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In this report III of this series, we will carry the 

development of report II to one further level of approxima-

tion by carrying out the transformation which removes the 

neglected terms in the Hamiltonian H3 . In this way, we ob

tain correction terms to the variables X, P used in report I, 

and defined by Eqs (11-13), (11-17), and (11-25). Thus we 

can estimate, for example, deviations of the actual phase 

plot from the idealized plot of Fig. I-I. We also obtain 

contributions of the neglected terms to H4 , which will enable 

us to calculate the bending of the separatrices in Fig. I-I. 

Consider a typical non-resonant term 

H (2p)3/2 cos (£y - mG + n3 ) (1) 
3im ~m 

in the Hamiltonian (11-21) where £ .. 1 or 3. The final ap-

proximate Hamiltonian (11-26) was obtained by neglecting all 

terms (1) except the resonant term £ = 3, m = mO which drives 

the extraction resonance v = mo/3. 

To eliminate the term (1), we utilize the generatin~ 

function 

s = p'y + S (2p,)3/2 sin (£y - mG + n ) 
3im 3Q,m ' 

(2) 

which gives the transformation 



p = 3 S 
3y 
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= p' + is (2p,)3/2 cos (iy - me + n ) 
3tm 3im ' 

The latter equation can be by approxima-

tions for 

(3) 

y = y' - 3S3tm (2p,)1/2 sin (iy' - me + n3tm) + ···.(4) 

We substitute the first of Eqs. (3) in H = H + H + ..• to 
2 3 

obtain 

H' • H + fi· v~' + .•• 

+ [H3J.m + (tv - m)S3 tm ] (2~,)3/2 

+ H [(2 P )3/ 2 - (2p' )3/2] 3tm 
cos (ty - me + n ) + ..• 

31m 

The third order term can be eliminated by setting 

, 

provided we are not too close to the resonance v = mit. 

After carrying out the above transformation on every 

nonresonant term, we arrive at a Hamiltonian lO' '",hich to 

third order contains only the terms in Eq. (II-24). Equa

tion (II-24) is therefore exact to third order provided we 

replace p, y by the variables 

(5) 

(6) 



p' = p -I I' RH 3Q,m 
II, v 11,=1,3 m m -

y' = y + I I' 3H3tm 
11,=1,3 m m - tv 
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(lI,y - mO + 113 ) + tm 

(II, y - mO + 11 ) 311,ln + ... 

, 

The prime on the summation sign means that the resonant term 

II, = 3, m = rna is omitted. In rectangular coordinates at the 

(7) 

septum (0 = a): (8) 

x = X' - I 
m 

[ (3P,2 + X,2) sin 1131m + 2P'X' cos 11 ] 31m 

-I 
m 

, 
- I 

m 
[ (X,? - p,2) cos 11 + 2P'X' sin 11 ]+ ... 

33m 33m 

Equation (II-2!1), which leads to «:q. (II-26) on 

which report I is based, should be understood now in terms of 

the primed variables. In the figure and equations of re-

port I, all capital variables should be primed. Equations 

(11-13) give the connection between the unprimed variables 

X,P and the original betatron variables x, dx/dO, mentioned 

in the first paragraph of report I. The figures and results 
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of 1 should therefore be corrected by Eqs. (8) before they 

are interpreted in terms of x, dx/d0 via Eqs. (11-13). 

We see from formulas (II-22) that all H33m are of the 

same order as H33mo 
and H31m - 3H33mo except for those coef

ficients which happen to be small or vanishing either fortu-

itously or because of the deliberate arrangement of the sex-

tupoles. The fractional corrections to the primed variables 

are therefore of the order of 

E: = 
3A(2p)1/2 
m - tv (9 ) 

where Thus at an amplitude (2p)1/2 = Xo' [Eq.(1-5)], 

near the separatrix, we expect fractional. corrections of the 

order of 

from the term 1!3tm' 'rhe error at the extraction septum will 

be larger by a factor Xe/XOi in the notation of report 1. 

\'Ie note from Sq. (10) that E:o is of the order of Iv - mo/31, 

so that the error due to neglecting the correction (8) will 

be less than 1% provided we have eliminated those terms H3tm 

for which 1m - tvl < 1. Since vo = mo/3, we will have for 

the nearest unwanted resonances 1m - tvl - 1/3, so that even 

they will contribute very little error. 

(10 ) 

\'Ie now calculate the sextupole contribution to Il4 by 

substituting from Eq. (7) in the higher order terms in Eq. (5): 



H~=(2PI)2 L 
£,m,9.' ,ml 
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cos (~I Y - m I e + 113 ~ I m I) + •.. , (11 ) 

where the dots represent any octupole contributions which 

may be present. 
I 

H4 contains no terms which drive the reso-

nance v = m0/3, so that the only term of interest is H4 0 O' 

The rest of the terms could be transferred to higher order 

by the method utled above. The transformed Hamiltonian to 

fourth order is therefore 

where, from Eq. (11), 

~~' 
H4 0 0 = 3/2 L L Hoct 

4 0 0 ' 

~=1,3 m 

where Hoct 
400 is the octupole contribution, if any. 

As an example, if there is a single sextupole, 

Eqs. (II-22) give 

eRB3/2F 
H3~m = 8dNyw 

where B is evaluated at the sextupole and F is its strength 

(12) 

(13) 

(14) 

[defined by Eqs. (II-14)J. If there are no octupole contribu

tions, Eqs. (13) and (14) give 



[ . S3e2~2p2 
H4 0 0 = 

641T2[,]2y 2w2 .2:: 
m = 1 

1 (, - '",) 1 
+ m2 - (v - m

l
)2 

+ 

, 
-0-

3v - m 
0 
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[ 2 _ m )2 m - C3v 
0 

,} +4.89S 2e 2R2p2 
v - ml 641T2[4 2y 2 W2 

(15 ) 

where ml is the nearest integer to v, we have taken v = m0/3, 

and the result is positive if v > ml , otherwise negative. If 

there are n sextupoles each of strength +F evenly spaced at 

homologous points around the machine, then H vanishes un-
3~m 

less m is a multiple of n, and in that case Eq. (14) holds 

with F replaced by nF. Clearly rna must be a multiple of n in 

order to drive the extraction resonance. In Eq~ (15), F 1s 

replaced by nP, and m and ml must be multiples of n. The 

value of H4 0 0 is then almost identical with the value given 

by the second line in Eq. (15) for a single sextupole or 

strength F if the nearest integer to v is divisible by n; 

other~ise the number 4.89 is replaced by 5.27,8.29,10.0, 

13.6, ..• 1.9 k, if the nearest multiple of n differs from 

v by 2/3,4/3,5/3,7/3, ... , k/3. If n = 2n' is even, and 

the sextupoles strengths alternate signs, (±F), then H3~m 

vanishes unless m is an odd multiple of n', in which case 

F is again replaced by nF in formulas (14) and (15). 

Tc :'each a given driving amplitude A = H33mo with n 

sextupoles requires n- l times the sextupole strength P needed 

with one sextupole. Since H4 0 0 is proportional to p2 and 

is otherwise roughly independent of n, we reduce H4 0 0 by 



-7- FN-140 
2040 

roughly a factor n- 2 with n appropriately arranged sextupoles. 

In the n sextupoles are not at homologous points, or 

are not evenly spaced around the machine, the effective sex-

tupole st;ppngth driving v = m
O
/3 will stlll be roughly nF if 

the signs of the sextupoles are wisely chosen, but the cancells-

tions will no longer occur in the sum over m in Eq. (13) 

which led to small numerators,and denominators proportional to 

m2 ,in the sum in Eq. (15). The curly brackets in formula (15) 

will then be replaced by a numerical factor which can be as 

large as 4 ~n m
2

, where m2 is a harmonic number above which 

H3~m becomes small. Since m2 - 2rr/68, where 68 is the angu

lar length of the sextupole, this factor may be as large as 

4~nl04 - 40 or ten times as large as with symmetrically 

placed sextupoles. 


