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INTRODUCTION 

The longitudinal space-charge blowup studied in a 

series of papers by S¢renssen and Hereward l ,2,3,4 affects 

both the booster and the main ring of the NAL synchrotron. 

The effect is the following (for more detail, see (1) 

and (4»: Space charge repulsion between the particles in 

a bunch in a synchrotron counteracts the rf-focusing force 

responsible for phase stability below the transition energy, 

and reinforces it above transition energy. The strength 

of this effect is proportional to the cube of the longitu-

dinal charge density; since, because of the adiabatic 

variation of parameters, the bunch is shortest at transition, 

the effect is strongest there. 

A bunch that is initially matched in phase space to 

the shape of the rf bucket remains matched until shortly 

before transition. Near the transition energy the bucket 

changes shape very rapidly (becoming infinite in the ~p/p 

dimension); the bunch cannot keep up but attains a certain 

shape depending on the rate of passage through transition. 

In the absence of space-charge forces, the dynamics after 

transition are just a time reflection of those before, and 
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it can easily be seen that the phase space matching re-

establishes itself. Therefore, if the transition phase 

shift is performed perfectly, no oscillations of bunch 

shape are set up. 

When space-charge forces are present, the effective 

focusing force is weakened before transition and reinforced 

after (because of the "negative mass" characteristic of the 

beam above transition). Therefore the "ideal" shape for a 

bunch of given phase space area is different before and 

after transition; the ideal matched bunch before transition 

is longer (with smaller momentum spread) than without space 

charge, while after transition the ideal bunch is shorter 

and has a larger momentum spread. 

Thus a bunch that was matched to the bucket before 

transition finds itself mismatched. As a result, oscillations 

of bunch shape are set up; the bunch oscillates - at twice 

synchrotron-oscillation frequency - between a configuration 

with shorter length and higher momentum spread than the 

ideal one, and one with longer azimuthal extent and smaller 

momentum spread. This is disadvantageous for the operation 

of a s1flchrotron for several reasons: 

(a) The maximum length of the bunch may be close to 

the limits of phase stability, i.e. the width of the bucket. 

This can lead to a loss of particles. 

(b) The maximum momentum spread is increased, and the 
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corresponding spread in radial position may exceed the 

portion of the radial aperture not required for other 

purposes (betatron oscillations, magnet errors, sagitta). 

(c) Because the phase oscillations are nonlinear, 

the particles executing large oscillations have a lower 

frequency than those with small oscillations. This pro-

duces "filamentation": The initial phase space ellipse is 

wound up into a spiral, and effectively the phase space 

occupied by the bunch grows, in spite of Liouville's 

theorem. This means that the beam from the booster has a 

larger momentum spread, width, and angular extent than it 

otherwise would, leading to more severe requirements on 

injection into the main ring. Similarly the beam from the 

main ring is degraded, leading to more severe requirements 

on the extraction system (in some respects this may also be 

beneficial - the beam is less sharply bunched, so that the 

microscopic duty cycle of the slow beam is increased). 

In the following, we summarize the theory, examine 

several methods of compensation, and estimate the effects 

for the NAL booster and main ring. 

SUMMARY OF THEORY 

In the absence of space charge, a matched bunch at trans-

ition has a length 8
0 

and a momentum spread ~p/p, where 
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h = harmonic order 

y = transition energy in Mc2 units 
t 

eV= peak rf voltage per turn at transition 

~ = stable phase angle at transition s 
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S = canonical phase space area of one bunch (in 

energy-time units); 

2 
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h 
2 ByMc 

Sc 
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Space charge effect: Ratio of 

charge force is (eq. (29) of ref. 1) 

371r h Mc2 go 
11 = - -E. 

y2 ~ 
N R evcos~s 

rf focusing to space 

]J 

where N is the total number of particles in the machine, go 

is a geometrical factor, numerically about equal to 4.5, and 

rp = e 2/Mc2 is the classical electrostatic particle radius. 

The parameter 11
0

, which plays a critical role in the space 

charge theory, is simply eq. (3) evaluated at y = Yt with 8, 

the bunch half length, equated to 8
0

, the bunch half-length 

(2) 

(3) 

at transition calculated in the absence of space charge forces. 

Note that this ratio 11 is negative before transition 

(cos ~s >0) and positive after (cos ~s< 0). 

If nonlinearity of phase oscillations is neglected, the 

equation for the bunch half-length 8 may be written in the 
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[12 
~ = 0, 

where [12 is the square of the instantaneous phase oscillation 

frequency. The last term in (4) is the term converting the 

equation of motion of the individual particle into the 

1 t · 5 enve ope equa lon The sign in the no (space charge) term 

switches from negative to positive at transition. 

Equation (4) can be converted to a dimensionless form 

involving only the one parameter no' Near transition, [12 

is proportional to the time from transition. We define a 

characteristic time T by 

[12 = I t I /T3 

with 

T = 1 rl;=.2:.:...11_\+-4_,..--_----,_ (MC 2 )2ll/ 3 

~ h sin ~s cos~s eV ~ 

and write 

We normalize e by defining 

31/ 6 2 e 
8 = 111/2 f(3) 8

0 
= 0.9175 

the constant 0.917.5 ts introduced for convenience in some 

of the formulas. Then (4) transforms to 

± no (9~75fJ 8 
x = 0 83 

which is the equation treated by s¢renssen4 . 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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The actual bunch half length in a particular syn-

chrotron is obtained from the solution of (9) by using 

(1) and (8). The momentum spread 6p/p is given by 

2/3 (2 \ 
~ = 3 r 3 / r(! de \2 

p 2'TTI/2 l\X dX) 
A computer program has been written to solve equation 

(9) with initial conditions selected so that the bunch is 

(10) 

matched, i.e. executes negligible shape oscillations, before 

transition. The results of the computation, in agreement 

with s¢renssen4 , show that the bunch shape oscillates after 

transition, with a peak bunch length and peak relative mo-

mentum spread increasing with no as shown in Fig. 1. 

COMPENSATION METHODS 

Several ways of ameliorating or even - optimistically -

eliminating this blowup effect may be considered. These 

include: 

a) Adjustment of transition timing. The time at which 

the phase of the accelerating voltage is switched from 

cos¢o<O, corresponding to the switch from the negative to 

positive sign in the third term of Eq. (9), can be adjusted 

to occur at a later (or earlier) time than the exact passage 

through transition, i.e. at some value of x other than x=O. 

In fact, in the actual operation of a synchrotron the 

operator is likely to tune transition timing empirically to 
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obtain optimum performance rather than to coincide with 

the instant when x=O. Thus this method is likely to be 

employed automatically. 

The computer program has been modified to permit the 

change of sign of the space charge term at any time x 2 . 

Approximate values of the optimum x
2 

and corresponding 

improvements in maximum e and ~ are as follows: 

1.0 0.5 2.00 1.12 

3.0 1.0 2.71 2.04 

6.0 1.5 3.32 3.25 

(b) The triple switch. The phase may be switched 

back and forth repeatedly; if this is done at the appropriate 

moments the bunch distortion can be completely compensated 

when n < 3, and partially compensated for larger values of o 

no' as described by S¢renssen in (3) and (4). 

The triple switch has been tried experimentally at CERN, 

but with only limited success. Therefore, even though its 

theoretical effectiveness is high, it seems worthwhile to 

explore other compensation methods. 

(c) Feedback damping. The bunch shape oscillations 

induced by the mismatch can be detected by pickup electrodes, 

they manifest themselves as modulations (at twice synchrotron-

oscillation frequency) of the height of the beam envelope 
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with the instantaneous height of the envelope proportional 

to 1/6. 

Thus a signal proportional to de/dt can be obtained 

from the pickup electrode, assuming the electronic differ-

entiat ion can be performed in a reasonably short time. In 

this connection we note that the characteristic time T is 

of the order of a millisecond; therefore it should be 

sufficient to perform the electronic differentiation in a 

few microseconds. 

This method has been employed with some success by 

Raka6 at the Brookhaven AGS. 

If the amplitude of the applied voltage is modulated 

by this signal proportional to de/dt, equation (9) is modified 

by the addition of a term 

de a e -dx (11) 

on the left-hand side. With positive a this may be expected 

to produce damping of the oscillation. 

computations bear this out. As an example, Fig. 2 

shows the oscillations after transition for no = 3.0 with 

a = 0 and a = 0.02 (a level at which the resultant modulation 

of the RF is limited to about 10%). It is seen that for 

x~20 the oscillations have damped to a small amplitude, 

nearly the same as in the absence of space charge. 
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However, another feature of this method, also seen 

from Fig. 2, is that immediately after transition the 

amplitude of the first few oscillations is nearly as large 

with damping as without. 

Therefore damping does not materially reduce the maxi-

mum expansion of the beam length e or of the momentum spread 

~ right after transition. If either of these threaten to 

exceed the allowable limits imposed by the rf voltage or the 

aperture, this damping process is therefore not sufficient. 

On the other hand, the damping eventually restores the 

oscillations to the behavior they would show without space 

charge; therefore with damping the longitudinal phase space 

in the booster at injection into the main ring would be back 

to its ideal configuration. 

This latter conclusion, however, depends on the linear 

approximation for phase oscillation (which is implicit in the 

theory used here). Since the oscillations are in fact non-

linear their frequency depends on amplitude. This leads to the 

process of "filamentation", and an effective growth of phase-

space area in approximately the time it takes for large-

amplitude oscillations to lag in phase behind the small-

amplitude oscillations by an amount of the order of ~/2. 

Therefore, even with damping, an increase in the effective 

longitudinal phase-space area can be expected unless the 

damping essentially eliminates the bunch-shape oscillations by 



- 10 - FN-187 
2040 

that time. The value of our dimensionless variable x 

corresponding to this phase lag depends on the initial 

maximum excursion e G and on the stable phase angle. o max 

(d) Sudden change of transition energy. If the 

value of vx ' and with it the transition energy, is sudden

ly decreased just before transition energy is reached, 

the transition region may simply be skipped. Or, if vx 

is decreased at a rapid but finite rate the rate of passage 

through transition is increased. In either case the blowup 

of oscillations can be reduced. 

Hardt and Moh1 7 show that such a jump can be obtained 

for the proposed CERN booster (similar to the NAL booster) 

with fairly modest pulsed quadrupole lenses; recently this 

scheme has been successfully tried at CERN 8 

A modification of our computer program simulates a 

jump by skipping, in the integration of equation (9), from 

x=-x3 to x=+x3' This corresponds to a sudden jump of Yt 

from Yo to Yo - 6y at the moment when the beam has reached 

the energy Yo- 6y/2. The relation between x3 and 6y is 

where T is defined by (6). 

Computations show that with x3 = 1 (corresponding to 

6y = 0.125 for the NAL booster) and for n = 3 the maximum o 

amplitude in e and in 6 are reduced by factors of 1.4 and 1.67, 
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respectively. With x3 = 2 the reduction factors became 

1.57 and 2.40. 

(e) Reactive Loading of Chamber Walls. 

The geometric factor g in the expression (3) for n o 0 

depends on a balance between inductive and capacitive im-

pedence of the system consisting of the beam and the vacuum 

chamber walls. Briggs and Neil9 have proposed changing this 

balance by loading the inside of the chamber wall with a 

dielectric layer or with closelY spaced fins; this can in 

principle reduce the factor go' and therefore the space

charge effect, to zero at transition. An alternate method, 

proposed by Sessler and vaccarolO , is to use helical inserts 

so as to increase the inductance. It should be possible 

to use one of these methods in the otherwise unusual straight 

sections of the booster; S¢renssen and Courantll have shown, 

in a rough preliminary calculation, that this aim can be 

accomplished using one or two booster straight sections. 

However, the loading characteristics must have a band width 

reading to wave lengths of the order of the bunch length, 

and the details have not been worked out. This possibility 

will be discussed in a future paper; for the present we base 

our estimates on the assumption that go is given and has a 

value around 4.5. 
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Numerical Values for NAL Accelerators 

We assume the following parameters: 

Booster Main Ring 

75 m 1000 m 

84 1113 

5.5 19.61 

.80 MeV 3.47 MeV 

0.9 0.767 
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Yinjection 1. 213 11. 66 

l;inj .648 .00475 

N 3.46xlO 12 4.5xlO 13 

S .0208 eV-sec .0208 (per bucket) 

Here it is assumed that there is no blowup of longitu-

dinal phase space at transition or at transfer from the 

booster into the main ring. 

These parameters lead to the following values of the 

bunch half-length e , the momentum spread 6p/p, the space o 

charge parameter no' and the "characteristic time" T: 

Booster Main Ring 

.193 radians .0846 radians 

= 11.1 degrees = 4.84 degrees 

6p/p ±2.59xlO -3 ±1. 64xlO -3 

3.33 6.3 

T 227 llsec 2.43 msec 
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These parameters enable us to convert the results 

of the computations (solutions of Eq. (9) and its modifi-

cations for various compensation schemes) into estimates 

of the lengths, widths, and oscillation amplitudes of the 

bunches in these two accelerators. 

Taking no in the booster to be 3.0, we find the 

following maximum excursion 8max and maximum momentum 

spreads; with and without delay of the phase jump, and with 

various jumps ~Yt effected by quadrupoles. Damping is not 

included; computations show, as mentioned before, that 

damping hardly affects the initial amplitudes of oscillation 

but only reduces the amplitudes later in the acceleration 

cycle. 

Phase jump delay Jump in Yt 8 I~) 
max \ p max 

(in units of T = .227 ms) 

0 0 380 ±9.2xlO- 3 

0.75 0 29 0 ±5.8xlO -3 

1.0 0 300 ±5.3xlO- 3 

0 0.125 25 0 ±5.3xlO -3 

1.0 0.125 210 ±3.5xlO -3 

0 0.25 210 ±3.7xlO -3 

0 0.25 20 0 ±2.75xlO -3 

We see that even in the best cases, the maximum excursion 

ln 8 is about ±20 to 30 degrees - computed on the linearized 

theory of synchrotron oscillations. But the nominal booster 
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parameters call for a stable phase angle of 65° and for 

this value the limits of phase stability are only from 

40° to 115°; i.e. only 25° on one side, 50° on the other 

side of ~s' Clearly this means that we are perilously close 

to the limits of phase stability; it would appear very ad-

visable to raise the RF voltage by something like 10%, 

obtaining ~s 55°, limits of phase stability 19° to 125°. 

The peak excursion in ~ causes trouble if it consumes 

excessive aperture. The aperture allowance in the booster, 

according to the design book, is 43 rom for betatron oscil-

lations and 5.5 rom for synchrotron oscillations at injection. 

At transition betatron oscillations have damped down by the 

usual IP factor to 15 millimeters, leaving 33 millimeters 

available for synchrotron oscillations. With a peak momentum 

compaction factor xp = 3.16"cm for6p/p = 1'1, this means that 

~p/p may be allowed to be at most 1.04%. Thus, with phase 

jump delay, we are comfortably within the aperture as far 

as momentum spread is concerned. 

It may be expected that, even with damping and other 

compensation, there will be a residual blowup of effective 

longitudinal phase space. Therefore the phase space at 

transfer from booster to main ring will be larger than the 

ideal value. This will, of course, reduce Do in the main 

ring by a factor equal to the 3/2 power of the phase space 
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dilution. Assuming the phase space dilution to be a 

factor of 2 or 4, we find, for the main ring, no 

no = 2.2 for booster dilution factor of 2 

no = 0.8 for booster dilution factor of 4. 

The values of 8
0 

and bo are increased over the ideal 

values by the square root of the dilution factor. In 

addition, the same blowup effect in the main ring increases 

the maximum excursion further. 

with booster dilution of a factor of 2, we have 

-3 = 6.84 degrees, bo = 2.32xlO ,no = 2.2. 

At this level of n we may expect, even with compeno 

sation, a further blowup of e by a factor of 2 and of bo 

by a factor between 1.5 and 2, just as in the booster. 

The lengthening of the bunch is still trivial, well within 

the bucket; but the increase in bp/p brings it to ± 4xlO- 3 . 

With a momentum compaction function xp = 5.2 in the main 

ring, this implies an aperture requirement of ±2cm in the 

main ring. 

If we are more pessimistic about compensation in the 

booster and take a blowup factor of 4, n in the main ring o 

is reduced to 0.8, but e and 6 are doubled compared to o 0 

their values without blowup, to 8
0 

= 9.7 degrees, bp/p = 

3.28xlO- 3 . Now the further blowup in the main ring will be 

small, but may again be enough to bring the maximum 6p/p to 

4xlO- 3 , leading to the same aperture requirements. 
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In either case, since the excursion in e is small, 

the phase oscillations will be very nearly linear in the 

main ring. Therefore filamentation should not occur, and 

feedback damping should be capable of tuning the oscillations 

so that the final phase space at ejection is about equal to 

its value at injection into the main ring. 

CONCLUSION 

Longitudinal space charge effects, at the intensities 

of the NAL accelerator, cause increases in phase oscillation 

amplitudes of the booster. Even with the compensation 

methods studied here, the amplitudes will be large enough 

to make it most advisable to raise the rf voltage level from 

the value contemplated in the design report - a 10% increase 

should suffice. 

In the main ring, the most serious effect is an increase 

of the momentum spread in the vicinity of transition. This 

leads to appreciable aperture requirements and makes it 

inadvisable to reduce the radial aperture below the value 

adopted in the design report. 
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damping term (11) added. 
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