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Abstract 

To understand the behaviors of the transverse instability in the ATF dan1ping ring: a 
Inultiparticle tracking simulation was performed in the presence of the transverse and 
longitudinal wake fields which were induced by rf cavities. The features of transverse 
instabilities with dependence on chromaticities and suppression of these instability by 
modulating chromaticity were shown. 

Introduction 

The beam current is often limited by coherent instabilities. These instabilities can occur 
either in the longitudinal or in the transverse motions. Longitudinal ones often cause 
bunch lengthening or an increase of the loss rate. Here we discuss transverse instabilities 
of single beam since we have been studied longitudinal instabilities in the past[l]. 

When chromaticity is zero, the strong head-tail instability occurs in the particlesls 
transverse motion. This instablity has a threshold which depends on bunch current.~ 
longitudinal and transverse wake fields, and betatron and synchrotron tunes. The beaIn)s 
size blows up above the threshold current. When chromaticity is not zero~ both the strong 
head-tail and the head-tail instabilities occur in the particles's transverse Inotion. 

The simulations were performed with the purpose to understand transverse instability 
in the ATF damping ring. We investigate the instability by using multiparticle tracking. 
The simulations describe the motions of single beam in the presence of the transverse and 
the longitudinal wake fields which are induced by two rf cavities in the ATF dall1ping 
ring. The simulations on transverse instabilities in ATF damping ring does not show 
mode mixing, and show beam enlargement and beam blow-up. In this papeL we discuss 
these properties of transverse instability which has dependence on chromaticity in ATF 
damping ring. 

T. Nakamura proposed concept of varying chromaticity to suppress the head-tail insta­
bility[2]. W. Cheng et.al. also showed analytical and numerical study of the suppression 
of the transverse head-tail instability by modulating the chromaticity over a synchrotron 
period[3]. Here we apply the same concept to the machine of ATF danlping ring and show 
results of suppression of the head-tail instability. 

The paper is organized in the following way. In Sec.2, the motions of nlacroparticle 
tracking for the simulation are described. In Sec.3, longitudinal and transverse wakefields 
by rf cavities in the ATF damping ring are given. In SecA, we describe the results of 
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the simulation and then give a qualitative discussions on the transverse instabilit.y in the 
ATF damping ring. 

Macroparticle Motion 

To describe the electron's motion in a damping ring we use a standard Inultiparticle track­
ing method. The phase space distribution of the beam is represented by Np Inacroparti­
cles. The beam is expected to be Gaussain with a mean energy, mean bunch length~ mean 
transverse beam sizes whch are equal to zero. The initial coordinates of Inacroparticles 
are chosen to have these expected properties. A sinlulation was perfonned for ATF danlp­
ing ring with 3000 macroparticles and the parameters in ATF damping ring are listed in 
Table 1. lVIacroparticles are tracked in phase space with equations of motion which include 
radiation damping and exciation, synchrotron and betatron oscillations: and transverse 
and longitudinal wakefields. 

In tracking of longitudinal motion, each macroparticle i has position and energy coor­
dinates (Zi' Ci)' The longitudinal motion of a macroparticle i on revolution number n are 
derived from its coordinated on turn n - 1[1] [4] [5]: 

(1) 

Zi(n) = zi(n - 1) + a~~oEi(n), 	 (2) 

with rli is Gaussain random number with mean 0 and rms standard deviation l. The 
slope of the rf voltage (a negative quantity) is given by 

(3) 

The synlbols in equations (1) -(3) are defined in Table 1. A macroparticle i is affected by 
the wakefields of all macroparticles which precede it in the bunch. The wakefield 'VV(Zi) is 
a function of the longitudinal displacement of macroparticle i as well as the macroparticles 
which precede it. The macroparticles are tracked at the beginning of the rf cavity and we 
track the macroparticles for 2 longitudinal damping times. vsoTo and Td/To are given by 
242 turns and 43272 turns. 

In tracking of transverse motion, each macroparticle i has horizontal and vertica.l 
positions ( x and y ), and slopes of their positions ( x' and y' ). The equations of nl0tion 
in transverse coordinates are 

1)(1 _ 	To 
T.-c 

(4) 

and 
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where r2i and r3i are Gaussain random number with mean 0 and rms 1. Here:£ 
denotes horizontal and vertical coordinates. The symbols in these equations are also 
defined in Table 1. In the horizontal W{ is independent of the horizontal coordinate of 
a nlacroparticle i and dependent of the horizontal coordinates of the rnacroparticles that 
precede it 

Defining the chromaticity ~ as 

(6) 

The transfer matrix in transverse motion is given by 

(7) 

where f3x is the betatron function at the position of rf cavity, and Qx(c) is the energy 
dependent tune 

(8) 

It is important to point out in this simulation that there is no coupling between 
horizontal and vertical betatron motions. The longitudinal displacement affects transverse 
motions because transverse wakefields are a function of the longitudinal displacelnent. 
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Table-I: Parameters of the ATF Damping Ring used in this sirnulation 

Beam Energy Eo [I.3 GeV 
Cicumference L 138.6 m 
Energy Spread crED 5.467e-4 

Bunch Length 6.8mm 
RF Frequency 1/r1 714 MHz 
Harmonic number h 330 
RF Voltage Vrl 0.22 MV 
Revolution Frequency Irl 2.164 MHz 
Synchrotron frequency I 1/80 8.95 KHz 
Momentun Compaction Q 0.00195 
Damping Time Tx, Ty , Td 17 ms, 27ms, 20ms 
Revolution Period To 460 ns 
Betatron Tune Qx,Qy 15.145, 8.715 
Beta Function at Cavity ~ 13.35 m, 11.97 m 
Emittance tx, ty 5e-=g m, 5e-llm 
Synchrotron Thne 1/8 4.1 xl0-3 

Synchrotron Radiation Loss Uo 155 keY 

Wakefield 

Collective effects are given by the wakefield. We need Green function wake of the damping 
ring in order to study instabilities. However) it suffices if we can obtain the wakefield of 
a bunch that is very short compared to the natural bunch length in the ring~ and that 
has been calculated out to a sufficient distance behind the driving bunch. For our wake 
function, using the code ABCI, we calculated the wake potential of a 1 mm Gaussain 
bunch for two rf cavities in the ATF damping ring. These longitudinal and transverse 
wake potentials are shown in Figure 1. Here, the parts on front of bunch center (z < 0) 
were discarded. 

To calculate wake fields , we binned the macroparticles in z without smoothing. The 
wakefields on any turn are given by 

Wind(Z) = 
n 

-eN 2:: niWL(zi - zn) (9) 
i=l 

n 

Wind(X) = -eN LXiWT(Zi ­ zn), (10) 
i=l 

with N the bunch population and ni is number of macroparticles in the i bin and X'i is 
transverse displacements of the macroparticles in the i bin. WL(Zi zn) and VVT(Zi zn) 
are the longitudinal and transverse wake functions, respectively. 

1 
WL(O) = -2 lim WL(z)

%-0+ 

and 
WT(O) = O. 

In each turn we use 680 bins extending over 5cr%. 
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Figure 1: (a) longitudinal and (b) transverse wake potentials for two cavities in ATF 
damping ring. The charge bunch is a Gaussain with an rms of Imm. The parts on front 
of bunch center (z < 0) were discarded. 

4 Qualitative results for ATF Damping ring 

4.1 Transverse instability at zero chromaticity 

The nature of the instability is shown in Figure 2. The zero chromaticity instability is 
evident in both the rms center-of-mass motion and the beam size. The rms center-of-mass 
motion is defined as: 

1 i=n+Ns 

a~(n) = 2Ns + 1 i~EN' x
2 
(i), 

where x(i) is the mean position on turn i 

x(i) 

Ns is the integer part of I/vs. The rms beam size is defined as 

In this paper, rms center-of-mass motion and rms beam size normalized by nOlninal bealn 
size will be plotted. 

The Figure 2.(a) and (b) show the the vertical and horizontal center-of-mass motions 
for the beanl currents of 3.4 mA, 10.2 mA and 20.4 mA, respectively. They show the 
contribution of the instability to center-of-mass motion as the beam currents increase. 

The Figure 2.(c) shows the vertical beam sizes for the beam currents of 3.4 InA, 10.2 
mA and 20.4 mAo The vertical beam sizes are increased as the beam currents increase. 
However, the horizontal beam sizes showed natural beam size. On the other hand, above 
beam current 27 mA, it was shown that both horizontal and, vertical beanl sizes gro'w 
dramatically. 

At zero chromaticity the vertical beam size is in more lower beanl currents enlarged 
than horizontal beam size. Above beam current 27 mA, the horizontal bealn size grows 
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more dramatically than vertical beam size. That is, the beam sizes show enlargeu1ent and 
blow-up as beam currents increase. 

A fast Fourier Transform of the mean position x(n) shows the tunes of the d0111inallt 
modes. Figure 3 shows features of the tune shifts as a function of currents for a 6.8 
mm bunch length. Figure 3.(a) shows the fast Fourier Transform of the 111ean horizontal 
position of the beam for several beam currents. This shows that 111=0 rnode [Q(1 = 0) 
Q,a] has shifted to higher tunes as the beam currents increase. We note that n1=-1 n10de 
[Q(1 = 0) = Q,a-Qs] and m=+l mode [Q(1 = 0) = Q,a+Qs] have not been shown clearly. 
Figure 3. (b) shows the fast Fourier Transform of the mean vertiacl position of the beanl. 
This shows that m=O mode has shifted to lower tunes as the beam currents increase. vVe 
can see m=+l mode and m=-l mode as the beam currents increase. However, it was not 
shown that the m=O mode has shifted sufficiently to mix with the m=-l ITlode by 61.2 
mAo 

There is no indication of the instability being mode mixing between m=O l110de and 
m=-l mode. Examination of the FFT and the growth in beam size lead to the conclusion 
that at zero chromaticity the beam current is limited by the stability of the m=O mode. 
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Figure 2: The zero chromaticity instability. (a) and (b) show the vertical and horizontal 
center-of-mass motions, respectively. (c) shows the vertical beam sizes. In (a) and (b), 
point, cross and square symbols represent transverse postions of center-of-mass Inotioll 
for currents of 3.4 mA, 10.2 mA and 20.4 mA, respectively. 
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Figure 3: Fast Fourier Transforms of the mean horizontal (left figures) and vertical (right 
figures) positions of the beam. Qx=O.145, Qy=O.285 and vs=4.1 xlO-3 • 
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4.2 Transverse instabilities at non-zero chromaticity 

We will see the head-tail effect occuring at positive chromaticity. Figure 4.(a) and (b) 
show the rms horizonal and vertical beam sizes for the values of positive chrornaticity 
~=0.1 and ~=0.3 in beam current of 10.2 rnA, respectively. The beam sizes increase with 
increasing positive chromaticity. All particles in the bunch move in phase resulting in 
growing size of beam. 

Figure 4. (c) and (d) show the horizonal and vertical center-of-mass nlotions for the 
values of positive chromaticity ~=0.1 and ~=0.3 in beam current of 10.2 InA, respectively. 
They show that the instability is also evident in the center-of-mass Illotion. 

The horizontal beam size and horizontal center-of ...mass motion grow rnore dramatically 
than vertical beam size and vertical center-of mass-motion if once beaIll size blows up. 
This behavior shows the same feacture as zero chromaticity does. At ~=O.I, it was sho'wn 
that beam blows up dramatically above 18mA. 

Figure 5. (a) shows the fast Fourier Transform of the mean horizontal position of the 
beam for several beam currents in ~=0.1. This shows that m=O mode has shifted to higher 
tunes as the beam currents increase. We note that mode and mode have 
been shown clearly. Figure 5.(b) shows the fast Fourier Transform of the nlean vertical 
positions of the beam for ~=0.1. This shows that m=O mode has shifted to lower tunes 
as the beam currents increase. We can also see m=+1 mode and m=-1 mode. However, 
it was not shown that the m=O mode has shifted sufficiently to mix with the m=-1 nlode 
by 61.2 rnA. 

We also note that at ~=O.I, there is no indication of the instability being Inode nlixing 
between m=O mode and m=-1 mode. Examination of the FFT and the growth in beaID 
size lead to the conclusion that at ~=0.1 the beam current is limited by the stability of 
the m=O mode. 

4.3 Transverse Instabilities at varying chromaticity 

Here we consider a method to suppress transverse head-tail instability by nleans of vari­
ation of the chromaticity[2][3]. The concept is to introduce incoherent tune spread inside 
a beam by modulating the chromaticity by synchrotron frequency. We assunle that the 
chromaticity ~ which is modulated by the synchrotron frequency Ws is varied as 

(11) 

which is no longer a constant of time t and Ws is the synchrotron angular frequency. The 
constant part of the chromaticity, ~o, causes the head-tail instability. This incoherent 
tune spread is not effective in stabilizing the head-tail instability. The C;l is introduced to 
generate an incoherent tune spread that suppresses the head-tail instability. 

Figure 6.(a) and (b) show the horizontal and vertical center-of-mass motions for ~o=O.2 
and ~1=0, respectively. Figure 6.(c) and (d) show the horizontal and vertical center-of­
mass motions for ~o=0.2 and ~I=0.2, respectively. 

Figure 7 shows the fast Fourier Transforms of the mean transverse positions of the 
beam in 10.2 rnA. (a) and (b) show for horizontal and vertical in C;o=0.2, C;1 =0, respectively. 
(c) and (d)) for horizontal and vertical in ~o=0.2, C;1 =0.2, respectively. We can also see 
that the instability does not occur in (c) and (d) by introduction of varying chronlaticity. 
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Figure 4: Chromaticity dependent instability at positive chromaticity ~=O.l and ~=O.3. 
(a) and (b) show the horizontal and vertical beam sizes, respectively. (c) and (d) show 
the horizontal and vertical center-of-mass motion, respectively. 
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Figure 5: Fast Fourier Transforms of the mean horizontal (a) and vertical (b) positions 
of the beam. The betatron tune and the betatron tune plus and minus the synchrotron 
tune are shown. The chromaticity ~ is 0.1. Qx=0.145, Qy=0.285 and 1 x 10-3. 
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Figure 7: Fast Fourier Transforms of the mean transverse positions of the beanl. (a) 
and (b) show FFT for horizontal and vertical positions of the beam in Eo=O.2 and ~o=O: 
respectively. ( c) and (d) show FFT for horizontal and vertical positions of the bealll in 
Eo=0.2 and EI =0.2, respectively. 
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