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COUPLING OF HORIZONTAL AND VERTICAL OSCILLATIONS 
IN AN AGS 

1. Introduction 

As has been pointed out by Regenstreif and others, 1 the fringing 

field of quadrupole magnets causes a coupling between motion in the 

two transverse directions. This coupling must be considered in the 

design of a transport system, since it is capable of distorting the phase 

space in each of the two transverse directions and can result in a de-

terioration of useful beam quality. 

This coupling also appears to be important in linear acc elerators, 

where the particles enter and leave quadrupole magnets many times. 

The linac problem has been treated both numerically and analytically2 

and it is shown that while the amplitude of oscillation in either trans-

verse direction may increase, the radial amplitude will be approximately 

constant. As a result it appears that no allowance for increased bore is 

necessary in a linac due to this coupling. 

The present note is an application of these considerations to an 

AGS synchrotron, where an exchange of oscillation "energy" from ra-

dial to vertical has more serious consequences. In this case, however, 

it will turn out that inequality between the two transverse oscillation 

frequencies restricts this "energy exchange" to negligible values. 

Comparison is also made with the amplitude growths resulting 



FN -167 
-2- 2040 

from angular misalignment of quadrupole axes. These appear to be 

far more serious and suggest as large a detuning of the horizontal and 

vertical betatron frequencies as practical. 

II. Calculation of Amplitude Changes 

It can readily be shown 
2 

that a particle entering and leaving a 

quadrupole magnet receives the following impulses per magnet. 
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Here f is the equivalent length of the magnet, and Ko is proportional 

to the field gradient, i. e. the equation of motion within the magnet is 

x" + K x 0 0, 
0 

z" - K z 0 O. 0 

In the "smooth" approximation one can write 

x 0 A sin (k s + " ) 
x 

x' 0 Ak cos (k s + ,,) 
x x 

z 0 B sin (k s + (3) 
z 
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(4) 



-3-

z r = Bk cos (k s + ~) . z z 

FN-167 
2040 

Here k = v /R, k = v /R are the wave numbers of the horizontal x x z z 

(4) 

and vertical betatron oscillations respectively. The changes in amplitude 

and phase per magnet can be obtained by averaging out rapidly varying 

terms. The result is 

where 
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and where the "frequencies" k and k are taken to be almost the x z 

same. 

Equa tions (5a) and (5b) lead immediately to the invariant 

+ = C
2 

(= constant) 

2 
One then obtains equations for fA and 6\If 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(6 ) 
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where L is the distance between magnets. 

FN-167 
2040 

It will be shown f<Dllowing Eq. (10) that the dominant term 

in Eq. (8) for an AGS is the first term on the right. In this case one 

can then write 

3 
- 16 

6 cos iii 
2(k - k )L 

X Z 

The complicated invariant which can be constructed from Eqs. 

(7) 

(8 ) 

(9 ) 

(7) and (8) restricts the excursion of A and B. This is simply approxi-

mated by setting 6cos '<l! = ± 2 in Eq. (9), in which case we find for 

the maximum excursion in A 

Similarly, 
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The quantities in Eq. (lOa) or (lOb) are precisely the relative 

magnitude of the neglected to the retained term in going from (8) to (9). 

If the amplitude changes in (10) are small, the approximation used in 

going from (8) to (9) is valid. 

If we now take as our model for the transverse focusing 

1_ 
-J 

to 

Jo ____ t 

with 1 < < L, we can write 

k ::: k ::: 
x z 

(11 ) 

In the "smoothed" approximation 

3 A 
2 

v ----
8 lL Ll.v 

(12) 

where Ll.v / v is fractional difference in horizontal and vertical "tunes. ,,* 

III. Numerical Values and Conclusions 

The present parameters for the NAL main ring are 

'\f one takes into account the strong focusing character of the oscilla
tions' the result in Eq. (12) is reduced by the factor 

K01L 
where sin I = 2 

sin fJ. 

. fJ. 2 
+ sm"2) 

(12a) 
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1 " 2 meters 

L " 30 meters 

A :s 4cm 

B :s 2cm 

i'.vo.- .04 

v 0.- 20 

With these parameters one finds from Eq. 

-3 
1.2 X 10 , 

(12) 

5 X 
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These amplitude changes are clearly quite small':' and can be 

neglected, as long as i'.v is not is not too small. 

It is useful to compare the amplitude changes in Eq. (12) with 

those which occur because of random misalignment of the quadrupole 

axes. A simplified analysis with approximate results is given in the 

next section. 

IV. Random Misalignment of Quadrupole Axes 

(13 ) 

Misalignment of the quadrupole axes can also lead to xy coupling. 

For axes rotated by a small angle e one has 

1\:. ::: Q' Z I '" (z + 2ex) 
( 14) 

::: ax' '" (x - 2 e z) 

and the equations of motion are 

~;~ 

The factor in (12a) reduces these changes to approximately 25% of the 
values in (13). 
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x" + K (s)x = 2 8 (s ) K (s )z 

z" - K (s)z = - 2 8 (s ) K (s )x 
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(15 ) 

The term of greatest importance for v '" v comes from that z x 

harmonic of the right side of (15) which corresponds roughly to the 

average of 28 (s)K (s). Retaining only this term, and using the 

"smoothed" approximation for the left side of (15), one obtains 

where 

x" + 2 2 
(v x /R )x '" E Z , 

2 2 
z" + (v /R)z '" EX, 

Z 

21TR N N 

(16 ) 

(17) 

2Kol 2KOl 2 1 8 (s ) K (s) ds I 8
n

(-1)n ~ ~ e (_1)n E = =--
21TR 21TR L N n 

n=1 =1 

Here N is the number of quadrupoles and the quadrupole geometry is 

that shown in the previous figure. 

It is possible to solve Eq. (16) exactly. However, it is also 

useful to consider a phase amplitude method on (16) which leads to 

two adiabatic invariants. The first of these describes the fact that 

2 B 2 . . 1 d h d . h A + is approximate y constant, an t e secon restricts t e ex-

curs ions of A and B. This method also works if E is a general har-

monic of the rotation errors considered as a function of azimuth. In 

this case the exact solution is not easily obtained, but the adiabatic 

invariants appear as before. For sum-type resonances the second 
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invariant leads to the usual stop band region in which the amplitudes 

grow without limit. 

Our concern here is to estimate the amplitude growth corres-

ponding to Eq. (16) in the vicinity of the v " v resonance. The per-z x 

turbed part of the solution of Eq. (16) to first order in E can be written 

as (note that 6x(0) = 6x'(0) = 0): 

8x(s)" 
EB [ cos (v sIR) - cos 

z 
2 

and the resulting maximum excursion in x is 

2ER2 
2 2 B 

v - v 
X z 

where .c" v = v - v . Similarly, 
x z 

18B I " A. 

2 
ER 

v.c"v 

(lS) 

B, (19a) 

(19b) 

These formulas are valid as long as E R21 v.c"v is small compared to 1. 

One can also expeess Eq. (19) in terms of the equivalent stop band 

width which, for the sum resonances, is * 
~:~ 

This result for the amplitude growth is similar to that obtained by 
Courant and Snyder, Annals of Physics 3, (195S), in Eq. (4.55) for the 
one dimensional problem. The fact thaCour two dimensional result 
yields the same coefficient as their one dimensional result is related 
to the fact that coupling term is linear in the oscillation amplitude in 
both cases. 
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For the lattice shown in the previous figure 

v '" Nfl '" 
4'IT 
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(20) 

(21) 

(22 ) 

using Eq. (11). If one considers the angular errors to be randomly dis-

tributed, 

and':' 

Using 

one finds 

,', 

one can obtain an rms average for E , leading to 

4 e 6vsB 
:: 

'IT rms 

10B
A I :: 

\0: I :: 

N = 200 

-3 erms = 10 rad 

L'l.v = .04 

.[N 

2 e rms .fN 
'IT L'l.v 

(23) 

(24) 

(25 ) 

"'The result in Eq. (23) is the same as that of Eq. (4.95) of Courant and 
Snyder (loc. cit.), applied to our quadrupole configuration. 
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If one desires to limit amplitude growths to less than 20%, 

(26) 

e will have to be less than a milliradian, or i1 v will have to be in-rms 

creased, or both. 

It is also possible to reduce the effect of this coupling by careful 

alignment of magnets axes in F-D pairs. If e1 is the rms value of the 

angle between the F and D axes, li-ms in Eq. (24) is to be replaced by 

e1 f.../2. If e
2 

is the rms value of the alignment of the pair, e in 
rms 

Eq. (24) is to be replaced by (27) 

~f' F 
13 D )' (' F 

F D _ 13 D 
\ 2 

-13 +13 L] (e /2) I ~ - x + x :t. x y 

1 13 F 13 D i3x i3y y y 

where L is the separation of the doublet. It appears that the booster 

is being designed to have a small value of e 1 in order to minimize the 

growth due to this coupling. 

V. Conclusions 

Coupling of the two transverse motions in the quadrupole fring-

ing fields leads to the maximum amplitude growth given in Eqs. (12) 

and (12a). For the contemplated parameters of the NAL 200 BeV 

main ring, these growths are well below 1%. 

These growths are evidently much less serious than those oc-

curring because of angular misalignment of the quadrupoles, which are 
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given in Eq. (24). In order to keep the maximum growths small, one 

must either detune v and v appropriately, or maintain a tight tolerance 
x z 

on the angular alignment of the quadrupoles. 
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