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The transverse oscillations of a charged particle in a 

circular accelerator have been studied extensively. This 

report gives a handy compilation of useful formulas derived 
\ 

by standard procedures. 

Reference Curve and Coordinate System 

We consider the motion of a particle with charge e and 

momentum p moving in a static magnetic field having an approxi-

mate midplane. We choose as the reference curve a closed plane 

curve lying in the midplane and having radius of curvature 

p = p (z) where z is the coordinate along the curve in the 

direction of motion of a positively charged particle. The 

reference curve, or p (z), is so chosen that deviations of 

particle orbits from the reference curve are small. The x 

coordinate is along the outward normal and in the plane of the 

reference curve, and the y coordinate is perpendicular to the 

plane of the reference curve and in the direction of the main 

magnetic field, thus, forming a righthanded coordinate system. 

The circumference of the reference curve is written as 2rrR. 

Magnetic Field 

The scalar potential of the static magnetic field expanded 

about the reference curve has the form 
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Where <l>o is small so that the y = 0 plane (plane of the 

reference curve) is the approximate magnetic midplane. The 

magnetic field components are 

r 

\ 
t. 

BX = ~! = (al + a 2x + a 3 ~~ + ... -) 

+ (b2 + b 3x + .•.. ) y 

B z 

+(c3 +···-)h+ 

= (b l + b 2x + b 3 ~~ + ..•.. ) 

+ (c2 + c 3x + •... ) y 
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1 d 
where k = k(z)= p(z) and prime means dz. The coefficients 

c's and d's are related to the a's and b's by the Laplace 

equation 

and are 
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In terms of the field on the reference curve (x=y=O) the co-

efficients a's and b's are 

" 

a o ==f Bzdz, 

a l = Bx 

aB 
a 2 == ()x 

x 

a2s x 
ax2 

.......... 

(a' == B _ a) o Z 

== By == dipole field 

oBy __ 
= ax quadrupole field 

a2B 
---Y = 
ax2 sextupole field 

(3 ) 

(4) 

(5) 

Since only a' (=B on reference curve) and never a will appear o Z 0 

in orbit equations we will substitute the letter a for a' . o 
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Orbit Hamiltonian 
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The orbit Hamiltonian in x, Px' and y, Py with z as the 

independent variable is 

H (x, Px' y, Py: z) 

= - (l+kx) ~l - (p - sA \ 2 + sA J 
y Y) z 

(6) 

where £ = ~ C = velocity of light in vacuum, and A , A , A pc' x y Z 
\ 

are components of the vector potential of the field and can be 

expressed in terms of the scalar potential~. When expanded in 

powers of x, Px' and y, Py we get 

with 

H(O) = 
H(l) = 

(2) 
H = 

+ .... (7) 

-1 (irrelevant) 

1 I 2+ 2\ sa l \ P P + -- yp - xp 2\x Yi 2 x Y 

2a +a' \ xy + S; (-b + sa
2
)y2 

2 / 2 2 4 

H(3) = ~ kx (px
2

+ p/1+ j Qai + k;)x + biyJ (ypx- xPy ) (8) 

+ ~ Gkb 2+ b 3 + sa (ai - k:)] x
3 

- g ~ai + 6ka2 + 3a3 - 2ka' - 2k'a - sabi] x
2

y 

- g ~i + 3kb2+ 3b3 - sa(ai - k:)] xy2 

+ g [ai k
2

a l + ka2+ a 3 - 2ka' - k'a + SabiJ y3 

.............. 
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Remembering that both k and gB have the dimension of 

-1 
(length) we see that Px' Py' and H are all dimensionless. 

We can further express all length in units of the equivalent 

radius R of the reference curve, and redefine 

g -
eR 
pc and R k _ 

p 

The variables x and yare, then, dimensionless, and in units 

of R the indep~ndent variable z is the angle e along the 

(9 ) 

reference curve advancing 2n for each circuit around the curve. 

Transformations and Approximations 

Generally the desired magnetic field is one for which the 

only non-vanishing coefficients are b l and b 2 and these have 

sector periodicity. However, because of design and construction 

imperfections all coefficients are present as small errors. Write 

(10) 

where b 10 and b 20 have exact sector periodicity and b 1 and b 2 

are small errors. The reference curve is so chosen that k ~ gb 10 

and, hence, also has exact sector periodicity. 

The effects of the exactly periodic terms in H(2) have been 

studied extensively and were shown to lead to linear transverse 

oscillations (betatron oscillations) of the orbits about the 

reference curve which can be transformed (Floquet transformation) 

to harmonic oscillations with wave numbers Vx and vy ' We can, 

therefore, replace the exact sector-periodic terms in H(2) by 

harmonic oscillator terms. The Hamiltonian, now, becomes 



H (1) = Eblx - Ealy 
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H(2) '" ~ (p/ + p/)+ ~ (v/x2 
+ v/y2) + £; (YPx - XPy) 

H (3) = 

H (4) = 

,._ E.I. ... _ .,.... _ Ea 2 l.2 £ 1 •• __ . ~_. 
"2 ,)\.lJ1-r ~2' 4 )A - '2 \ .G~al"'" ~a.2-r 

+ - -b + E (-
2 2 

Ea
2

) 2 4" y 

unchanged 

... ~ ..... 

-,\ 
Q ) 

(11) 

Where we have kept the same letters x, y and Px' Py to denote 

the transformed coordinate and conjugate variables. The first 

two terms in H(2) give the linear (now, harmonic) oscillations. 

Far away from resonances the effects of all other terms are 

small non-secular modifications of the linear oscillations. 

Close to a resonance certain of these terms produce large 

resonant (secular) modifications. For each resonance we can 

pick out the relevant terms (excitation terms) and transform 

the Hamiltonian under the adiabatic approximation to a form 

explici tly independent of the independent variable 6 ( = ~). 
For values of Vx and Vy such that 

( ~,S:~l~ integers, n ~o) 
the transformed canonically conjugate variables 

<Px ' J x ' and 

cf>y' J are related to the original variables x, Px' and y, 
Y 

q,x ljix + vx 6 
Q.c e J vxAx 

2 = - , = 
iQ.2 2 x 

+ m 

q,y = lji + Vy 6 ~ me 
6 J y 

v A 2 , = Y /Q.2 2 Y Y 
+ m 

(12) 

Py by 

( 13) 
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The motion is then given by the transformed Hamiltonian 

K (~x' J x ' ~y' J y ) through the canonical equations 

d~x oK d~y 
= oK 

dB = oJ , de oJy x 

dJx oK dJ oK ~ 
de = -

aqix de = - ~y 

Transformed Adiabatic Hamiltonians 

The transformed adiabatic Hamilton K (~x' J x ' ~y' J y ) 

could be written in a general form for the resonance ~vx + 

but such a form is rather complex and 

difficult to use. Since in most cases one is interested in 

(14) 

(15) 

resonances of low orders and since we have the explicit expanded 

form of H only up to H(3) we shall list here the transformed 

Hamiltonians separately for each resonance up to the third order. 

(A) Resonances excited by H(l) - Only first order resonances 

are exci ted by H (1) 

(1) " = n + ' Vx u 

(16) 

where 

'" E cnei(ne+on )= Eb
l n=-oo 

(17) 



(2) Vy = n + 

K = 
2Cn - --rv; 

where 
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(B) Resohances excited by H(2) - Only second order 

resonances are exci ted by H (2) 

(1) 2v x =n+20 

where 

( 2) 

where 

(3) 

K = - Cn J cos (2<p + CI ) -
Vx x \ x n 

oJ 
x 

n + 20 

K = - Cn 
J cos (2<P +0. ) - 6Jy Vy Y Y n 

K = 

= n + 12 

IJxJy .,rv-v 
x Y 

cos (<p + <P + 0 ) -x y n 

(18 ) 

(19) 

(20 ) 

(21 ) 

(22) 

(23 ) 

(24) 
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(4) 

where 
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(25) 

.L (±J +J) 12 x y 

(26 ) 

(e) Resonances excited by H(3) - First and third order 

resonances are excited by H(3) 

(1) 3\)x = n + 36 

K = en 3/2 ( ) 
--~~ J x cos 3~ +a - oJx 2\) 3/2 x nJ 

x 

where 

(2) 3\)y = n + 36 

K = en J 3/2 
2\) 3/2 Y 

y 

( 28) 

(29) 

(30 ) 



where 

(3 ) 2v x 

K = 
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f (a"-k
2
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( 31) 
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Cn J IJ COS (2¢X+¢y+Ci0-
6 
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(32 ) 

; C e i (n6+Cin) = 
n=-oo n 

£ 

6 

(4) 

where 

(5) 

-i f fa' + ka)(v -v \ (33) 
3 \ 1 2 \ x Y/ 

±2v +v = n + /56 x y 

K = - c n J IJ cos (±2¢ +¢ +Ci ) 
2v ;v- x Y x Y n 

x y 

- .~ ( 2ai + 6ka2+ 

+ i ~ (ai + 

2v + v = n + /56 y x 

K = cos (2¢ +¢ +Ci. \ 
y x n) 

6 

/5 

6 

/5 

(34) 

(36 ) 
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n=~oo cne
i 

(n9+ah)= - ~ [bi + 3kb2+ 3b3- sa (ai - knJ- k~/ 

where 

(7) 

where 

- i ~ bi (Vx-Vy) (37) 

K = en J IJ" cos (±2<P +<P +0. \- <5 (±2Jy +J
x

) 
2 v Iv y x y x n) 15 

y x 

v = n + <5 x 

(38 ) 

(39) 

(40) 

kv 2 
--..Y 

2 

kv J. 
y 



(8) Vy = n + 0 

C 
K n = 

2v 3/2 
¥ 

D n 

2v IV" x y 
where 
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(42) 

r n~£~ cne
i

( ne+nn)~ ~ 01 -k
2

a 1 + ka2+ a 3- 2ka' -k' a +£abi) 

(43) 

~ D ei(ne+Bn)= - ~(2a" + 6ka2+ 3a
3

- 2ka ' -2k ' a-Eab
l'

) 
n=-oo n 3 1 

+ i 

For ease of reference we list here, again, the definitions 

of the magnetic field coefficients 

a = B = field along reference curve z 
a l = Bx 

aB x a 2 = ax Midplane error field 

a2B 
- --- -x 

a 3 = -r ax 

a 4 = ...... 

b l = B = y guide field (dipole component) 

riO = exact sector-periodic guide 

°1 = guide field error 

dB 

= b lo +°1 

field 

b 2 = --Y -dX - guide field gradient (quadrupo Ie component) = b 20+ 02 



b = 4 
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exact sector-periodic guide field gradient 

guid:e fi-eld gradi-ent -error 

guide field sextupole component 

ail evaluated on the reference curve (x=y=o). In addition we 

recall 

E _ eIl. 
pc and 

Example of Application 

R 
k - p = Eb lO 

Take as an example the excitation of the 2nd order resonance 

(44) 

by the rotational misalignment of the quadrupoles in the main 

ring of the NAL accelerator. When an ideal quadrupole with field 

gradient G (in real units) is rotated along its axis by a small 
aB 

angle w a midplane error field gradient a 2 = axx = -RG sin2w __ 

- 2wRG is introduced and the guide field gradient is reduced to 
aB 

b 2 = ~ = RG cos2w~RG. Since we assume no other errors we have 

a = a l = 0 and the transformed adiabatic Hamiltonian is given by 

(24), namely 

where 

K = - en IJxJy cos(~x+~y+an)-
{vx\)y 

- Ea 2 
= 2wERG 

o 
,!2 

(45) 

(46 ) 
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The width of the resonance band can be obtained from (45) 

directly. Since the cosine function has to lie between -1 and +1 

for an orbit to exist we must have 

(47) 

As 

of 

and J
y 

go to 00, the K term goes to zero and the coefficient 

has a m~nimum value of 2 when J x = J y ' Thus, in order 

for orbits with infinite J x and J to exist we must have y . 

en 
< 0 < 

en 
(48) 

I2v v 12VxVy x Y 

This, then, gives the width of the resonance. 

The canonical equations are 

d4>x oK en J~ cos (4) +4> +Ct )-
<5 (49) de = = oJx 2lv

x
v

y 
J x x y n 

~ 

dJ x oK en 
sin(4)x + + Ctn ) de = - ~x = IJxJ 4>y 

Ivxvy 
y 

f~ = oK en If. cos (4) + 4> + Ct ) -
cS (50) de aJ

y 
= 

21vXvy J y x y n 12 

l dJy aK en 
IJxJy sin (4) + 4> + Ct ) = - a4>y = -de 

IvxV y 
x y n ., 

Tal<; ' th d' ff f th dJ t' . d' 1 ~ng e ~ erence 0 e de equa ~ons we get ~rnrne ~ate y 

=vA2 -vA.2 = x x y y constant ( 51) 

As a matter of fact since the phase variables 4>x and 4>y appear 

in K only in the combination ~4> + m4> we always have as part x y 
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of the solution 

mJ x - ~ "Jy = constant 
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(52) 

for non-zero ~ and m. This leads directly to the conclusion 

that sum resonances where ~ and m have the same sign are un-

stable, namely both J x and J y can go to 00 ; and difference 

resonances where £ and m have different signs are stable and 

represent only a coupling between x and y oscillations. 
\ 

Further manipulations of (49) and (50) for 0 = 0 give the 

equation 

(53) 

with the solution 

9 (54) 

This, then, gives the on-resonance growth rate. 

If the rotational misalignment is assumed to be uniform 

within each quadrupole and uncorrelated between quadrupoles we 

have, 

(c) = 
n rms 

2F ERG (wl , 
,IQ tms 

I independent of n up to the) 

\cutOff value of n = ~ (55 ) 

where Q is the total number of quadrupoles in the ring and F is 

the fraction of the ring circumference occupied by quadrupoles. 

For the main ring of the NAL accelerator the parameters are 
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(using the new lattice with two quadrupole lengths): 

r 
R = 1000 m \Jxz \J y

Z 20.25 

Q = 240 

1 F = 0.075 
2 4 

ERG = eR G = 1. 87 x 10 
pc 

For a large misalignment error of (w)rms= 1 mrad. This gives 

Cn = 0.18 and' 

/Half width of resonance band 
C 

n = = 0.009 
IV\) 

x y 

On-resonance growth rate =~= 17.7 rev/e-fo1d 
2'TTC 

n 


