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Abstract:

" Mass gaps and wavdunctnomi in (2+1) dimensional SU(2) lattice gauge theory (no quarks)
are investigated. Starting with lattice Hamiltonians possessing exactly known ground states
and the correct naive continuum limit, it is possible to reach the very deep weak coupling
region. Using variational approximation and rescaling all parameters with the help of the
dimensionful coupling constant 32 we gain a formulation that is independent of the special
choice of the Hamiltonian in the weak coupling limit. The mass gap can be calculated and a

_ kind of wave function for excited states to accesible.
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1. Introduction -

A Yang-Mills model based on a gauge group SU(2) in three space time dimensions is the
simplest nontrivial non—Abelian gauge theory. Considering a theory without quarks leaves
the problem of a finite mass for the glueball. Feynman [1] argued that gauge invariance of
the theory does not allow any long range correlations. Any excitations above the ground
state should have finite energy. '

Lattice gauge theory (LGT) is a method to get information about nonperturbativ aspects of
such a theory. By virtue of different méthodg, namely in the Euclidean version Monte—
Carlo (MC) [2,3], and in the Hamiltonian version cluster expansion methods [4] and
again variational calculations [5,9,10], scaling behaviour of physical quantities according
to their physical dimension is established. The mass gap M and the string tension ¢ of
(2+1)—dimensional SU(2) LGT show the following weak coupling behaviour

= 2 : ‘
. M=c -g , (1.1a)
and :
= 4 ‘
g=c,-g- | (1.1b)

Here g2 is the physical coupling (charge), which can be expressed in the space—time dimen-
gions by the bare (lattice) coupling §“ and the lattice spacing a by

= (12)

Most lattice methods are strong coupling methods, while the continuum limit arises in the
weak coupling region. Weak coupling expansions on a finite lattice [6] (L lattice units in
each direction) show difficulties if the IR-limes L - oo is performed.

The Wilson—LGT—action [7] is constructed in a way that it reproduces the continuum

Yang—Mills—action in the formal limit a+0 by a replacement of a SU(2)—valued link
variable

U, = expliagA () (1.3)

The Yang—Mills~vector—potential A “(i’) is an element of the SU(2)-algebra. A link £ is
specified by a lattice point nanda direcﬁon 4, the continuum vector i' is

2-—-3'3. / (1.4)




By carrying out the continuum limit in one (time)direction the liamiltonian ‘formulation

[8] is obitained. Guo and Zheng [9] proposed a series of Hamiltonians which differ from
the usual Kogut—Susskind Hamiltonian

Hyg = §-z E"E —,zu(vap+vap) : ’ - (15)

by a term AH which is Hamiltonian and vanishes in the continuum limit a -+ 0, so that the
same continuum limit is achieved. This new form of lattice Hamiltonian

~2 e :
Hgy =83 tﬁ&exp;[—R] E exp[2R] E exp[—R]

- [y (o5 o] - gl 9
has an exactly known ground state.
The ground state is
%> = ex(®)l0> | )
where |0> ;s the state defined by E7|0> = 0, the ground state of the strong coupling limit

of the Kogut—Susgkind Hamiltonian. If one generalizes the ansatz of Guo and Zheng for R
to . '

nop e ' o
with ' o ,'f_
Ay = {Uap + UOP] , ' ~ S (1.9) s

the condition lim (Hy o — Hno) =0
a0 KS ‘GZ

demands
i d n(aN’24n) =2 - ' (1.10a)
n m n . .

and ’ - ~
I d ;‘n=0 ; ) (1.10b)

n
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Egs. (1.8) — (1.10a/b) are valid for a general gauge group SU(N). In the following we will
restrict to N = 2. ’ ‘

Knowing the exact ground state is important for calculaiing a mass gap by a variational
ansatz. So it is an upper bound to an exact mass gap.
II. The variational ansatz according to Guo and Zheng.

The variational states are chosen in a form

9> = ﬁpn|¢n>- (21)
The p,, will be variational parameters. The trial functions |,> are
1
¢>=[ z x-—v] %>, 2.2
l n ? x ¢n( ) n | 0 ‘ ( )

with
Yo = F <VolE0@Iv>/<hlvy> 23)

They are orthogonal to ]1b0>. The factor l/ﬁ is introduced to keep matrix elements finite:

¥= I 1= Number of lattice sites. (2.4)
X

The trial functions H’n> are translation invariant and have to be build up by gauge inva-
riant operators. Normalized expectation values <Op>0 are

<O0p>; = <¢0| Op| ¢0>/<¢0| 11;0>. (2.5)
We only use trial funcﬁons with
[R[EG4,)]] =0 (26)

The lattice has to beVlarge enough, so boundary effects need not to be taken care of. So
matrix elements can be calculated: :




ey —

Coan = <Y v =-<wl 2 _[E54,6] [EG0,0] 10> @0
and

o = <Vl ¥ >=2[<¢0|¢ (O8,1%g> a<hly>] @9

The mass gap m is determined by

det [Cp, ~AD__| =0 ‘ 29
with ‘

A=2/ m ; | (2.10)

In (2.8) normalisation of C |~ and D is firelevant and we may therefore use instead

G ==, ([ 4 (0)] [ o)) (2.17)
and A ‘ ‘
B = § [<00@),)> — <4 (0)> <¢n(x)>0] e

This variational formulatmn is more or less a strong coupling access. In the strong coupling
region, that means large g >> 1, the Hamiltonians Hy g (1.5) and Hey, (1.8) coincide in

leading order in 1/5 , and 8o does the spectrum. The low lying excited states are build up
of small objects. The first excited state corresponds to a trial function ¢, (x) = TrUyp

describing a one—plaquette Wilson loop with a strong coupling mass gap Agn = 3.

Contributions to matrix elements Cm stem from configurations having common links.
Configurations m’thout intersection contribute neither to émn’ nor to f) o Low lying

states will be dommated by objects having a small circumference compated thh the
oovered area.

AR
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If we use as trial functions rectangular Wolson—loops of n,xn, lattice units, all matrix
elements can be expressed by

1
U=<gtrUg >, (2.11a)

and
A=<lwu)?> ' (2.11b)
gt Ugp)™ >4 : 2

In (241)-dimensional lattice gauge theory, after a gauge fixing we can change the link '
integration variables [dUt] into plaquette integration variables [dU 8P]' The Jacobian of

this transformation is 1 and the plaquette integrations become uncorrelated. The
expectation values

2
B, =< (tr U}U, .. U))® > (2.12)

can be expressed by A [9].

B=3(0-a)+81 p (2.13)
and
B, =4A ; (2.14)
‘which is solved by
i
B=1+3 [ig‘—l] (2.15)

In eq. (2.6) and (2.7) the indices m,n are replaced by multiindices (m;,my) (ny,ny) deno-
ting the Wilson loops. So the matrix elements C

evaluated:
With

(mg,mz)(n,nz) and D(mx,mg)(nl,n;) can be

min, = min(m,,n;), max; = max(m,,n,) (2.16)

min,, max, analogously




one gets:

= Umrlmr*'n m

C(m;,mg)(ng,ng)

ming '
[ I (2 + (max,—min,-1)
i=1 .

6i ,min 1)

A TS )

ming ' ' : .
+ ?_1 (2 + (max,—min,—1) 'Si,mina) .

I "i.min,

mn-zi'-min;(l_ig )] » (217)

and

mymz+nmg [%"

ng ! ]
D my,ma)(nynz) = U - (2 + (max,-min,~1) 6i,min1) o
i=1 .

lllinz V '
. ’jJ—-l (2 + (maxy—miny~1) 'Sj,min )

(2 Bij““)] , L (218)

This corresponds to the result of Guo and Zheng [9] for quadratic Wilson loops. -

an



II1. The weak coupling region

If we look at smaller values of $2 larger and larger objects determine the low lying states.
Guo and Zheng [9] claim that quadratic Wilson—loops dominate the weak coupling region.
To reach a value of IIE2 ~ T they need loops covering 130x130 lattice units. To recover the
naive continuum limit the vacuum state function e |0> should concentrate at the group
unit 1. If we have .

o 4 Aot
R=3 i (7] (1
with

A, =u(Ugp + Ubp)=4cos p (1.9)

p

% is the central angle of the SU(2)-valued plaquette variable U gp, then R should have a

maximum at Yp= 0. This demands

Ind >0 (3-1a)
n

in contradiction to (1.10b) or, if 5 n d| = 0 the condition is
n

% n? d <0 (3.1b)
n . .

in contradiction to (1.10a).

If the conditions (1.10a) and (1.10b) are fulfilled ¢, = 0 s even a local minimum of R. The

Hamiltonian does not have the naive continuum limit. But we can get information about
the matrix elementx C_ = and D and about the scaled mapp gap A in the limit §2 -+ 0.

If we want to be sure that the limit §2 - 0 happens at ¢, =0 we make a choice of
coefficients {d, } fulfilling conditions

Baa(n-2)=0 (1.108)



and
K=4Zpd >0 ' : (3.2)
. n .

We have to be aware that the naive continuum limit of such a Hamiltonian has
contributions of the kind K2( 8“FW)2 [9].

oos¢§=1isnowasaddlepointoien.

\

" Integrals of the type

1= Jdu(U gp) cosl €?R(CS ¢e) (3.3)

can be evaluated in the limit § - 0:
The result is

- BT g
+2. k- 15 . 4, 5@“,}21} + 0@} (3.4)
The expectation values‘ﬁ and A can beevaluted: .

U = <4TsU >0 =N/ = [1 - O(g )] | (3.5)

“and
A = <TI0 gp>q = 12/10 = [l -—234 gx + 0(&8)] v (36)

How can we get from a strong coupling theory into the weak eouphng Tegion: all sizes
should scale acootdmg to their physical dimensions.

Smaller §2 demand larger sizes n on a lattice (in lattice units). Let

V= gzn . Jg . . 4 ) (3,7)

fixed, so that

n3 ~
o’ [1 —2—, + 9 ‘”’ ] e_"’/ 2 eo(g*u ?) , ' (3.8)

Y =

[ 8



iy

and
4
T4 o(uaRa]™? -3/ 0(g4?)
~an=1+3[l_'3'ﬂ+—(—n§_)'] =14+ 3e e (39)
The combination
;2!13 R — %l,? -
U (4 __Bn’) = ey (3 —3e ) eo(g ) (3.10)
and
2n? ' 2 "%” 0@y ‘
Us n Bn’ )= eV (1 + 3¢ )eﬂ(s )_4 ’ (3.11)

occur in the matrix elements Cmn and Dmn. |

We consider matrix elements depending on scaled coefficients (“l,ﬂz), (v1,¥9) and obtain
to leading oder in §2

1
. — i (1) gty vp)
c(“l’“?yl’y?) = [;_l;_{] e bR 1727

BT o [t 3=l

1. .
+ |py—v | min(py,v;) - [emin(m'y‘)‘min(m’u'),-efsmn(“lﬂ).mmmruz)]

i ; '1 .
+ g [2 ?m(l‘z»vz) dy y [emin(”by‘).‘y _ e- 7 mm(pl,vl).y]

o 1. . ;
+ [y min(#mlfzi‘ ’ [emm(“ vvgmin(usvs) _ g3 mn(“l’yl)fmn(&'uz)]]}

(3.12)
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- +y )
D)y ) = [ 2g] e 2ty

) { min(y,,¥;)

i dx (2 + Bx-min(uy )+ iy 1)

: '(f"(”z"'?) dy (2 + &y-min(ig,5))- | i, ])
B |
(€ +3e 3“-4)} : . (3.13)

The common constant factors have no influence on the value of A or the coefficient function
f(v}.4). So they may be dropped.

The coefficient function f(v,,v,) are obtained from the functions p(n,,ny) eq. (2.1) by
scaling the arguements. The new variables v; are dimensionless, according to (3.7) they are
combinations of the physical length n-a and the physical coupling 52 = Ezla. The scale
factor Jg; is the only influence of the special choice of the initial Hamiltonian.

=g 00) @) | (3.7)

We can speak of a kind of universality. All Hamiltonisns (1.6) with K >0 (3.2) will show
the same behaviour in the weak coupling region. '

Now we can let go K to zero to establish the naive continuum limit. Arisue [10] obtains a
wavefunction depending on scaled variables according eq. (3.7) in the weak coupling limit
- even without taking care of conditions (1.10a) and (1.10b)

The new problem is to minimize

00 00 00  00° o o e
(I) dpy (I’ duy (J; 2 gdvz C(av) () 1(v)

A= ?i (3.14)

L ,
(W) ?dyl E’duz oj:dvl ?:duz DED) £ 1)

" to get the mass gap A. -
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We have

) = § e bty /2 [2([ sy | €+ yvgl €g) 1(e) +

4[‘1/e2 + ‘2/c1] (H(e) - G(e))] . (3.15)
and |

D(RB) = e"’(“lﬂ:‘“’l"’?)/z [‘“l-ﬂlll |H2_"2l H(c) +

2Alpy—vy| egtlg—vyle)) Gle) + 4F(e)] (3.16) -
with ¢, = mm(ul,ul), €= mm(yz,v2) and (3.17a,b)
= €6 - X ’ (3.17c)
Further
€2 '_% e d
I(e)=e " —e =T H(e) (3.18a)
2 -3
He)=e +3e 0 —4=g5(a(e) (3.18b)
NI I 2] _ d
6o =1 [e‘ —9¢ 3 +8-—4e ] =34 F(9 (3.18¢)
R = B() ~o8[-} &] - 48 (3.184)
with
Bo) = [ 5 ey gy °s°l 1x ‘ (3.18)
A variation over {(7) gives ’
Tom [y 16) (CGH) - DBEH) =0 ¥ (3.15)

for the minimizing function f(i) and the mass gap A.
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IV. Results o
If one takes eq. (3.19) and looks at the region of large »; >> 1 one can get information

about the asymptotic leading orders of f(). The only well defined form for () preserving
the existence of the integrals in (3.19) is

‘ .2
oy = A THA (v A ABR  pucg? opry)
(41)
Taylor—expansion of eq. (3.19) in v, gives a series of equations of integrals over f(%).

Restricting to functions representing only quadratic Wilson—loop trial functions one can
get more information about excited states. But one has to be aware that every restriction
in the trial functions leads us more and more away from a true excited state. Denote

Clu) = Clwmriv), | | (42)

B(u,v) correspondingly, and the golution of the restricted equation (3.19) by ¥(x).

B(ur) = %e*”’*"””[ﬂwl eI(e) + 8(H() - G(e))] (43
and |

Bsy) = e B2 2 B(e) + dlpvle Gl + 4F(]  (44)
with

¢ = min(uy) | , ' - (4.5)

The equation for the mmng function ¥(u) is

00

% dp Yu) (C(uv) — AD(pp)) = 0 (4.6)
for all values of v.

Looking at the asymptotic leading order e“’l 2ot eq: (4.6) with the ansatz

Hw) = 1 () “ (48)
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and fR(p) polynomially bounded gives a value of
A= 32 (48)
; v 1 .
The next order gives fR(p) =4 [1 +0 ]] with
1=—-§ﬂ[,\+3§]+1 (4.9)

The value of §is slightly larger as the corresponding value of f(g) in eq. (4.1) for p; = i

- due to contributions from by # by

Taylor expansion of eq. (4.6) in v gives

0% JweHutm=o TS

o) g due P2 [8 ] ) =0 (4.10D)
Even orders in v give conditions for ap i1 ina Tnylor—expansion of ¥(u). They depend on
A and ‘
e o] 2 /2
I= gdpe““ T(u) (4.11)

Vanishing of the odd orders in v and eq. (4.6) implies that T(p) does not possess even
orders in . But ¥(4) may have an expansion

= [ B 2501 T, iy 4] )
where necessarily
a= /-3 , (4.13)

Now orders >+ 2K+ o eq. (4.6) give conditions for byy, in which by can be set equal to

one.




The first 100 coefficients b2k and 3oy 41 have been evaluated for A = 4.54. This choice is
motivated by the results described later, and is consistent w1th the results of other authors
[2-5,19]. Both series show a pole in p2 at

= (3.279 + 0.01) ¢*1(0-52760 & 0.001)

which limits the radius of éonvergence of the series. The coefficients by, and a5, +1 depend

on A. I is only defined implicitely by eq. (4.11) and (4.12). There is a more direct way to
get information about A and f{z): ' :
Again we make an ansatz for f(u) using the 1nforma.tion we got above

N ,
) = §=0 a f (u) V . | (4.14a)

with
f,(s) = phte o n even ' (4 14bj
=" e n odd ' (4.14¢)

(N+1) is the number of basic functions we need.

If we evaluate numerically the integrals

00 00 '
Copp = & du £ dv C(p,v) (Wi o | \ (4.15)
and k
00 .
D= {] dp ! dv D) T () T (%) : (4.16)

we have a condition

det [|Cpp — A D ll =0 (4.17)

according eq. (2.8). The zeros A; of eq. (4.17) do not only give the mass gap, but also the
higher energies in that sector. A precision of 0.01 for Aq i8 reached at N = 4, so we have to
deal only with small matrices. Knowing ’\i it is possible to compute a, with the help of eq.
(4.6), which reads now ' ‘



¢
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=0 ‘ (46%)

(Coun = 4Ppmn) 34

At N = 10 we have a value of A = 4,537637  2,5-10*.

The precision is determined by the numerical computation of the eq. (4.15), (4.16). The .
change from N = 9 to N = 10 had only lowered )‘0 by 2- 10_6. The (N = 10)—value for the

next eigenvalue is ’\1 = 8,6035 + 8- 10_4. The precision of the numerical computation and

the improvement obtained going from N = 9 to N = 10 are of the same magnitude.

Evaluating eq. (4.6”) for A, gives the following picture for the function (1) corresponding

to a kind of wave—function for the first excited sfate.

Fig. 1:
Glueball wave function ¥(4) depending on a scaled variable .
The scale of the y—axis is arbitrary.

]

a+
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Conclusion

We gained a weak coupling formulation of a SU(2) LGT in 2+1 dimensions. Starting with
a series of Hamiltonians possessing an exactly known ground state we used a variational
ansatz to get information about excited states [0]. Although a direct naive continuum
limit of the Hamiltonian is impossible we could use the matrix elements of the variational
ansatz to get a leading order formulation in E2 after expressing all dimensionful sizes by
their scaled counterparts: After restricting to test functions representing quadratic Wilson
loops the eigenvalue equation (4.6) could be solved numerically. The minimizing function
represents a translation invariant distribution of Wilson loops. Their lengths in lattice
units would diverge as g + 0 and so would exceed every finite lattice size L. This reflects
the difficulties other authors have had working on a finite lattice.

The value for the mass gap A = 4.5376 has to be understood as an upper bound to a real
mass gap. Expressed by §2 and a the value is

m=)-§ 22688 & (5.1)

This is consistent with the weak coupling limits of other authors. Arisue [10] has gained a
lower value for the mass gap m = (2.056 % 0.001) g working with rectangulat Wilson—
loops. Work on string tension of a static qq—pair is in progress

The same scalmg procedure could be made for a U(1) LGT in 2+1 dimensions. In the

01 "—gector of such a theory (trial functions ¢ (x) = Tr(U_, (x) - U:m(x))) there are

contributions to the functions C(y,») by configurations touching each other from outside.

'In addition is the function I1(0) # 0. The values of C(u,) are lowered decisively so that the
corresponding mass gap vanishes caused 'by Wilson loops that are small in the scaled
variables v = g“n.

This is consistent with the result of [11] which claimes that the mass gap vanishes as
g0
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