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Abstract: 

Masa gap. and wavefunctions in (2+1) dimensional SU(2) lattice gauge theory (no quarks) 

are investigated. Starting with lattice Hamiltonians po811e8sing exactly known ground states 

and the correct naive continuum limit, it is pouible to reach the very deep weak coupling 

region. Using variational approximation and rescaling all parameters with the help of the 

dimensionful coupling constant g2, we gain a formulatioD. that is independent of the special 

choice of the H&milto~an in the weak coupling limit. The m&BI gap can be ca1culatedand a 

kind of wave function for excited states to accesible. 
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1. Introduction 

A Yang-Mills model based on a gauge group SU(2) in three space time dimensions is the 

simplest nontrivial non-Abelian gauge theory. Considering a theory without quarks leaves 

the problem of a finite mass for the glueball. Feynman [1] argued that gauge invariance of 

the theory does not allow any long range correlations. Any excitations above· the ground 

state should have finite energy. 

Lattice gauge theory (LGT) is a method to get information about nonperturbativ aspects of 

such a theory. By virtue of different methods, namely in the Euclidean version Monte

Carlo (MC) [2,3], and in the Hamiltonian version cluster expansion, methods [4] and 

again variational calculations [5,9,10], scaling behaviour of physical quantities according 

to their physical dimension is established. The mass gap M and the string tension (1 of 

(2+I)-dimenaional SU(2) LGT show the follOwing weak coupling behaviour 

and 

(I.Ia) 

(I.Ib) 

Here g2 is the physical coupling (charge), which can be expressed in the spa.ce4ime dimen

sions by the blt.re (lattice) coupling g2 and the lattice spacing a by 

(1.2) 

Most lattice methods are strong coupling methods, while the continuum limit arises in the 

weak coupling region. Weak coupling expansions on & finite lattice [6] (L lattice units in 

each direction) show difficulties if the IR-limes L -1 00 is performed. 

The Wilson-LGT-action [1] is constructed in a way that it reproduces the continuum 

Yang-Mills-&ction in the formal limit a -10 by a replacement of a SU(2)-valued link 

variable 
l" 

Ul = exp(iagAJSlx» (1.3) 

The Yang-Mills-vector-potential A/~) is· an element of the SU(2};t.lgeb~a. A link lis 

specified by a lattice point it and a direction IS, the continuum vector ~ is 

-1 -1
x:::;: a-no (1.4) 
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By carrying out the continuum limit in one (time)direction the: Hamiltonian.£onnulation 
[8] is olitained. Guo and Zheng [9]pro~a series of BamiltoniaD8 which differ from 
the usual Kogut-8U8~kind Hamiltonian 

(1.5) 

by a term t.H which is Hamiltonian and vanishes in the continuum limit a ... 0, so that the 

same continuum limit is achieved. This new form or lattice Hamiltonian 

f a a·
HGZ =2i 1:. exp [-R] E lexp[2R] E i exp[-R]

i,a 

(1.6) 

has an exactly known ground state. 

The ground state is 

1.0> = exp(R) I0> _ (1.7) 

where 10> is the state defined by Eil 0> = 0; tile ground state of the strong coupling limit 

of the Kogut-8usskind Hamiltonian. If one generalizes the aD8atz of Guo and Zheng for R 
to 

with 

(1.8) 

(1.9) 

".; 

the condition lim (HKS a-tO 

demands 

HGZ) = 0 

and 

4 .. 2
E ft'IlT d n (nN -2+n) =2 
n .tiJ.~ n 

I (1.10a) 

(1. lOb) 
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Eqs. (1.8) - (1.10a/b) are valid for a general gauge group SU(N). In the following we will 
restrict to N = 2. 

Knowing the exact ground state is important for calculating a mass gap by a variational 

ansatz. So it is an upper bound to an exact mass gap. 

n. The variational ansatz according to Guo and Zheng. 

The variational states are chosen in a form 

(2.1) 

The P will be variational parameters. The trial functions I"'n> are n 

(2.2) 

with 

(2.3) 

They are orthogonal to I"'0>' The factor 11jl is introduced to keep matrix elements finite: 

1= E 1 = Number oflattice sites. (2.4) 
x 

The trial functions I, "'n> are translation invariant and have to be build up by gauge inva

riant operators. Normalized expectation values <OP>O are 

(2.5) 

We only use trial functions with 

(2.6) 

The lattice has to be large enough, 80 boundary effects need not to be taken care of. So 

matrix elements can be calculated: 
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and 

The m88S gap m is determined by 

(2.9) 

with 

(2.10) 

In (2.8) normalisation of Cmn and Dmn i8irr~evant and we may therefore use instead 

(2.7') 

and 

. (2.8') 

This variational formulation is more or less a strong coupling access. In the strong coupling 

region, that means large i 2 » 1, the Hamiltoniana HKS (1.5) and Haz (1.6) coincide in 

leading order in 1/82, and 80 does ihe spectrum. The low lying excited states are build up 

of small objects. The first excited state coueaponds to a trial function +1(x) = TrUlIP 

describing a one--plaqueUe Wilson loop with a strong coupling mass gap .ASC = 3. 

Contributions to matrix elements C stem from configurations having .common links. mn 
Configurations without intersection contribute neither to C , nor to Dmn' Low lyingmn
states will Pe dominated by objects having a small circumference compared with the 
covered area. 
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H we use as trial functions rectangular Wolson-loops of n1
x n2 lattice units, all matrix 

elements can be expressed. by 

1
U= < 2"tr Uw >0 (2.11a) 

and 

(2.11b) 

In (2+1)-diInensionallattice gauge theory, after a gauge fixing we can change the link 

integration variables [dUt] into plaquette integration variables [dU W]. The Jacobian of 

this transformation is 1 and the plaquette integrations become uncorrelated. The 

expectation values 

(2.12) 

can be expressed. by A [g]. 

Bi = ~ (1-A) + ~ (2.13)Bi- 1 

and 

(2.14) 

wbich is solved by 

(2.15) 

In eq. (2.6) and (2.7) the indices m,n are replaced by multiindiceS (ml'~) (nl'~) deno


ting the Wilson loops. So the matrix elements C(mhm2)(nhn2) and D(mbm2)(nl,n2) can be 


evaluated: 


With 


min1 =min(ml'n1), maxI =max(ml'n1) (2.16) 

mi~, ~ analogously 
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one gets: 

min, 
+ E (2 + (max..-mbl_-l) 6. . ).

i =1 - 41:41: 1,IDlD., 

(2.17) 

and 

mint . _ mtm,+ntn,' .
D(m m )(n n ) - U • [ E (2 + (max1-mtn1-l) 6i IDlD.' )

." ." i =1 . ' 1 

min, 
• E (2 + (max..-nrln--l) 6. • )

j =1 -- ~4I: J,mIn, 

(2,18) 

This cotreSponds to the result of Guo and Zheng [9] for quadratic Wilson loops. 

.:, 
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m. The weak coupling region 

If we look at smaller values of g2 larger and larger objects determine the low lying states. 

Guo and Zheng [9] claim that quadratic Wilson-loops dominate the weak coupling region. 

To reach a value of 1/g2 7 they need loops coveri~ 130xl30 lattice units. To recover theN 

naive continuum limit· the vacuum state function e 10> should concentrate at the group 

unit I. If we have 

R=E 4 Ed [~]n (1.8)
pl. r n n 4 

with 

(1.9) 

"p is the central angle of the SU(2)-val.ued plaquette variable U HP' then R should have a 

maximum at "p =O. This demands 

(3.1a) 

in contradiction to (1.10b) or, if En d =0 the condition is n n 

(3.1b) 

in contradiction to (1.10a). 

If the conditions (1.10a) and (I.IOb) are fulfilled fPp = 0 is even a local minimum of R. The 

Hamiltonian does not have the naive continuum limit. But we can get information about 

the matrix elemenb: e and Dmn and about the scaled mapp gap ~ in the limU ,2 ... O. mn 

If we want to be sure that the limit ,2 ... 0 happens at "p == 0 we make • choice of 

coefficients {~}fulfilling conditions 

E d II (5n - 2) =0 (1.10.' )n n 



-8

and 

(3;2) 

We have to be aware that the naive continuum limit of such a Hamiltonian has 

contributions of the kind K2( lJ/lllp.)2 [9]. 


COl 'Pp =1 is now a saddle point of eR, 


(3.3) 

(3.4) 

(3.5) 

and 

(3.6) 

How can ,.-e get from a strong coupUng theory into the. weak coupling region: all sizes 

should scale according to their physical dimensioDJ. .~ 

Smaller ,2 demand larger sizes n on a lattice (in laUice units). Let 

(3.7) 

(3.8) 
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and 

4 
' O( 112£4)'] n 2 

- 11'112 (N 2)
Bnt =1 + 3 1 -~ ~ + ~= 1 +3e ol eO g411 (3.9)[ 

The combination 

(3.10) 

and 

(3.11) 

occur in the matrix elements C and Dmn' mn 

We conaider matrix elements depending on scaled coefficients (I'p~), (lIpIl2) and obtain 

to leading oder in i 2 

3 [ min(Ii.,1I1) [X.min(llAlI) -lx'min(~'11212' 2 J dx • x e ,.., 2 - e{ o 

(3.12) 
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(3.13) 

The common constant factors have no influence on the valne of .A or the coefficient function 

f(lI ,1I2). So they may be dropped.t 

The coefficient function f(II1'1I2) are obtained from the functions p(n1'~) eq. (2.1) by 

scaling the arguements. The new variables IIi are dimensionless, according to (3.7) they are 

combinations of the physical length n-a and the physical coupling g2 = ,2/a. The scale 

factor a;: is the only influence of the special choice of the initial Hamiltonian. 

(3.7') 

We can speak of a kind of universality. All Hamiltonians (1.6) with K >0 (3.2) wi11show 

the same behaviour in the weak coupling region. 

Now we can let go K to zero to establish the naive continuum limit. Arlsue [10] obtains a 

wavefunction depending on scaled variables according eq. (3.7') in the weak coupling limit 

even without taking care of conditions (1. lOa) a:nd (1.10b) 

The new problem is to minimize 

(3.14) 

. to get the mass gap A. 

'
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We have 

C(P,~) = 1e-(1'1P2+111112)/2 [2{1I"J.-II11 fl +1~-II21 (2) I( f) + 

4(fl/~ + f2/f1] (H(f) - G(f») (3.15) 

and 

D(;l,~) = e-(l'tI'2+111112)/2 [II"J.-IIIIIPoJ-1I21 H(f) + 

2(1p]'-1I11 f2+ 1I'-J-II21 (1) G(f) + 4F(f)] (3.16) 

(3.11a,b) 

(3.17c) 

Further 

(3.18a) 

(3.18b) 

1 
G(f) =~ [eft _ge-I f2+ 8 _4E2] = ~F(E) (3.18c) 

(3.18d) 

with 
xeY-l 00 1 xn

E(x) = J-dy = E -ftT o y n=1 nn. 
(3.18e) 

A variation over f(~) gives

1~1dPoJ f(il) (c(jl,~)  AD(jl,~» = 0 v~ (3.19) 

for the minimizing function f(il) and the mus gap A. 
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IV. ;Results 

H one takes eq. (3.19) and looks at the region of large "i » 1 one can get information 

about the asymptotic leading orders of f(P>. The only well defined form for f(P> preserving 

the existence of the integrals in (3.19) is 

Taylor~on of eq. (3.19) in "i gives a series of equations of integrals over f(jl). 

Restricting to functions representing only quadratic Wilson-loop trial functions one can 

get more information about excited statei. But one has to be aware that every restriction 

in the trial functions leads us more and mOre away from a true excited state. Denote 

(4.2) 

n{p,II) correspondingly, and the 8Oliiion of the restricted equation (3.19) by !(I'). 

(4.3) 

and 

with 

(4.5) 

The equation for the minimizing function 1'(1') is 

00
Jdp!{I') (O{I',II) - An{I',II» = 0 (4.6) 
o 

for all values of 11. 

Looking at the asymptotic leading order eI"/2 of eq: (4.6) with the ansatz 

(4.8) 
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and fR(I') polynomially bounded. gives a value of 


fJ= .J!/2 (4.8) 


(4.9) 

The value of fj is slightly larger as the corresponding value of f(jl) in eq. (4.1) for Pt = 1"2 

due to contributions from I't :I I't. 

Taylor expansion of eq. (4.6) in v gives 

(4. lOa) 

(4.10b) 

Even orders in v give conditions for ~k+l in a Taylor-expansion of 1(1'). They depend on 

.\ and 

1= rdpe-l'l/2 1(1') (4.11) 

Vanishing of the odd- orders in v and eq. (4.6) implies that 1(1') does not possess even 

orders in p. But '(1') may have an expansion 

'(1') = [ ~ b 1'2k+a + I. ~ 8- 1'2k+l] e-fJ1'1 (4.12)
k=O 2k k=O -~k+l 

where necessarily 

a=.JJ1J-3 (4.13) 

Now orders vS+2k+a of eq. (4.6) give conditions for b2k, in which bO can be let equal to 

one. 

--_._._- --- 
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The first 100 coefficients b2k and ~k+l have been evaluated for A = 4.54. This choice is 

motivated. by the resUlts described later, and is consistent with the results of other authors 

[2-5,19]. Both series show a pole in p2 at 

~ =(3.279 ::I: 0.01) e::l:i (0.52760 ::I: 0.001) 

which limits the radius of convergence of the series. The coefficients b2k and ~k+l depend 

on A. I is only defined implicitely by eq. (4.11) and (4.12). There is a. more direct way to 

get information about A and £(p): 
Again we make an ansatz for f(p) using the information we got above 

(4.14a) 

with 

neven (4. 14b) 

nodd (4. 14c) 

(N+l) is the number of basic functions we need. 

H we evaluate numerically the integrals 

00 00 


~ dp ~ dll C(p,lI) "m(p) "n(lI) (4.15)
Cmn = 

and 

(4.16) 

we have a condition 

(4.17) 

according eq. (2.8). The zeros Ai of eq. (4.17) do not only give the mass gap, but. also t.he 

higher energies in t.hat. sector. A precition of 0.01 for AO is rea.ched at. N = 4, 80 we have to 

deal only wit.h small mat.ri~. KnOwing Ai it. is possible t.o comput.e all wit.h t.he help of eq. 

(4.6), which reads now 
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(4.6') 

At N = 10 we have a value of >'0 = 4,537637 ± 2,5.10--4. 

The precision is determined by the numerical computation of the eq. (4.15), (4.16). The 

change from N = 9 to N = 10 had only lowered >'0 by 2.10-6. The (N = lO)-value for the 

next eigenvalue is >'1 = 8,6035 ± 8.10--4. The precision of the numerical computation and 

the improvement obtained going from N = 9 to N = 10 are of the same magnitude. 

Evaluating eq. (4.6') for >'0 gives the following picture for the function 1(/-,) corresponding 

to a kind of wave-function for the first excited state. 

Fig. 1: 


Glueball wave function 1(1-') depending on a scaled variable /-'. 


The scale of the y-axis is arbitrary. 


!\ 
\ 
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Conclusion 

We gained a weak coupling formulation of a SU(2) LGT in 2+1 dimensions. Starting with 

a series of Hamiltonians possessing an exactly known ground state we used a variational 
ansatz· to get information about· excited states [9]. Although a direct naive continuum 

limit of the Hamiltonian is impossible we could use the matrix elements of the variational 

ansatz to get a leading order formulation in 82 after expressing all dimensionful sizes by 
their scaled counterparts; After restricting to test functions representing quadratic Wilson 
loops the eigenvalue equation (4.6) could be solved numerically. The miJrlmizing function 

represents a tra.ns1.ation invariant distribution of. Wilson loops. Their lengths in lattice 

units would diverge as 8.... 0 and so would exceed every finite lattice size L. This reflects 

the difficulties other authors have had working on a finite lattice. 

The value for the mass gap..\ = 4.5376 has to be understood as an upper bound to a real 

mass gap. Expressed by 82 and a the value is 

N2 N2 
m = ..\ . ~ = 2.2688 ~ (5.1)2i a 

This is consistent with the weak coupling limits of other authors. Arisue [10] has gained a 

lower value for the mass gap m = (2.056 ± 0.001) g2 working with rectangular Wilson

loops. Work on string tension of a static qq-pair is in progress. 

The same scaling procedure could be made for a U(l) LGT in 2+1 dimensions. In the 

o+--sector of such a theory (trial functions +n(x) = Tr(UnlCn(x) - U~lCn(x») there are 

contributions to the functions C(p,II) by configurations touching eaCh other from outside. 
In addition is the function 1(0) # O. The values of C(p,II) are lowered decisively SO that the 
corresponding mass gap vanishes caused by Wilson loops that are small in the scaled 

2variables II = g n. 

This is consistent with the result of [11] which claimes that the mass gap vanishes as 

8.... 0. 
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