constant. 

For the NAL booster we obtained a matched solution with 

[ x 2 = 1.100 

LYt = 5.518 y' CY
t 

= 0.0884 fly = 0 t 

Since there are. 3 adjustable parameters x
2

, x4 , and Yt , other 

matched solutions exist for other given values of x2 . One 

can choose a convenient Yt or a convenient cYt' This case is 

plotted in Figure 3. 

Case 2 - Here we jump Y
t 

downward from x = 0 to x = x
2 

with slope -Yt , then upward from x = x
2 

to x = 2x2 = x 4 with 

slope Yt (We could use different slopes for jumping down and 

up, but for simplicity we give here only the case of equal 

slopes.) and end up with Ytf = Yto ' For the NAL booster the 

matched solution has 

'X2 = 0.4884 
I 

'I y' = 4.1651 y' 
L t fly = -0.2328 t 

Other matched solutions exist with unequal slopes for jumping 
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down and up. But the case of equal slopes is, perhaps, the 

simplest in terms of hardware requirements. This case is 

plotted in Figure 4. 

For both cases the Curve (V) dips down below the matched 

Curves (II) or (II'), turns upward, and matches Curves (II) or 

(II') from below. This behavior is easily understood by com-

parison with the cases 1 and 2 given in Table 1 for infinitely 

fast jumps. In those cases the corresponding Curves (V) have 

to come up from below and kink downward (reducing y') to match 

Curves (II) or (II'). 

One observes also from Figures 3 and 4 that near the 

matching point (x 4 ) Curve (V) runs closely along Curves (II) or 

(II') for a fair stretch. This implies that the "timing" 

for x 4 is not very critical. This makes the practical opera­

tion of the system easy. 

For the NAL main ring (no = 7.2, y' = 0.3290, T = 2.444 x 

10- 3 sec) the corresponding matched cases are 

Case 1 

I x2 = 1.0800 x
4 

= 1.1346 

I , 

'- y t = 13.715 y' aYt = 0.2464 

Case 2 

x2 = 0.3576 

, y' = 9.5434 y' 
'- t 

J':.y = -1. 1228 
t 

These cases are plotted in expanded scale in Figures 5 and 6. 
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With increasing no the precision required in x2 , x 4 , and Yt 
for good matching becomes more critical. Also, Case 1 in­

volves matching at much smaller y value ("bunch length") and 

is, therefore, more critical to operate than Case 2. 

It is interesting to note that in the straightforward 

Q-jump scheme studied, for example, by D. Mohl (CERN-ISR/300/ 

GS/69-62) one makes one big fast jump downward similar to 

that shown in Fig. 1. The magnitude of the jump is roughly 

equivalent to shifting the origin far enough to the left so 

that the matched curve for the after-jump value of Yt is 

Curve (II") which has approximately the same y value as Curve 

(V) immediately after the fast jump. 

Although the impractical infinitely fast yt-jumps are 

avoided in the cases studied here, they still involve abrupt 

turn-ons and turn-offs. The realistic cases of smooth turn-on 

and turn-off will be investigated. But we do not expect to 

find any qualitative difference. In addition. cases of start-

ing the yt-jump before transition and of delayed or advanced 

RF-phase jump will also be studied further, and the results 

will be given in another report. 

We are grateful to Dr. Werner Hardt of CERN for pointing 

out the error in our report FN-215. 
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