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Of the total yield of charged particles within a given momentum 

band, produced in a target, some fraction will enter the defining aperture 

of any given secondary beam transport system. The parameters that 

determine how large this fraction will be are the angular distribution 

of the secondaries, the mean production angle of the accepted particles, 

and the size of the aperture. 

The angular distribution of secondary particles is not very 

accurately known, especially at small angles or high momenta. In the 

absence of reliable data one usually chooses as guide one of several 

empirical or phenomenological distributions, which fit the available 

data more or less passably. The purpose of the present note is to 

present in particularly convenient form the predictions of these distri-

butions, and to allow in addition the use of any other arbitrary distribu-

tion. The results are given in the form of curves, showing the fraction 

of all particles produced (in a given momentum interval) that will be 

accepted in an aperture of given size, at a given mean production angle. 

The major uses are to evaluate the importance of small production 

angles, by showing how the yield falls off with angle, and also the beam 

intensity to be expected. 
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1. Normalization of the Angular Distribution. 

To carry out the proposed program it is convenient to normalize 

the entire emitted flux of particles of a given momentum to unity. For 

the case of an unpolarized beam striking an unpolarized target (so that 

the distribution has no dependence on azimuthal angle), the yield function 

is a function of the polar angle x only. If the yield is Y(x), the flux 

normalization condition is 

OJ 

fa 2rrxY(x)dx 1. (1 ) 

In addition it will be useful to normalize the angular variable x 

so that its mean value corresponds to the observed mean angle of 

particle emission. The experimental data indicate that to a good 

approximation, particles of all sorts produced at any energy have the 

same mean transverse momentum, i. e. about. 35 GeV/c, and an 

approximately Boltzmannian distribution in angle. Consequently, if we 

normalize the angular distribution so that the mean value of x, i. e. X, 

is unity, and let x=1 represent a transverse momentum of. 35 GeV/c, 

a single distribution will represent all momenta, and a single set of 

curves can be used for all momenta. 

The angular normalization requirement may then be written 

'" fa 2rrx
2

Y(x)dx x = = 1 

fa'" 2rrxY(x )dx 

The two normalization conditions (1) and (2) then serve to determine 

two arbitrary constants in any angular distribution formulas. 

(2 ) 
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II. Analysis of Angular Distributions. 

Four principal forms of angular distribution have been proposed 

to describe high energy particle production. These include the CKp
1

, 

which is a Boltzmann-like distribution in transverse momentum; the 

Trilling2, which is an attempt to improve on the CKP, and differs 

from it only in providing a proper cutoff at the high-energy end, and in 

its predictions for the lowest third of the momentum range. The 

Hagedorn-Ranft 3 distribution is based on a statistical fireball model, 

and is intended for p-p, not p-nucleus collisions. A gaussian form has 

4 
also been suggested 

Since the Trilling distribution does not differ from the CKP over 

a large range, and the Hagedorn-Ranft is inapplicable, we evaluate the 

CKP and gaussian distributions. They have the functional dependences: 

Y CKP(x) = A exp (-bx) (3) 

and 

Ygauss (x) = C exp (-dx2 ) (4 ) 

These expressions contain only two arbitrary constants each, and 

therefore the normalization procedures will determine them completely. 

Carrying out the normalization, we obtain 

Y CKP (x) = :;. exp(-2x) (5 ) 

Y gauss (x) = 
1 

(6 ) 4 
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III. Calculation of the Acceptance of a Circular Aperture. 

Given the normalized angular distribution, it is not difficult to 

calculate the fraction of the beam that will enter an aperture of given 

shape and size, as a function of angular position. For any given momentum, 

the angle is determined by the condition that x= 1 represents a transverse 

momentum of .35 GeV/c. The radius of a circular aperture may then 

be specified in the same units as x, and its center located, in the same 

units. 

To solve this problem for circular apertures, a computer program 

in BASIC, called AP591, has been written. The program accepts any 

arbitrary angular distribution. The results of computations for the 

normalized distributions given in (5) and (6) are given in Figs. 1-3. A 

later version of the program that treats of elliptical apertures is in 

preparation. 
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FIGCRE CAPTIONS 
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Fig. l(a). Fraction of the total beam transmitted through a circular 

aperture of radius x for the normalized CKP distribution, for zero 

production angle. 

(b). The same, for the normalized gaussian distribution. 

Fig. 2. Transmission through three different circular apertures, for 

the CKP distribution as a function of transverse momentum, in nor-

malized units; x = 1 represents about .35 GeV/c transverse momen-

tum. The aperture radii for the cases a, b, and care R = 0.8, 0.4, 

and 0.2 respectively, in the same units of angle as the transverse 

momentum. (E. g., R = 0.2 means an aperture whose angular radius 

is one fifth the angle at which the transverse momentum is .35 GeV/c). 

Fig. 3. The same as Fig. 2, for radii 1.25, .8, .4, and .2 respectively, 

and gaussian angular distribution. 
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Transverse momentum, normalized units 
Fig. 2 
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