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In order to get a 1T feel" for the requirements on the fields in the 
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main ring magnets, I have estimated the radial shifts resulting from 

errors in the magnetic field shape for several cases. For the quadrupoles, 

I have assumed that all effects are due to the errors in the horizontally 

focusing quadrupoles. I then solve approximately the equation 

where oc:: 

and LQ == length of a horizontally focusing quadrupole 
LB == length of a bending magnet 

R == the machine radius (1000 m) 
Bo == the field in a bending magnet 

y 0 = the design betatron frequency 

cfn is an error term coefficient from the expansion of the magnetic scalar 

potential in the quadrupole 

n 
r sin n e 

The symmetry of the quadrupole causes all odd terms to vanish. The 

n==2 term gives the quadrupole field, so that the n=4 term (octupole) is 

the lowest error term. (This would vanish if the quadrupoles had true 

quadrupole symmetry.) The approximate formula for theJ shift is 

1 
2 J 

o 

where Xo is the oscillation amplitude at (3 max' 

n-2 
Xo 
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For the bending magnets, one solves the same equation, except 

that the definition of 0( is somewhat different, 

n cfn 

and the symmetry in this case causes all of the even terms in the 

expansion to vanish. cP1 = Bo so that the first error term is the 
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sextupole, n=3. The magnet calculations show that there is negligible 

sextupole error at fields up to 18, 000 gauss, and the remaining errors 

look like decapole, n=5. If there is no momentum error, the first 

order effect of the field error vanishes and the J shift is a second order 

effect. 

( ~8 n-2) 2 
Xo 

To allow for the variation of amplitude with azimuth, the above result 

should be multiplied by 

( ) 
n-2 

~ max AV 

The V shifts calculated from this turn out to be very small. On the 

other hand, if there is a systematic radial displacement, J , due to 

momentum error, there results an error term in the differential equation 

of the form 
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The first term in the expansion gives the second order J shift 

described above. The second term is the one of interest, because 

it is of opposite parity and therefore gives a first order shift 

n (n + 1) R 
4 \70 Bo 

Again, this should be multiplied by 

to take into account the variation of amplitude with azimuth. 
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A few numerical examples will give some meaning to the magnitudes 

involved. In order to properly undeFstand the results, it is worth noting 

that the extracted protons make three turns between the time they just 

clear the septum with Xo = 3 cm, and the time they pas s through the 

channel. Since a 300 phase change of the oscillation is sufficient to 

arrest the growth, the corresponding (average) J shift of O. 028 would 

be a total disaster. In fact, for good extraction, we should allow less 

than half this value. 

Quadrupole --- KASE 2630 (at 400 BeV) 

Do J 
n c1n (1c.1- c -) Xo = 3 cm Xo = 4 cm 

4 1. 55 x 10 -f! + .025 + . 045 

6 -1. 01x 10 -5 - .020 - .062 

8 4.24 x 10- 7 + .009 + .052 
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Dipole --- KASE 5122 (at 400 BeV) 

n=5 cP5 ......... 2.8x10-3 

Second Order 
First Order (£ = 0.25 cm) 

" ........ ,.-c._ 

x = 3 cm o 

6. 4 x 10- 5 

.. 0077 
3. 6 x 10-4 

.014 
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It is clear that the quadrupole must be considerably improved. The 

first order effect due to momentum error could be largely eliminated by 

an adjustment of the bending magnet fields during the spill to keep the 

orbits directly leading to extraction centered. However this effect 

could cause a modulation of the spill due to ripple on the bending magnet 

current, so that the bending magnet errors must be minimized. 


