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NUMERICAL STUDY OF BEAM BUNCH LENGTH

MATCHING AT TRANSITION USING THE

Y¢~JUMP METHOD

W. Lee and L. C. Teng

August 26, 1970

The bunch length equation (envelope equation) near tran-
sition for phase oscillation with space charge was derived by
A. Sgrenssen (CERN MPS/Int. MU/EP 67-2, 1967) and used by
E. D. Courant (NAL Report FN-187, 1969) for a preliminary study
of the yt—jump scheme for bunch length matchling at transition.
For completeness we shall give a brief outline of the deriva-
tion of the envelope equation here.

The equations for small phase oscillations of individual

particles are

: 2
dy _ = =.h (1 _ 1
ac - aw a = a(t) > 5 5
mR™y Y Y
, t
<
dw _ -
SE = by b = Db(t,0) (1)

where ¥ and w are small deviations of the phase and the con-

Jugate Ymomentum" variable from their synchronous values. The
first equation is a kinematic (geometric) relationship and does
not depend on the space charge. The second is a dynamic equa-

tion where b is the sum of two terms:
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RF fTerm: This ferm is proportional to the time-slope of
the cavity voltage at the synchronous phase and, therefore,
changes sign at the RF phase jump.

Space charge term: Thils term is proportional to the

second derivative of the linear charge density of the beam
bunch. For the lowest moment of the linear charge density
this term is proportional to l§ where 6 is the bunch half-
length (envelope of y). ’

The envelope equation of Eg. (1) is

2
d (Ldo S\" a_ .
at (a dt) *ho - (w) =0 (2)

where S(>0) 1s the phase space area occupied by the beam bunch
in wy unit. At transition a = 0, t = 0. Near transition a

is approximately proportional to t. Since the dependence of

a on the transition Yi is through the factor —% - lg, to in-
Y Y
corporate yt—jump we shall write E
2 v\
_ 2h € - =
a = ——Elﬁ 1 -1t =a/t a, const > 0.
eyt Ty

Without y -jump, A = 1 and'ao is just a. With Y~ J ump
A = A(t) > 1. To simplify the problem we shall assume that
the thjump is turned on and off suddenly and that during the
Jump A = const > 1.

For b we shall write

§

B B i
— =D § + —=
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where
r _ ev _
b, = 53 |cos ¢ | = const > 0.
) 5 = j+1 cos ¢S < (0, after RF phase jump
-1 cos ¢s > 0, before RF phase jump
3 e2N5
_ B = > 5= > 0 (g = geometrical factor g 4.5)

Ry
The envelope equation (2) becomes
2

‘ S
- —= = 0. (3)
at (t at 0”0 b063 T ) o3

Now, we change the scale of t and 6 to kill the complicated
constants. Let
t = ITx and 8 = Ky

and rewrite Eq. (3) as

2
S 02
d (1_gz)+ 3 ( B ) (ao TN 2 x _
== ab Th (6 + —5—=|y ~|— =] 4" £ = 0. (&)
dx \ x dx 00 bOK3y3 LI y3
Setting a b T3 = 1 and EQE EE = 1 we get
- 00 T K2
3/2 1/2 ”
3 _ 1 3 _ .3 (35T _ 8 15)\3/°
Tz T T \r
O O O

and the equation

’ A
AR c_ RGeS
(X J + A (6 + y3) y A

(5)

w
|
(=]

. d
where prime means ax’ and
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When all

where

+1 cos ¢ < 0, after RF phase jump

ifl cos ¢s > 0, before RF phase Jjump
Y
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the parameters are substituted and reduced we get

f

T3

D
w

183! (9.)2 1
2 w3 \y) Jeot 0|

(T = same time scale factor used

by Sdrenssen)
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“17z [(2/3) = 0.91743
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(eo = bunch half-length at transition

without space charge)

F
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Sgrenssen

parameter no(o)

classical proton radius

total number of protons

1.53 x 10~
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S = total phase space area in E—w unit = hs_
p me mcR
- _ hc@
w = RF angular frequency = =

Aside from the change in the sign-convention and the inclu-
sion of ?t (for treating yt—jump) Eq. (5) is identical to that
~given by A. Sgrenssen. This equation is solved by numerical
methods on a computer.

A. TFor |x| - “ Qt = 0, A = 1 and we can neglect the deriva-

1
tive term (%—) . This gives the algebraic equation

cSyLl + Cy - x = 0.

This equation gives the matched adiabatic solution of Eq. (5)
at large |x|. Hence, starting with the solutions of this
equation at some large values of |x| as initial conditions

and integrating Eg. (5) to x = 0 we can get the matched solu-
tions for both below and above transition.

B. With n, = 0 (no space charge), A = 1 (no yt—jump) and §
changing sign at x = 0 (RF phase jump at transition) the matched
solution above transition is simply the reflection about the

x = 0 axis of the matched solution below transition which is
plotted in Figure 1 as Curve (0). Since y'(x = 0) = 0 the
matched solutions above and below transition are automatically
matched at transition.

C. With N, = 3.8 (value for the NAL booster) and A = 1 (no
yt—jump) the matched solutions below and above transition are

shown as Curves (I) and (II) in Figure 1. The mismatch at
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transition caused by space charge effect is indicated by the
values
yI(X = 0) = 1.502, yII(X = 0) = Q.

D. ©Starting the yt—jump before transition does not change

y(x = 0) significantly. For example starting a yt—jump with

Y
A=1- TE = 5 at x = x; we get for various values of Xq
Y
o1 y(x = 0)
0 1.50214
-0.1 1.50210
-0.2 1.50245
~-0.3 1.50537
-0.4 1.51455
-0.5 1.53433
~-1.0 1.80331

The conclusion is that stérting the yt—jump before transition
does not significantly change the status of mismatch at x = 0.
We have, therefore, conflned ourselves to cases where the
yt—jump starts at transition. (In practice, since the start
of yt—jump cannot be abrupt we will have to start the Yt—jump
just slightly before transition.)

E. Because y'(x = 0) = 0 to integrate across x = 0 we have

to invoke the continulty of %L(X = 0) or y"(x = 0). With

A = 1 (no yt—jump) and 6 changing sign at x = 0 (RF phase jump
at transition) the continuation of V1 above transition is
plotted as Curve (III) in Figure 1 which shows the familiar

bunch length oscillation due to space-charge mismatching.
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With A = 5 and § changing sign at x = 0 we get Curve (IV).

Note that the first minimum of Curve (IV) is now above
Curve (II). By adjusting A we obtain for A = 2.446 Curve (V)

which is tangent to Curve (II) at x = x, = 0.879 near the

2
first minimum. Thus, with A = 2.446 and turning off the Y ¢~ Jump

at X, = 0.879 the bunch length will be perfectly matched to

Curve (II). For the NAL booster y = 0.407 x 105 sec™ ' and

T = 0.281 x 1073 sec, this value of A gives

Y, = ~1.446y = -0.589 x 103 sec™t
and this value of Xzigives the corresponding real time

At = Tx, = 0.247 x 1073 sec.

Together they give a total yt—jump of

AYt = ytAt = -0.,145

which 1is rather modest.

F. The strings of dots leading away from the first minima of
Curves (III), (IV), and (V) in Figure 1 show the effects of
delaying the RF phase Jump. Delaying the RF phase jump to

X = x3 for Curve IV, for example, means integrating Eq. (5)

with A =5, § = -1 from x = 0 to x = x3 and, then, with A = 5,

§ = +1 from x = x, on. The dots give the positions of the

3

first minima of the respective curves for x, = 0.1, 0.2, 0.3,

3

.. The following conclusions can be drawn:

For A = 5 matching can be obtained with x, ~ 0.96 at

3

X, n 1.8,
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For A = 2.446 another matching exists with X3 v 0.77 at
Xy 1.67.
For A =

1 (no yt—jump) delaying RF phase jump cannot pro-
duce matching; however, it can reduce the amplitude of the
bunch length oscillation. Detailed computation shows that at

the optimum x, = 0.92 the maximum bunch length 1is reduced by

3
about a factor of 1.4 from the case without RF phase Jump
delay (x3 = 0).

In any case 1t is evident that delaying RF phase Jump does
not significantly relax the requirement on the Yt—jump; in
particular, it does not reduce the total jump AYt'

To summarize for the NAL booster (no = 3,8) we should

1. Start the Yt—jump at or near transition.

2. dJump the RF phase at transition.

The total y -jump is AYt = ~0.145

The total time for the Yt—jump is At = 0.247 msec,

U= W

. After the Yt—jump the Jjump gquadrupoles can be turned
of f (Yt returns to its value before the jump) slowly
(adiabatically) some time (say, 5 msec) after tran-
sition.

6. With the small Ay, the simple vx—jump (from v, = 6.7

to v = 6.555) scheme is possible. However, the

scheme of quadrupoles proposed in FN-207 giving a

Yt—jump without affecting Vo is still desirable. OFf

course, the required gradlent B' for the quadrupocles

is much smaller than indicated in that report.
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For the NAL Main Ring N, = 7.2 the corresponding solu-
tions of Eq. (5) are plotted in Figure 2. The parameters
producing matching are

A = 2.180 x, = 0.864

The interesting point to note is that for N, 3 2.5 the values
of A and X5 for matching do not change significantly with ng,e
To understand this we observe that the effect of the yt-jump
is to produce matching after the phase "ellipse" has rotated
approximately 900. In a crude manner of speaking the yYy-enve-
lope before the Yt—jump is matched onto the w-envelope after
the yt—jump. One can, therefore, appreciate that although
the mismatch in bunch length (¢ envelope) increases sharply
with ngs this particular mode of matching would not necessarily
impose increasingly more stringent requirements on A and X, as
Ny increases. However, the increased sharpness of the minima
of Curves (III), (IV) and (V) in Figure 2 indicates that the
precision of the Yt—jump turn~off time Xy required for matching
beccomes more critical with increasing no.

For the Main Ring ? = 0.135 x 103 sec“1 and T = 2.44 x

ZLO-'3 sec. The above values of A and xz_give

Y = ~1.180y = -0.159 x 103 sec™?t

Tx, = 2.11 x 1073 sec

Ay, = &tAt = -0.336

At

which is, agaln, not excessive.
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ADDENDUM

W. Lee and L. C. Teng
October 16, 1970

W. Hardt pointed out an error in cur report FN-215., The
after-transition Curves (II) gilven in Figures 1 and 2 of that
report are matched solutions corresponding to \ values before
the Jjump (yto). In Equ. (5) of FN-215 the origin x = 0 is
defined as the "time" when a = 0; namely, when Y intersects

Y. The matched curve fof the after-jump value of Yi (th cr

£
= ;
S
X
(X
(%)
| —
(/] X2 x
Figure 1

# Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission
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line BC in Figure 1) should be Curve (II') with origin shifted
to point F. Curve (V) is clearly not matched to Curve (II').
A. First we want to show that if the Yt-jump guadrupecles

can indeed be turned off abruptly at x, so that Yi Jjumps from

2
Y. ¢ back to vy, (B to D) infinitely fast, Curve (V) is a

fairly good match to Curve (II).

For infinitely fast Yt-jumps A = w, Therefore we rewrite

Equ. (5) of FN-215 as

¥ &) v - 5
or
fy'=fpy
ﬂ‘p'=f——-(6+9—)y (2)
Ly y3 \ y3
where
_ _ Y =Yg
f—f(X):—'Y—"‘

Equation (1) cr (2) avolids the troubles of infinite A and

shifting origins. Furthermore, it can be shown that

[56 = envelope of ¢ = Ky
N 1/2
L W = envelope of w = K (pa + i—) (3)
2 y 2
aOT i

It is interesting to point out that matching only 6 and W
leaves an ambiguity in the sign of py. This corresponds to
the two possible orientaticns of an ellipse with gliven area

inseribed in a gilven rectangle. Therefore we must match y and
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or v and y' when there 1s no discontinuity in f.

For a step-function discontinuity in f Egu. (1) or (2)

T
shows that py = %— is constant. The effect of the jump from

B to D is thus to produce a kink 1n Curve (V) at x

o The

slope after the kink 1s reduced to

which is no longer equal to in at x

slope of Curve (V) is inéreasing very rapidly at x

I_:._Y.t_gyf—l 1
Y o Y TV

5 However, since the

easy to find a point a little beyond X5 where y& = Ay!_ and

where Yy 1s still 2 Yy1° As a matter of fact we can always

reduce A slightly and inecrease x

5 slightly to re-establish

perfect matching after the kink. The matched values for the

NAL

are

ing

for

booster (no = 3,8, y' = 0.11445, T = 0.2812 x 1073 sec)
given in the second boxed row in Table 1.

If one allows Yig to be different from Yio perfect match-
can be obtained wlth any prescribed A value. These values

the NAL booster are also given in Table 1 where Ayt and

TABLE 1
A *2 My oYy
l 1 1.1780 0 0.0753 [ . Case 1
1.5 1.0448  -0.0598  0.042Y
2.0 0.5606 -0.1099 0.0175
l 2.416 0.9096 -0.1474 0 ! Case 2
2.5 0.9004 ~0.1546 -0.0033 J
3.0 0.8540 -0.1955 -0.0213
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§y, are defined in Figure 2. Aside from the case of A = 2.416

where SYt = 0 the other inferesting case 1s that of &4 = 1.

1

- ——— —rr——

8% =Xtr 2o

7er
A%t = Vemin=Tro

wY

Figure 2

In this case vy, simply continues the value ¥y = 5,0458 to
t to

Xy = 1.178 where it 1is Jumped up (infinitely rapidly) by

6yt = 0.0753 and, then, stays at the wvalue Yer ™ Yig + Gyt =
5.5211.

Although the Jump from B to D (Figure 2) 1is treated as
infinitely fast, in practice, a Jump which completes in, say,
ax = 1072 (At 1072 T = 2.8 usec for NAL booster) is quite
adequate., Nevertheless, thls rapid jump tocgether with the

high precision required on the "timing" x, of the Jump make

2
these matched solutions impractical.

B. It 1is clear that by adjusting the parameters it is
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possible to cbtain perfect matching even with finite-speed
return jumps. To 1limift the number of possibilities we con-
centrate on only two simple ¢ases corresponding to the two
boxed cases in Table 1.

Case 1 - Here we continue Yig to a glven X5 Jump Yy
upward at X5 with slope Yé tc Xy The value Y at Xy is,
then, held constant.

For the NAL booster we cbtained a matched sclution with

[‘x2 1.100 x),
L

Y 5.518 y!' 6y

1.240

n

0.0884 Ayt =0

-

Since there are 3 adjustable parameters x2, Xys and Y%: other

matched solutions exist for other given values of x,. One

can choose a convenient Yé or a convenient 6yt. This case 1is

pletted in Figure 3.

Case 2 - Here we Jjump Ye downward from x = 0 to x = X,

with slope.—yé, then upward from x = x, to x = 2x, = Xy wlth

2 2
slope yé (We could use different slopes for Jjumping down and
up, but for simpliclty we give here only the case of equal

slopes.) and end up with Yep = Yio® For the NAL booster the

mateched sclution has

1
b
]

0.488L Xy 2%, = 0.9768

b,1651 ' Ayt

"
-
t -

H

-0.2328 8y, =0

Other matched solutions exist with unequal sleopes for Jumplng



_6- FN-215-4
0100

down and up. But the case of equal slopes is, pernaps, the
simplest in terms of hardware requirements. This case 1s
plotted in Figure L.

For both cases the Curve (V) dips down below the matched
Curves (II) or (II'), turns upward, and matches Curves (II) or
(I1I') from below. This behavior is easily understood by com-
parison with the cases 1 and 2 given in Table 1 for infinitely
fast jumps. In those cases the corresponding Curves (V) have
to come up from below and kink downward (reducing y') tc match
Curves (II) or (II').

One observes also from Figures 3 and Y4 that near the
matching point (xu) Curve (V) runs closely along Curves (II) or
(II') for a fair stretch. This implies that the "timing"
for Xy is not very critical. “hils makes the practical opera-
tion of the system easy.

For the NAL main ring (no = 7.2, y' = 0.3290, T = 2.44Y %

1073 sec) the corresponding matched cases are

case 1

('xz = 1.0800 x), = 1.1346

H_Yé = 13.715 v Sy, = C.2484 by, = 0
Case 2
'x, = 0.3576 Xy = 2X5 = 0.7152

(vl o= 9.5U34 Y Ay, = -1.1228 sy, = 0

These cases are plotted in expanded scale in Figures 5 and 6.
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With increasing Ng the precision required in Xos Xy and Y%
for good matching beccomes more critlcal. Also, Case 1 in-
volves matching at much smaller y value ("bunech length") and
is, therefore, more critical to operate than Case 2.

It is interesting to note that in the straightforward
Q-jump scheme studied, for example, by D. MS6hl (CERN-ISR/300/
GS/69-62) one makes one big fast jump downward similar to
that shown in Fig. 1. The magnitude of the Jjump 1s roughly
eguivalent to shifting the origin far encugh to the left so
that the matched curve for the after-jump value of Ye is
Curve (II") which has approximately the same y value as Curve
(V) immediately after the fast Jump.

Although the impractical infinitely fast yt—jumps are
avolded in the cases studied here, they still involve abrupt
turn-cns and turn-offs. The realistic cases of smooth turn-on
and turn-off will be Investigated. But we do not expect to
find zny qualitatlive difference. In addition, cases of start-
ing the yt—Jump before transition and of delayed or advanced
RF-phase Jjump will also be studied further, and the results
will be glven in another report.

We are grateful to Dr. Werner Hardt of CERN for pointing

out the error in our report FN-215.
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