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PURPOSE 

To determine the characteristics of nonlinear betatron 

motion for an ideal magnetic confining field possessing 

median plane symmetry. Application is made to the properties 

of the booster using third order effects in the hamiltonian. 

Fourth order effects are estimated. 

HAMILTONIAN 

The hamiltonian in which the generalized momenta, nx 

and ny, are expressed in units of the particle momentum is l 

where the curvilinear coordinates (x,y,s) are taken to be 

the orthogonal set in which s measures the distance along 

(1) 

a curve in the median plane, y is normal to the median plane, 

and x is in the direction of the outward normal to the curve. 

POTENTIALS 

A scalar potential ~ such that B = v~ may be written as 2 

(2 ) 

where, in order to satisfy Laplace's equation, 

A +2 +(3m+l)kA +1 +m(3m-l)k 2A +m(m-l)2 k 3A 1 m , n min ron m- , n 

2 
+A +2+ 3mkA -1 +2+ 3m (m-l)k A -2 +2 m,n m,n m ,n 

+m(m-l) (m-2)k3A -mk'A' +A" +mkA" = 0 (3) m-3,n+2 m-l,n mn m-l,n 



Here k = lip. 
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The vector potential is gauge dependent. Choose 

the gauge for which xAx + YAy ~ O. 2 Then 

A' C' D 
A = _ 1 I mn m n+l __ l __ L~ xm+I mn xm-l n 

x l+kx m! (n+l) :x Y + l+kx m! (m-l) !n! Y 

A 
Y 

Dmn m n-l 
= L m! (n-l)! x Y 

(4 ) 

(5) 

Amn m-l n+l Cm m-l 1 D~n m n 
As = L (m-l)! (n+l) :x Y -L (m_l):x + l+kxL m!n! x Y , (6) 

where 

A02 = -A20 +kAIO-AOO (7) 

A12 = -A30-kA20+k2AIO+k'AOO-Aio+2kAOO (8) 

(9 ) 

(lO) 

(11) 

C3 = A11-kAOl (12) 

C4 = A2l-kAll+3k2A01-AOl (13) 

DOO = DIO = D20 = DOl = D02 = D03 = 0 (14) 

D30 = -AOl (15 ) 

D40 = -Ail +k' AOl +4kAOl (16) 

D11 
1 

AOO = 2 (17) 

D2l 
2 

Aio-
2

kA
, = :3 :3 00 (18) 

D12 
1 

AOl = :3 (l9) 
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APPROXIMATE HAMILTONIAN 
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Expanding the hamil toniar, of Eq. (1) in powers of 

H = 

~ , x, and y, one finds (dropping the -1) 
Y 

1 2 e 222 2 2 
-kx+-(l+kx) (~ -2-~ A +§ A +~ -2~~ A +§ A ) 

2 x p x x p2 x Y p Y Y p2 Y 
e - p(l+kx)As + .... , 

where a suitably restricted number of terms is to be in-

eluded in the vector potential expansions to give say a 

third order expansion for the hamiltonian. Thus 

(l+kx)Ax= - !AOOY -(~Aio+ ~kAOO)XY - ~AOly2 + 

(20 ) 

( 21) 

( l+k ) A lA' + (lA' + lkA' ) 2 lA' (22) x Y = 2 OOX 3 10 6 00 x + 3 Olxy + ..•. 

121 
(l+kx)As = -AOlx + A10Y- 2 (All+kA01 ) x +2(2A20+2kA10+AOO)xy 

+ ~Ally2 - ~ (A21+2kAll ) x
3

+ ~ (A30+2kA20+~Alo-~k 'AOO 

-~kAOO)X2y +!(A21+kAll+~A01)Xy2_~(A30+kA20-k2A10 

-k'A' +A" -2kA" )y3+ 
00 10 00 

If the hamiltonian is arranged according to orders of 

the expansion variables3 

then 

(23) 

(24) 

(25 ) 

(26) 

(27) 



H(2) !(1J' 2+'fT 2)+ = 2 x y 

+ ! e (A11+ 2 P 

1 e 
(All 2 p 
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1 §: A I (Y7T- X'fT ) 
2 P 00 x y 

kAOI+~ ~A~~)X2 1 
2 

_1:. e A' 2) 2 
4 P 00 Y . 
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~(2A20+2kAIO+AOO)XY 

H (3) 1 2 2 Ie" 1 ] = 2kx ('fT x +'fTy )+ 3 p L(Aio+ 2kAOO)X+Ao1Y (Y'fTx-X'fTy ) 

+ ~ ~ [A21 +2kAII + ~ AOO (Aio - ~kAOO)] x3 

~ ~ ~3A30+6kA20+2Aio-2k'AOO-2kAOO- ~ AOOAOI~ x2y 

~ ~ ~A21+3kAII+AOI - ~Aoo(Aio- ~kAOO~ xy2 

(28) 

+ ~ § IA30+kA20-k2Alo-k'Aoo+Alo-2kAoo+ §:AOOAOI]y3. 
P L.: p (29) 

MEDIAN PLANE SYMMETRY 

For the ideal guide field one invokes median plane 

symmetry. In this case the coefficients in the expansion of 

the scalar potential ¢ have the property 

A (s) = 0 (even n) . mn 

Equations (27-29) reduce to 

H (1) = 

H (2) = 

H (3) = 

e 
(pAOI-k) x 

! ('fT 2+'fT 2) 1 e ( 2 1 e 2 
2 x Y + 2 p AII+kAOI ) X - 2 p AllY 

122 I e 
2kx ('fTx +'fTy )+ 3 p AOlY(Y'fTx-X'fTy ) 

+ ~ ~ (A21+ 2kAII )x
3 

~ ~ (3A21+ 3kAll+AOl)xy2 

(30) 

( 31) 

(32) 

(33 ) 



EQUILIBRIUM ORBIT 
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The reference curve of the curvilinear coordinate 

system along which distance is measured by the coordinate s 

is to be chosen such that H(l}= 0 in Eq.(3l}. Thus 

ACTION ANGLE VARIABLES 

A contact transformation is made from the variables 

(x, rr x' y, rr ) to (cpx' y 

Fl(X,cp ,y,cp is}= x y 

The new hamiltonian K 

where 

Px' CPy' py ) using 

2 
1:[3 I} + x (cot 1jJ + W x 2 

x 

= H + of oecomes as 

the generator4 

2 
~[3~}. (35) W(cot 1jJ + 

Y y 

( 36) 

(37) 

Note that the s-dependence of the hamiltonian, K, is only in 

the third and higher orders. 
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Expanding K(3) one has 

(3) 2 1/2 3/2 2 
K = k(a-) P sin~ cos ~ +k 

(28 )1/2 
x 1/2 2 

8 Px pysin~ cos ~ 
fJ x x X x y x y 

sin~ cos~ y ,y 

1 ~ A' (2 a ) 1/2 1/2 J . ,I, 3 P 01 fJ x Px Py s1no/x · 

+ [!k (2(3 ) 1/2~2 1/2 +! ~ A' «(3 r ~ (2) 1/2 -(3' (2e ») .1/2 
4 x (3y Px Py 6 P 01 x Y Sx y x 

1/2 _ ~ ~(3A +3kA +A" )23/2(3 1/2(3 
Px Py 6 P 21 11 01 x Y 

1/2 ] . ,I, . 2'11 P P S1no/ S1n 0/ 
X Y X Y 

+ l~k(--(32) 1/2(3~2px3/2+ 1 e (A
21

+2kA
11

) (2(3x}3/2px3/ 2]-
_ x 6 P 

. 3,1, S1n 0/ 
X 

(39) 

After e~panding the trignometric forms in K(3) the resulting 

expression may be rearranged according to coefficients of the 

independent trigonometric forms. Thus 

Coefficient of sin~x: 

1 ~ (3A + 3kA +A" ) (2 12 ) 1/2(3 ] 1/2 
6 P 21 11 01 fJ x Y Px Py (40) 



Coefficient of COSwx : 

Coefficient of sin 3W : x 
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1 2 1/2 
+ e~, 

6" -p "01 Q" S 
"x Y 

P 1/2p 
x Y 
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r 1 2 1/2, 
-k (- \ ! 1 -

L 4 S i 
x' 

1:[3,2\ _ ---1:. ~ (A +2kA ) (26 ) 3/2J 3/2 
4 X) 24 P 21 11 x Px 

Coefficient of cos 3W : x 
1 ! 2 ,1/2 

- -kl- S' 4 S x 
x' 

+ 121 p~(3A21+3kA +A" ) (2[3 )1/2[3 P 1/2p 
11 01 x YJ x Y 

Coefficient of sin(2W -W ): 

(41 ) 

(42) 

(43) 

(44) 

(45) 

/ 
y x 

(2[3)12 

[ - %k x • (1- 1:S ,2)+ 1 I 1/2 ' 
- ~ A' fS'S r...J:.. '\ -13' (26 )1/2 

By 4 Y 2410 01\xy~x) y x , 

- ---1:. ~ (3A +3kA +A" ) (26 ) 1/26 l 1/2 
12 P 21 11 01 x yJPx Py 

Coefficient of cos (2W -W ): y X 

~1 1/2 S ' 1 ' 2,1/2 
-k (2S) J - ~ A' '-' 
4 x S 12 P 01\13 Y , XI 

(46) 

(47) 
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FURTHER APPROXIMATIONS 
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At this stage several cases will be discussed. For 

each case one seeks a transformation to a rotating co-

ordinate system for which the new hamiltonian becomes 

stationary5,6,7,8. Consider first the terms in K (3) that vary 

as sin~ and cos~. A generator x x 

s F 2 (¢ ,J is) = (¢ - mN-R) J x x x x ( 48) 

transforms a hamiltonian containing K(2} and the restricted 

to 

v J 2 3/2 1/2 J w = J..RP + (v -mN) R
X + A (s) J + B (s) J P • Y x x x y 

Sin(y x - ~Cx ~mN - s~,s) + ~ (s) J/12
+D (s) J/12 pyJ. 

COS (Yx- JCx~mN - a~) dS) (49) 

in the variables (y J,¢ ,J is). Since the coefficients x x y Y 
A, B, etc. are periodic with a period of the circumference/N, 

and sinceJ(V~ - ~~s has zero average value, terms independent 

of s will arise from the cross combination of the terms in the 

Fourier expansion of the coefficients with the Fourier ex-

pansion of the phase modulated trigonometric terms. The lowest 

order stationary terms will arise from setting m = 1. All 

other terms will oscillate rapidly with respect to s and may 

be considered to have zero average. Thus resonance effects 

are expected for Vx = N. Since this condition has been avoided 

in the booster design, all effects from the terms that vary 

as sin~x and cos~x will be small. Hence these terms will be 

dropped from the hamiltonian. 
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EFFECT OF TERMS IN sin 3~ and cos 3~ x x 
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In this case let the coefficients be (e=s/R): 

[ 
1/2 12) 

A{e)= 1k(~) (1 - 18 - --1. ~(A +2kA ) (2(3 ) 3/~R3/2 4 8 4 x 24 P 21 11 x x 
(50) 

and 

( 51) 

The hamiltonian is now taken to be 

K' = v P +v P +IA(e)sin 3'" +B(e) cos 3,1, Jp 3/2, (52) x x y Y L '¥x '¥x X 

where Px and Py are measured in units of R. 

Transform to a rotating coordinate system (Yx,JxiYy,Jy) 

using the generator 

(53 ) 

and consider only the lowest order (m = 1). 

where, for convenience 
v 

~ x = y x + ~ e -S ( ~ - ~) ds . ( 55) 

Fourier analyse A ( 8), B ( 8) , x and S ( v ~ - S ~ )dS remembering 

that the average value of the integral is zero. Thus, let 

A(e) = Ao + Al cos Ne + A2sin Ne + .•. 

B{e) = Bo + Bl cos Ne + B2sin N8 + ... 

(56 ) 

(57) 
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sC~ - S~) ds ~ PlsinNe + (sine series only by 

choice of origin) 

By retaining only the lowest order terms, the hamiltonian 

becomes 

( 58) 

K =(Vx- j)Jx+VyJy+DAo+AlCOSN6+A2sinN6)Sin(3Yx+N6-3PlSinN6) 

+ (Bo+BlCOSN6+B2sinN6) cos (3Yx+N6-3P l 

sinN6) ] J~/2 (59) 

Expand out to the two lowest orders in the phase flutter PI' 

cross multiply and retain only the stationary terms. Then, 

if 

and a corresponding phase a are constructed where J o ' J l , 

and J 2 are Bessel functions, the hamiltonian becomes 

K = (Vx- ~)Jx+VyJy - AJx
3/ 2sin(3Yx+U) 

Since the hamiltonian does not contain Y , the conjugate y 

variable J y is a constant of the motion. Hence, let 

W = K - v J 
Y Y 

Then 

W =(Vx- ~)Jx - AJx
3

/
2

Sin(3Yx+u) 

(60 ) 

( 61) 

(62 ) 

Since Vx ~ 6.75 and N = 24 for the booster, the interest 

in the above hamiltonian is not in resonant growth of amplitude 

but rather in determining the amplitude variation of the 

betatron frequency. 
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To this end one further contact transformation is of value. 

If the hamiltonian can be made to contain only the action 

variables then the betatron frequencies are readily obtain

able. Consider a transformation6 from (y ,J ) to (yx' J ) x x x 

using the generator 

Then, if the term in t is considered small one has 

= y + ~ t J 1/2cos(3y +a) + 
x 2 x x 

Let 

J = J + 3t J 3/2sin (3y +a)+ 227 t 2J 2cos 2 (3Y +a} + . 
x x x x x x 

N 
EX = \)x 3 

and,to eliminate the term in J 3/2,choose 
x 

Then 

A 
t = 3E 

x 

Of course the coefficient of J 2 will be changed by the 
x 

(63 ) 

(64) 

(65) 

(66) 

( 67) 

(68 ) 

presence of terms of this order in the original hamiltonian. 

This effect is estimated later. Thus an estimate 

of the variation of the betatron frequency with amplitude is 

aw = aJx 
(69 ) 
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Note that J may be found from the beam emittance x 
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EFFECT OF TERMS IN sin(2~y + ~x) AND COS(2~y + ~x) 

As in the previous case let the coefficients be 
1 

(70) 

(2S )1/2 112) 1 e 12\2 1 1 
A(8) = [~k SyX . (1 - '4 Sy j- '24 p A01\Bx) (SxSy-SySx) 

+ ~ ~(3A +3kA +A" ) (2S )1/26 J R3/ 2 
12 p 21 11 01 x y , 

( 71) 

6
1 

1/2 ~ ±k(2S ) 1/2 ~ +~ e AI 12\. '8 -6 ) R3/2. 
4 x 6 12 P 01{S J' \ x Y Y \X 

B(8) = [- (72) 

The hamiltonian is now taken to be 

K' = v P +v p +rA(8)sin(2~ +~ )+B(8)cos(2~ +~ )Jp 1/2p , 
x x Y Y L Y x Y x x Y 

where again Px and Py have been made dimensionless by 

measuring in units of R. 

(73) 

Transform to a rotating coordinate system (y ,J iY J ) 
x x y y 

using the generator 

F 2 (¢ ,J .$ ,J i8)=(¢ -aN8)J +(¢ -bN8)J . x x y y x x y y (74) 

Then 

K = (v -aN)J +(v -bN)J +rA(8)sin(2~ +~ ) x x y y ~ y x 

+B(8)cos(2~ +~ )JJ 1/2J, (75) 
y x x y 

where, for convenience 

~ = y +aN8-J(VX 
- -l)dS x x R B 

'x 
~ =y +bN8- S(J. - --.l)dS y y R 6 . 

y 
(76 ) 
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In order to make stationary terms possible in the cross 

combination of the Fourier analyzed A(8) and B(8) with 

the trignometric terms 

a + 2b = P (an integer) 

Consider only the lowest order term (p=l) . As before 

Fourier analyze 

A (8) = A + AICOSN8 + A2sinN8 + . . 
0 

rvx _ 2.\ds = P l sinN8 + . 
\ R Sx/ 

rc 2.\ds I ....y_ = -Q
l
sinN8 + . . . V R SyJ 

(77) 

(78) 

(79) 

(80) 

( 81) 

The average value of each integral is zero and, in addition, 

the lattice is assumed to have the symmetry implied by the 

series expansion. 

By retaining only the lowest order terms, the hamiltonian 

becomes 

K = (v -aN)J +(v -bN)J 
x x Y Y 

+ {(Ao+AICOSN8+A2sinN8)Sin~2Yy+Yx+N8-(PI-2QI)SinN8= (82) 

+ (B +BlcoSN8+B 2sinN8) cosr2y +y +N8- (PI-2QI) sinN;-\J 1/2,T 
o LYX ~x y 

Expand out to the two lowest orders in the phase flutters 

PI and Ql' cross multiply and retain only the stationary terms. 

Then, if 

2 I 1 _2 
A = _AOJ1(Pl-2Ql)+2(Al-B2)Jo(PI-2QI)+2 (A I +B 2 )J2 (P I - 2Q l) 

- I 1 ~2 
+ _BoJ I (P I - 2Ql) +2 (A2+B I ) J 0 (P I - 2Ql) - 2 (A2-B I ) J 2 (P I - 2Q I)_ 

(83) 
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and the corresponding phase a are formed, the hamiltonian 

becomes 

K = (v -aN)J +(v -bN)J - A J 1/2J sin(2y +y +a) (84) 
x x y y x y y x 

Another constant of the motion may be constructed by 

noticing that in the variables (~,J~;n,J~) the generator 

F2(Yx,J~;yyJn) = (2yy+yx)J~ + (2 yy - yx)J~ (85) 

transforms the hamiltonian to 

K = (v -aN) (Jc-J )+2(v -bN) (Jc+J )-2A(J c -J ) 1/2 (Jc+J )sin(~+a). 
x s ~ Y s ~ s ~ s n 

(86) 

Since this hamiltonian is independent of n, the corresponding 

conjugate variable I
n 

is a constant of the motion. 

= 4J = constant 
~ 

Then, remembering that a+2b = 1 

K = :2v -v -(2b-a)N J +(2v +v -N)J 
- Y x -n y x ~ 

- 2A(J~-Jn)1/2(J~+Jn)Sin(~+a) 

Hence 

In order to determine the amplitude variation of the 

betatron tunes, transform to the variables (~,J~)using the 

generator 

F f c J \-
2 1S ' ~)

\ -

(87) 

(88) 

(89 ) 

which is used to eliminate the ~ variable in the transformed 

hamiltonian to the order of accuracy being considered. The 

new hamiltonian becomes 
-, 

K ='2v -v -(2b-a)NIJ +cJ -
_ Y x ---' n ~ 

A2 ~ -
-(3J c-J ) (Jc+J ) (l-cOsI2(~+a)i) , 
c _sn_sn L---' 

(90 ) 
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where 

s = 2v + v - N, 
Y x 

and the parameter t was chosen so that 

st = 2A 
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One further transformation would be necessary to remove 

the term in cos [2 (f+a)] However, since this term is 

( 91) 

(92) 

already of higher order its average value is a sufficient 

approximation. Thus 

K = [2V -v -(2b-a)NIJ + €J -
yx ...JTl....f 

(93) 

Since only the action variables are contained in the 

hamiltonian the betatron tunes are: 

oK 2 

ll::'.f = oJt; = E: - 2 ~(3Jt;+J ) = 211v + llVx € _ Tl Y 
(94) 

:JK 2 
llv = oJ = 2v -v -(2b-a)N-2 ~(J -J ) = 211Vy - llv x ....!l Tl 

Y X E: f Tl 
(95) 

or rewriting such that the original linear tunes are (v v) xo' yo 

then 

2 
A2 

(J
f 

+ J
Tl

) v = v -x XO E: 
(96) 

2 
A2 

J
f 

v = v - -y yo E: 
(97 ) 

where now 

E = 2v + v - N 
yo xo (98) 
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a Poincare invariant yields 
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E + E = SSd'ITxdX + SSd'ITydY=RSSdJ~d~+RJJdJndn=2'ITR(J~+Jn) x y 

(99 ) 
and that the previous invariant 

=~ E 
4J

n 
J -2J x (100) = y x 2'ITR 'lTR 

Thus 
A2 

(E + E ) ( 101) v = v - --x xo 'ITER x Y 
A2 

(!E 5 (102) v = v - -- + -·E ) 
Y yo 'ITER 2 x 4 Y 

The effectiveness of these terms depends on the magnitude 

of € = 2v - v - N which for the booster amounts to -16.9. y x 

This value is too large to produce much amplitude shift and, 

therefore, this case will not be considered. 

NUMERICAL RESULTS FOR BOOSTER 

Numerical input comes from the linear orbit program 

SYNCH which in turn utilizes the basic booster parameters. 

This input is tabulated in Tables (1 - 3). 

Harmonic analysis of v - R/S and v - R/S was carried x x y y 

out using the betatron functions graphically interpolated to 

values at regular intervals. The program HANAC then yielded 

PI = .2212 and Ql = .2020. 
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Secondly, the values of the coefficients A and B 

in Equations (50 - 51) and Equations (71 - 72) were 

obtained at the longitudinal locations indicated in 

Table 3. To do this the hard edge effects were omitted 

with the intention of handling them separately. The pro-

gram COEF evaluated these functions using the input from 

Tables (l - 3). 

The hard edge effects arose from the terms containing 

AOl ' AOl ; and from All' A21 when finite edge angles were 

employed to yield parallel end faces of the magnets. The 

terms in AOI have a delta function contribution at the 

magnet ends. Similarly the term in AOI has a delta function 

derivative contribution at the magnet ends. To obtain the 

hard edge effects due to finite edge angles one replaces 

All in Eq. (50) and (71) by 

(103) 

where S(~·Ne - xtana.) is a step function. For A the 
N 21 

replacement is 

(104 ) 

Notice that the longitudinal variable used is N8 which 

increases 2n/sector. The edge angle is different for the 
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F and D magnets because of the different magnetic radii 

and is of opposite sign on each side of the magnet. The 

program COEF gives the contributions to the A and B co-

efficients that are proportional to the a-function and to 

the a '-function. 

The program HANAB provides a fourier analysis of the 

discontinuous functions A and B in which the a-function and 

5 '-function contributions have been removed. Since the 

COEF program provides the strengths of the a-function and 

a '-function contributions at each end of the four magnets 

in a sector, it is a relatively simple matter to find the 

harmonic coefficients of the sum of these contributions. 

In this manner the net harmonic coefficients as defined 

in L:gs. (56 - 57) and Egs. (78 - 79) are determined. 

Having determined the harmonic coefficients of lowest 

order, P l , Ql' AO' Al , A2 , BO' Bl , B2 , the amplitudes A in 

Eg. (60) and in Eg. (83) may be found. These amplitudes 

together with the measure of the distance from the reso-

nance E and the beam emittances give the tune shifts. 

Table 4 gives the harmonic coefficients as outlined and 

Table 5 gives the tune shift results. Table 5 presents 

the third order tune shift due to the proximity of the 

operating point to the 3v = 24 resonance and the v + 2v = 24 
x x Y 

resonance. 
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NONRESONANT FOURTH ORDER TUNE SHIFT 

FN-190 
0300 

As is already evident from the third order effects, 

it would be a rather tedious exercise to evaluate the 

fourth order effects with the same degree of detail as the 

third order. The dominant terms in the fourth order hamil-

toni an are 

6x2y2 + 4) Y • (105) 

After the action-angle transformation of Eg. (34), this 

becomes 

Q 2 2 . 4", ) + ~ p s~n '¥ , 
Y Y Y 

(106) 

where Eg. (38) gives the expressions for IjJ and IjJ • 
x y 

The fourth order hamiltonian has a nonresonant 

contribution given principally by the following average 
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= _1_ /kk S 2 R::> J 2 - ~ < kk S S R 2) J J 
16 \..! 3 x Av. x 4 3 x Y Av. x Y 

+ 1~ <kk3S2R~ J2 
Y lw. Y 

Letting 

B 1 < 2 2) = I6 kk 3 SxR . 

C 1 (12) = -4 kk3 SxSyR 

D = 1\ <kk3S~R > , 

the nonresonant tune shift becomes 

ov = 2BJ + CJ x x Y 

ov = + CJ + 2DJ 
y x Y 
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The program COEF evaluates the hamiltonian coeffi-

cients in Eq. (106) and the program HANAB produces the 

azimuthal average. Using 

E = 2TTRJ x x E = 2TTRJ 
Y y 

(107) 

(108) 

(109) 

(110) 

( 111) 

(112) 

(113) 

to evaluate J and J from the horizontal and vertical beam 
x y 
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emittances, one may evaluate the tune shifts. 
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Table 6 

gives these results. As may be seen the fourth order non-

resonant effects are larger than the third order resonant 

effects transformed to fourth order. 
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TABLE 1. GENERAL BOOSTER PARAMETERS 

Average Radius (m) 
Number of Sectors 
Radial Emittance of Beam (mm-mrad) 
Vertical Emittance of Beam (mm-mrad) 
Radial Betatron Oscillations 

per Revolution 
Vertical Betatron Oscillations 

per Revolution 

TABLE 2. BOOSTER MAGNET PARAMETERS 

l1agnetic Radius (m) 
Magnet Length (m) 
Normalized Gradient (m- l ) 

Normalized Second Gradient (m- 2 ) 

Normalized Third Gradient (m- 3) 
~iagnet Location (radians, 2rr/sector) 

Entrance (first magnet) 
Exit (first magnet) 
Entrance (second magnet) 
Exit (second magnet) 

Edge Angles (radians) 

Entrance (first magnet) 
Exit (first magnet) 
Entrance (second magnet) 
Exit (second magnet) 

FN-190 
0300 

F 
40.8469 
2.8896 
2.2147 

.6079 

-21. 63 

.1908 
1. 1097 
5.1735 
6.0924 

.03536 
-.03536 

.03536 
-.03536 

75.4717 
24 
50rr 
20rr 

6.7 

6.8 

D 
48.0341 

2.8896 
-2.7719 

-1. 2560 

6.45 

1.2687 
2.1876 
4.0957 
5.0146 

.03007 
-.03007 

.03007 
-.03007 



TABLE 3. ORBIT FUNCTIONS FROM SYNCH 

Longi tudina1 position (radians, 

.0000 .0954 .1908 

.6502 .8800 1. 1097 
1. 2687 1.2687 1. 4984 
2.1876 2.1876 2.6646 
4.0957 4.0957 4.3253 
5.0146 5.0146 5.0940 
5.4032 5.6329 5.8627 
6.1878 6.2832 

BETAX (m) 

33.6626 33.6653 33.6733 
30.1501 26.0209 20.8814 
17.3038 17.3038 13.2161 

7.5917 7.5917 6.4890 
7.5917 7.5917 8.6365 

17.3038 17.3038 19.0473 
26.0209 30.1501 32.80ll 
33.6653 33.6626 

ALPHAX 

.0000 - . 0089 - .0178 
2.3918 3.2696 3.7768 
3.3965 3.3857 2.3291 

.4948 .4901 .2450 
-.4901 -.4948 -.9660 

-3.3857 -3.3965 -3.5776 
-3.2696 -2.3918 -1.2428 

.0089 .0000 

2n/sector) 

.1908 
1. 1097 
1.7281 
3.1416 
4.5550 
5.1735 
6.0924 

33.6733 
20.8814 
10.4388 
6.1214 

10.4388 
20.8814 
33.6733 

-.0470 
3.7588 
1. 5537 

.0000 
-1.5537 
-3.7588 

.0470 

FN-190 
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.4205 
1. 1892 
1.9579 
3.6186 
4.7848 
5.1735 
6.0924 

32.80ll 
19.0473 

8.6365 
6.4890 

13.2161 
20.8814 
33.6733 

1.2428 
3.5776 

.9660 
-.2450 

-2.3291 
-3.7768 

.0178 



TABLE 3. ORBIT FUNCTIONS FROM SYNCH (con t. ) 

BETAY (m) 

5.2734 
6.7198 

12.9992 
20.4567 
20.4567 
12.9992 

8.3470 
5.2905 

ALPHAY 

.0000 
- . 8804 

-2.2976 
.1371 

-.1500 
2.2895 
1. 3933 

.0569 

5.2905 
8.3470 

12.9992 
20.4567 
20.4567 
12.9992 

6.7198 
5.2734 

-.0569 
-1. 3933 
-2.2895 

.1500 
-.1371 
2.2976 

.8804 

.0000 

5.3417 
10.8223 
16.1015 
20.1193 
20.0667 
11. 8806 

5.7548 

- .1138 
-2.0655 
-1.9618 

.0750 
-.6716 
2.1768 

.4680 

5.3417 
10.8223 
18.5549 
20.0068 
18.5549 
10.8223 

5.3417 

-.1092 
-2.0561 
-1.4002 

.0000 
1. 4002 
2.0561 

.1092 

TABLE 4. HARMONIC COEFFICIENTS OF A(e) and B(e) 

Resonance (3v = 24) 
Radial Phase Flutter (P 1) 

x 
.2212 

Vertical Phase Flutter (Ql) .2020 
Average Coefficient (AO) -47.44 
Coefficient of cosN8 (AI) -119.41 
Coefficient of sinN8 (A

2
) .00 

Average Coefficient (BO) .00 
Coefficient of cosN8 (B

l 
) .00 

Coefficient of sinN8 (B 2) 4.65 

FN-190 
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5.7548 
11.8806 
20.0667 
20.1193 
16.1015 
10.8223 
5.3417 

-.4680 
-2.1768 
-.6716 
-.0750 
1.9618 
2.0655 

.1138 

(v + 2v = x y 
.2212 

.2020 

59.25 

-94.18 

.00 

.00 

.00 

-3.19 

24 ) 



TABLE 5. THIRD ORDER RESONANT TUNE SHIFT 

Amplitude (Al 
Distance from Resonance (E) 
Radial Tune Shift 
Vertical Tune Shift 

(3v = 24) x 
70.80 
-1. 3 

.00113 

TABLE 6. FOURTH ORDER NONRESONANT TUNE SHIFT 

Ampli tude (B) 
Ampli tude (C) 
Ampli tude (D) 
Radial Tune Shift 
Vertical Tune Shift 

-46139 
33866 

1726 
-0,0261 

0.0117 

FN-190 
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(v + 2v = 24) x y 
50.70 
-3.7 

.00100 

.00071 


