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In this report, we will obtain EQ. (I-I)· from the primitive 

equations of motion for betatron oscillations, and in particular, 

,Ie '!Jill find expressions for the variables y, p and the parameter 

A in terms of the natural variables x, x' = dx/dG and the accel-

erator parameters. \lie take for x the radial displacement from the 

equilibrium orbit, and G = siR, where s is the distance along the 

equilibrium orbit measured from tIle extraction septum, and 2nTI 

is the lengtll of the equilibrium orbit. 

The linear equation of motion 

x" + g(G)x = 0 (1) 

can be deduced from the Hamiltonian 

(2 ) 

'iIhere x, = dx/dG is the momentum conjugate to x. With sextupole, 

octupole, ... terms present, the Hamiltonian is 

h = h2 + h
3

(X, x', G) + h
4

(X, x', G) + "', (3) 

',-There h
3

, h4 are cubic and quartic in x, x', and periodic 1n O. 

The solution of the linearized equation can be expressed 

in terms of the Floquet solution 

~f 
Equations from report I of the series under this title will be 
numbered in this fashion in this report. Equation numbers with
out Roman prefixes refer to the present report. 
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x = we i (v0 + ~ - n/2) 
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and its complex conjugate, where w(B), ~(B) are periodic with 

period 2n if misalignments are included, otherwise with period 

2n/;~s where t's = 6 is the number of superperiods. Choosing an 
;~ 

appropriate linear combination of x and x', we may write the 

general solution in the form 

x = Awsin(vB + ~ + r;), 

x' = Aw'sin(vB + ~ + t) + Aw-lcos(vO + ~ + t), 

where A, 1; are arbitrary amplitude and phase. The matrix [HB) 

I'lhich carries x, x, from 0 to B + 2n is, from Eq. (5), 

1>1 (8) = 

cos2nv - asin2nv 

1 + a 2 sin2nv 
S 

where a = 1'1W I, B = w2 = (v + ~ I ) -1. 

flsin2nv 

Cos2nv + a sin2nv 

It is convenient to choose the additive constant in 'P 

so that ~ (8 = 0) = 0: 
o 

l/J(0) = f (6- 1 - v)dO. 
o 

We now can write the solution (5) in the form 

x = Pwsin~ + Xwcos~, 

x, = P(w!sin~ + w-1cos~) + X(W'COs~ - w- 1 sinlji), 

( 4 ) 

( 5 ) 

(6 ) 

(7) 

( 8 ) 

(9) 

x = Asin(vO + t), 

P = Acos(v0 + t). 

(10 ) 

We can readily verify that the Poisson bracket 
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ax ax' = 1 
aP ax ' 
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so t~at x, P are also canonical variables which clearly satisfy 

equations derived from the Hamiltonian 

H2 = ~ v (X 2 + p 2 ). 

It is easily verified that the transformation (.3) indeed leads 

to the Hamiltonian (12). 'de note that at 0 = 0, 

x = wOX = S 1/2x 
o ' 

x' = Wo -lp + w'X = 13 -1/2(p + aX) , 
0 

X = B -1/2 x o ' 
P = B 1/2x' - aB o- l / 2x. 

'0 

(ll ) 

(12 ) 

(13 ) 

Since the transformation (9) is canonical in any case, and 

since its generating function is quadratic, we may carry out the 

same transformation on the nonlinear Hamiltonian (3) merely by 

replacing h2 by 112 and making the substitution (9) in h3' h4 , ... 

We now suppose that there is a distribution of sextupoles 

around the machine azimuth, giving rise to fields 

BZ = -F(8)(x 2 - z2), 

Bx = -2F(G)xz 2 . 

Here z is the vertical coordinate, and F(G) is the sextupole 

(14 ) 

strength. The contributions of the sextupole terms to the equa-

tions of motion are given by 

x" = linear terms + eHF(G) (x 2 _ z2), 
r,lyw 

z" = linear terms - 2eHF(8) xz. 
f.lyw 

,'Ie are primarily interested in the radial motion, but we also 

(15 ) 
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need to insure that the z-motion is not unduly disturbed by the 

extraction scheme. The cubic terms in the Hamiltonian which 2;ive 

tl1e sextupole terms in Eqs. (18) are 

h = eRF(0) (xz 2 - 1/3x3). 
3 Myw 

(16 ) 

The linear z-motion can be treated in precise analogy with 

the treatment above of the x-motion. We are led to a cononical 

transformation z, z, + Z, P analogous to the transformation z 

He will ignore for the moment the z-term in h3' as the other 

term is the one which drives the extraction resonance. 

Before calculating H
3

, we note that we may introduce ca

nonical polar coordinates p, y in the X, P-plane via the trans-

formation 

X = (2p)1/2 sinY, 

P = (2p)1/2 cosy. 

It is readily verified that the necessary Poisson bracket con-

dition is satisfied. We will transform between X, P and y, p 

whenever convenient. In particular, we have from Eq. (9): 

x = (2pB)1/2sin (y + ~), 

so that the amplitude of x-oscillations is given by (2PS)1/2. 

We now make the substitution (9) or (18) in the x-term 

in Eq. (16): 

(17) 

(18 ) 

H = eRF(0) (2P6)3/2 [sin (3y + 3~) - 3 sin (y + ~)J. (19) 
3 12[,lyw 

We assume that the sextupoles are located at azimuths 0j' j = 1, 
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2, ... , and put 

We Fourier analyze H3: 
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(20) 

I F eim(B - Gj )(2PS.)3/2[sin(3y + 3~.) - 3 sin(y + ~.)J 
jm j J J J 

(21) 

_00 [H33m cos(3y - mG + 1l33m) + H3lm cos(y - mO + 1l3lml 
where 

'! ill _ eR E8J.3/2Fjei(mOJ' + 3W
J
. - 11/2) 

I 33me 33m - 2411Myw J 

It can be seen from Eq. (8) that the ~. are equal at homologous 
J 

(22) 

points around the accelerator. In particular, if t"Je azimuth of 

sextupole j is homologous to the extraction septum, ~j = O. 

The resonance v = mO/3 is driven by the term 

H (2p)3/2 cos (3y - m G + 1133 ). 
33mO 0 _ mO 

(23) 

If v is very close to m0/3 , this will be the dominant sextupole 

term. All other terms can be transformed into higher orders in 

P by a suitable change of variables. In a later report we will 

carry out this transformation in order to determine the resulting 

fourth order terms in 114 which distort the separatrices found 

in report I. The resulting variables after the transformation 

are only slightly different from X, P or p, y defined above, 

provided no other nearby resonance is strongly driven by a term 
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in Eq. (21). The term in H31m can drive the integral resonance 

v = m; hence it is desirable to have several sextupoles at care-

fully chosen azimuths 0 j and with appropriate amplitudes F
j 

so 

as to make H31m vanish for at least the nearest integer m to v. 

If the 0. are all homologous, so that the B. and ~J' are all equal, 
J J 

then H33m (and H31m also) vanishes if F(0) has no mth Fourier 

component. This can be arranged for n-l components if there are 

n sextupoles with suitably chosen Fj' 0 j . However the require

ment that they be at homologous points may necessitate up to 

2n sextupoles, to eliminate n-l harmonics and provide a desired 

amplitude and phase of the harmonic mO' Although the terms in 

Eq. (21) cannot drive a half-integral resonance, any deviation of 

the equilihrium orbit from the center of the sextupoles will in-

troduce quadrupole terms which can. 'l'he terms driving the reso-

nance v = m/2 can be eliminated by eliminating the mth harmonic 

from F(0) provided that the 0
j 

are homologous and the orbit de

viations are identical in each. Otherwise the elimination of ll22m 

is more complicated and may depend on the orbit deviation. 

The term xz2 in Eq. (16) drives resonances of the type 

v ± 2v = m x z . We can readily calculate the amplitude Hl ±2m of the 

corresponding driving terms in the same way as above. It will 

probably be desirable so to place the sextupoles as also to 

eliminate or minimize the term" that drive the one or two sum 

and difference resonances closest to the working point. 

It should be noted that one advantage of working at a 

third-integral resonance is that this resonance selects out the 

quadratic terms in the equations of motion, the term (23) having 
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a dominant effect, while terms which drive other resonances have 

relatively less effect. If we try to extract on an integral 

resonance, on the other hand, depending nevertheless on sextu-

pole terms to increase the amplitude at the extraction point, 

then not only sextupole terms, but also gradient terms and field 

bumps can affect the orbit strongly. The resonance v = m is also 

v = 2m/2 and v = 3m/3. If the equilibrium orbit is centered in 

the sextupoles, then the sextupole terms, which drive v = 3m/3 

may be dominant. However, any deviation of the orbit from the 

center of the sextupoles will introduce gradient and field bumps 

which drive v = 2m/2 and v = m. Thus the integral extraction 

process can be extremely sensitive to orbit deviations. 

1,-/e now write the approximate Hamiltonian for v near the 

third integral resonance by adding the term (23) to the quadratic 

Hami 1 tonian H2 gi ven by Sq. (12): 

H = vp + H (2p)3/2 cos (3y - m G + n33m ). 
33mO 0 0 

(24) 

He introduce a final transformation P,Y ... .e.,1. via the gen-

erating function 

s = .e.(y - 1/3m
o
G), 

p = as/ay = .e., (25) 

1. = as/a.e. = y 1/3m
O

G • 

~lhe new Hamiltonian is 

H = H + as/aG 

= (v - mO/3)n + H (2p)3/2 cos (31. + n ) 
~ 33mO - 33mo . (26) 

This is the form introduced in report I, where we dropped 

the bar from.e.. The coefficient A = H33m
o 

is given by Eq. (22) 
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and tile azimuths OJ and sextupole strengths F j must be chosen 

so that 11 = 0 33mo . 
~ote that the barred phase plane Q, y, or !, ~, rotates 

ltlith angular velocity mO/3 relative to the X, P-plane, returning 

to its original position every three revolutions. Since the 

curves in Fig. I-I have a three-fold symmetry, the phase plot 

sllmm in that figure repeats every revolut ion. 


