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Beam-based measurement of the 
strength deviation of quadrupole 

fields in the TRISTAN Main Ring 

Shuji ]\1atsumoto, Haruyo Koiso, Susumu Kamada 
KEK, High Energy Accelerator Research Organization 

1-1 Oho, Tsukuba, Ibaraki 305, Japan 

Abstract 

The deviation of focusing strength of quadrupole magnets from 
their design value were measured by a beam-based method , the ;; 7f­

bump method" in the TRISTAN main ring. Small deviation as much 
as 0.1 % was successfully observed. 

Introduction 

In the machines such as high luminosity colliders or low emittance light 
sources , even smaller errors of machine components may significantly degrade 
their ultimate performance. In order to achieve high performance, beam­
based diagnostics of machine errors is really important , as \Nell as careful 
quality control of hardware components . The 7T-bump method is one of the 
beam-based diagnostics utilizing a 7T-bump orbit to detect a tiny error of the 
magnets. 

A 7T-bump is a local bump excited by a pair of correction dipole magnets 
(correctors) between which the designed betatron phase advance is exactly 7T 

radian. If the phase advance is actually 7T, the bump orbit can be completely 
confined within the short section between the correctors. Otherwise it in­
dicates the disturbance of the optics within the section. A possible source 
of the disturbance is a quadrupole magnet whose strength is deviated from 
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its design values. From the size of the "leakage orbit", we can estimate the 
deviation. 

As we will see below, the 'if-bump method is very sensitive, since it fully 
utilizes special relations of betatron phase between the magnets. We have ap­
plied this method in the TRISTAN main ring (MR) to measure the strength 
deviation of quadrupole magnets [4] as well as the misalignment of sextupole 
magnets [5]. In this paper, we will report the former results in detail. This 
paper is organized as follows. In the next section , we will review briefly the 
'if-bump method. Section 3 is a note on our measurement and analysis. In 
section 4, results and discussions are given. The last section is devoted to 
the conclusion. The discussion of the orbit length effect by the 'if-bump is 
given in Appendix. 

2 A Brief Review of the 1f-bump Method 

Vve only use the linear orbit theory [1] here. The discussion in this section is 
essentially the same as that given in Refs. [2, 4]. 

2.1 7f-bump 

Suppose a storage ring with the circumference C. The azimuthal coordinate 
s (0 :::; 8 < C) is along the design orbit of the ring . A distorted orbit, X(8), 
produced by a single thin correction dipole magnet (corrector) located at s 
is [1] 

1 2
k (31/2(S) ,f3 / (S) (1" " ( )1 )

x ()8 = 2' COS<f./s 8 - 'ifV (for 0:::; S < C) , (1)
sm'ifV 

where k is the kick angle of the corrector magnet, (31/2(8) = .j{3(8) and (3 

is the betatron function , 1/Js( 8) is the betatron phase advance from s to 8 
and v is the betatron tune. This orbit has a kink at S, where the derivative 
x' (= dx/d8) jumps by k. A 'if-bump is made by two correctors. Let them be 
STI and ST2, located at S1 and 82 (82 > 81) and their kick angles are k1 and 
k2 respectively. We call the region between the correctors, 81 < 8 < S2 , the 
bump region, otherwise outside region. From Eq. (1) , the distorted orbit by 
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ST1 and ST2 in the outside region is 

where 

(3) 

(4)
Zl + Z2 cos X 

Here Zi =f31 /2(Si) ki (i = 1,2) and X is the phase advance within the bump 
reglOn. The amplitude A is zero if and only if 

x =mr (n=1,2,3 , . .. ) (5) 

and 
(6) 

are fulfilled at the same time. \Nhen n = I , the orbit along the whole ring is 
confined within the bump region: 

in the bump region, 
(7)

outside. 

As the phase adva.nce in the bump region is 'if, we call this 10caliL;ed bump 
a 'if-bump. Notice that the height of a 'if-bump is proportional to Z. The 
corrector kick angles are a knob to control it. 

2.2 Beam-based diagnostics utilizing a 1f-bump 

Now let us discuss the 'if-bump method, the method to measure an optics 
error hy a IT-bump orbit. Suppose we make a 'if-bump by ST1 and ST2 
located at S = Sl and S = S2· If there is a localized small focusing error 69 in 
the bump region, it violates the condition X = 'if. In this case , even though 
the correctors are balanced, we have a leakage orbzt outside the bump region. 
The leakage orbit can be easily obtained to the first order of 69 as follows. 
Let t (Sl < t < 52) be the location of 6g . Suppose we excite STI and ST2 
in such a. way that they satisfy Eq. (6). The bump orbit at t differs from 
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Eq. (7) since 6g changes the optics of the ring. However, the difference is the 
order of 6g. Thus h = xo(t) + 0(6g), where h is the bump height at t. The 
leakage orbit of our concern is the distorted orbit by the additional kick or 
miskick at t which amounts to h6g. From Eqs. (1) and (7), the leakage orbit 
IS 

Zf31/2(S) . 
x(6g, tis) = 6g . {we(t) cos(?p-7fv)+ws(t) sin(?p-7fv)}+O(6g2), (8)

2sm 7fV 

where ?p stands for ?PSI (s). We decompose the leakage orbit into two linearly 
independent components: the cosine and sine components. The amplitude 
of each component is characterized by the weight function, We or ws , both of 
which are defined in the bump region. 

The weight function determines the contribution of 6g to each component of 
the leakage orbit. 

'VVe have assumed the correctors are completely balanced. If this breaks, 
we ha.ve a leakage orbit too. Let f3 1/2(sd kl - f31/2(S2) k2 = 6Z, while X = 7f. 
From Eq. (2) , the leakage orbit due to the unbalance is 

f3 1/2(S) 
x(6Zls) = 6Z. cos(?Ps 1 (s) - 7fv). (10)

2 sm 7fV 

Note that the unbalance gives only the cosine component. 

2.3 7r-bumps in TRISTAN MR 

In Fig . 1, the vertical bump orbit and the weight functions We and Ws in a 
normal cell of the TRISTAN MR are shown. There is a quadrupole magnet 
in the middle of the bump region where Ws is almost its maximum. We 
call this magnet the target. There are three quadrupole magnets except the 
target in the bump region, however, Ws has relatively small value at these 
magnets. In other ward, the leakage orbit is sensitive to the strength error of 
the target. Note that We is almost zero at the target. The error of the target 
can be known from the sine component and this component gets away from 
the unbalance of correctors. 
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Figure 1: The vertical 7f-bump orbit in the arc of the TRISTA:\! MR. The 
lattice configuration (FODO) is given at the bottom. The phase advance 
of the unit cell is designed to be 7f /2. (Upper figure) The solid line is p l /2 

and the dashed line is the phase advance 1/Js 1 (s) / 27f. (Lower figure) The solid 
line is the geometrical shape of the bump orbit and the dashed and dash-dot 
lines are the weight functions . They are normalized by their maximum values. 
(The maximum of We is smaller than that of WS' Thus W e is normalized by 
the latter.) The defocusing quadrupole magnet T is the target. The design 
phase advance from STI to ST2 is exactly 7f. 
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Figure 2: The geometrical shape of a horizontal bump orbit and its weight 
functions in a normal cell of TRISTAN MR Both of them are normalized by 
their maximum values. Since ST1 and ST2 are 5.86 meters long, the bump 
orbit and the weight function are "slanted". The target T is a focusing 
quadrupole magnet , which locates at 'W s being almost its maximum. 

The vertical corrector is very thin (0.1 m long) , while the horizontal 
corrector in the arc is long, since we use the bending magnet (5.86 m long) 
as a corrector by the correction coiL We show how a horizontal It-bump in 
the normal cell looks like in Fig. 2. 'vVe also shmv the weight functions. Vve 
find a quadrupole magnet which is appropriate as the target of this bump 
too. This 7r-bump can be used to estimate its strength deviation. 

Note that in the case the long uniform correctors being used, the 7r-bump 
is closed when the condition 

(11 ) 


is fulfilled instead of Eqs. (5). Here T12(5rI52) is the (l,2)-component of the 
(horizontal) transfer matrix from 51 to 52, where 5 1 is a point on ST1 while 
52 is on ST2, and the integration is done over whole ST1 and ST2. 

3 Measurement 

3.1 Optics 

A specially designed optics was set for our measurement. The lattice of the 
TRISTAN MR consists of colliding insertions, rf sections, dispersion sup­
pressers, arcs and wiggler sections. The arcs consists of FODO cells whose 
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Figure 3: An example of the observed leakage orbit, obtained by subtracting 
Orbit A from Orbit B. In this example, we set a positive(upward) vertical 
7f-bump. The bump height at the target is about 6 mm. The leakage orbit 
is clearly seen. 

phase advance was set to be 90/ 90 degrees during this study. The 7f /2 nor­
mal cell is suitable for the 7f-bump measurement. As shown in Fig. 1 and 
Fig. 2, 7f-bumps in the arcs can be made by giving the same excitation to 
two correctors at the identical position in every second cell. '0/e turned off" 
all the sextupole magnets during the measurement, in order to get rid of the 
side effects on the orbit by them. 

3.2 Measurement of the leakage orbits 

The orbit around the ring is measured by 392 position monitors attached 
to quadrupole magnets. The leakage orbit can be known by comparing the 
orbits of the bump being on and off. We measured three orbits sequentially 
for a single bump: the first orbit measurement was done before the bump 
being on (Orbit A), the second orbit was measured when the bump was on 
(Orb~t B) and the last one was done after the bump being off (Orbit C). By 
subtracting Orbit A from Orbit B, we have a leakage orbits to be analyzed. 
Similarly, from Orbit C and Orbzt B, we have another leakage orbit . If we 
observe significant difference between these two leakage orbit, we rejected the 
data. An example of the observed leakage orbit is shown in Fig. 3. 
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3.3 Analysis 

\!l/e summarize the prescriptions of our data analysis for the leakage orbit. 

Contributions from other quadrupole magnets We neglect the contri­
bution from other quadrupole magnets except the target in our analysis. 
This enables us to estimate 15g of the target individually per bump. 

A virtual corrector at the target The observed leakage orbits were an­
alyzed by Eq. (8) to estimate 15g. VVe utilize the orbit correction code 
in SAD [6] for the fitting process. We insert a virtual thin corrector 
in the lattice deck for SAD at an edge of the target and "correct" the 
observed leakage orbit by this corrector. The correction kick angle by 
this virtual corrector can read (the opposite sign of) the miskick angle 
due to the focusing error of the target. 

4 Results and Discussions 

4.1 Statistical error of the measurement 

Since we switched off all the sextupole magnets during the measurement, the 
stored beam current was very low (typically the total current was 0.1 rnA by 
8-bunch operation) and this causes the SIN ratio of the orbit measurement 
system to be lowered. We checked the noise level in our system was done by 
measuring the same orbit twice (We measure an orbit and measure it again 
immediately after the first measurement is done). We have taken 55 samples 
of "noise orbits", the difference between the two successive measurements: 
and we "correct" these noise orbits by the virtual corrector. 

The result is shown in Fig.4. We find that the correction kick angles (by 
the virtual corrector) distribute over the range whose standard deviation is 
about 0.2 f-Lrad . This value is the typical size of the statistical error included 
in our analysis coming from the noise in the measurement system. Note 
that this error is small but not negligible compared with the typical size of 
the miskick by the targets. For example, suppose the height is 10 mm and 
deviation is 0.1 %. The beam gets a miskick of 1.8 f-Lrad. In this example, the 
statistical error, 0.2 f-Lrad, amounts to about 10% of the target miskick. 

8 



-0.6 -0.4 -0.2 o 
).lrad 

12r----,----,-----r----,----,---~ 

10 

8 

6 

4 ~ ......... ..... ;. 


2 

0,--_ ,-,-_ 
2 4 6 

Figure 4: The statistical error in the estimation of the miskick due to the 
noise in the orbit measurement system. The distribution of the miskicks 
obtained by a virtual corrector for the 55 samples. The standard deviation 
of the distribution of the kick angle is about. 0.2 j.trad. 

4.2 Precise measurement 

If we repeat t.he orbit measurement several times for a single target. by chang­
ing the bump height, the measurement will be more reliable. However we 
aimed to check as many quadrupole magnets as possible within a limited 
machine time. Therefore , we choose only several magnets in the arcs for the 
precise measurement. 

In Fig. 5, the result of precise measurement for a QF magnet in the arc 
is shown. The observed horizontal miskick angle by the target QF does 
not show a linear dependence on the horizontal bump height. A possible 
source of the nonlinear kick is the focusing sextupole magnet , SF , next to 
the target . All of the sextupole magnets are off during the measurement but 
there remains remnant field in it. A parabola fit to the present data estimates 
the integrated sextupole field to be Kter;; = (3.2 ± 0.3) x 10-2 , which agrees 

well with the direct field measurement., which shows Kter;; = 2.9 x 10-2 [3]. 
The linear component of the kick is 0.40 ± 0.01 f.i,rad per 1 mm bump height 
which reads +0.22% strength deviation of the target , if we suppose this linear 
kick is coming from the target only. 

However, the remnant field in SF can also give the linear kick like 

s: I K(rem) I 
uX = 2 SF Xoff lx , (12) 

where Xoff and hx are the horizontal misalignment of the sextupole magnet 
and the bump height respectively. The linear kick in Eq. (12) and that by 
the target are nor separable unless Xoff is known. The remnant field can be 
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Figure 5: The plots of the miskick by a QF in the arc against the horizontal 
bump height . The data of Orbit B-Orbit A and Orbit B-Orbit C are shown. 
Some bad data were rejected . The error bars indicates the statistical error 
due to the noise in our orbit measurement system, discussed in the previous 
section . Due to the remnant field of SF next to the target, the miskick is not 
proportional to the bump height. 

a source of uncertainty in the estimation of the strength deviation of QF. 
For example, suppose Xoff = 1 mm. This is actually an extreme case. If we 
make a hx = 10 mm bump, the size of the kick amounts to 0.4 I.aad, which 
introduces a few tens % uncertainty in the estimation of the target miskick 
given above. 

The miskick due to QD strength deviation is, on the other hand, pro­
portional to the vertical bump height as it should be. See the left picture 
of Fig. 6. The linear fit gives the vertical miskick is -0.20 J-1.rad per 1 mm 
bump height (the statistical error is less than 0.01 J-1.rad / mm) and this reads 
the focusing strength of the target QD is deviated as much as -0.11% from 
its design value. However, we should check the remnant field in a defocusing 
sextupole magnet SD, which is next to the target, since it also gives the linear 
kick as the bump height being changed. The remnant field can be known 
by the plots of the horizontal leakage orbit against the vertical bump height. 
See the right picture of Fig. 6. A parabola fit shows the integrated field 
strength of SD is Kte';b = -(3.4 ± 0.2) x 10-2 (The direct measurement 

shows Kte';b = -3.9 x 10-2
.) The remnant field in SD magnets also gives 
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Figure 6: The miskick of a QD in the arc against the bump height. (Left) the 
vertical miskick. (Right) Horizontal kick. A possible source of the horizontal 
miskick is the sextupole magnet next to the target. The shift of the minimum 
of parabola from the origin indicates its misalignment. 

uncertainty to the result of QD magnets. 

4.3 Distribution of the strength error 

'vVe measured 220 out of 400 quadrupole magnets in the ring by only one 
bump. They are 76 QF (horizontally fo cusing) magnets and 80 QD (hori­
zontally defocusing) magnets in the arcs and 64 in the straight sections. Note 
that the QF magnets are fed by a single power supply and also are the QD 
magnets. Quadrupole magnets in the dispersion suppressers and wiggler sec­
tions remain unmeasured since the optics is not adjustable to make 7T-bumps 
there. The typical bump height was lOmm. 

Figure 7 shows the distributions of the relative strength deviation of the 
quadrupole magnets . In these measurements, we applied only one bump for 
one quadrupole magnet. As for QF and QD magnets, the data is corrected 
by the subtracting the kick component due to sextupole remnant field. As 
for QIR magnets, there is no sextupole magnet next to them. 

The standard deviations of the strength (K value) error of QF and QD 
magnets are 5.7 x 10-4 and 5.9 x 10-4 , respectively, which are consistent with 
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Figure 7: Relative strength deviation of the quadrupole magnets in MR. 
a) QF magnets b) QD magnets and c) quadrupole magnets in the straight 
sections. 

that obtained from the field measurement done before the installation [3]. 
Large error was observed in final quadrupole magnets in the colliding inser­
tions. Vve measured these magnets as much lower excitation than that during 
usual operations. At the usual excitation, the deviations of these magnets 
become similar to the others in the straight sections. 

4.4 Comments on the correction of strength error 

A 7f-bump can be used in not only detecting the small focusing error but 
correcting it . Vve did not try to correct the focusing error actually this time. 
Vve just make a few comments on the procedure to do it. 

Suppose only the target has the focusing error in the bump region. Then 
we can correct its focusing error by changing the strength of the target with 
observing the leakage orbit . If the leakage orbit disappears, the correction is 
done. Of course , this is not the case: the target is not the only the source of 
focusing error within the bump region in general. At least other quadrupole 
magnets in the bump region can be the sources too. Mathematically speak­
ing, we can complete the correction if we have the individual leakage orbits 
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whose number are equal to or larger than the number of the sources of focus­
ing error. As shown in Figs. 1 and 2, the target has dominant contribution to 
the leakage orbit. The target is the most suitable magnet for the correction 
of the local optics within the bump region. 

Conclusion 

vVe are confident that the n-bump method works fine to detect a tiny optics 
error. We demonstrated its sensitivity was down to '"1 p,rad. The deviation 
of the quadrupole magnets is rather small and the measurement of the devi­
ation is suffered by the contribution from the sextupole remnant fields. The 
precise measurement, i.e., to measure several orbit by changing the bump 
height, is essential to filter out the contribution from the remnant fields. 
The correction scheme for the quadrupole magnets is promising. 
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Appendix Change of the path length by 1r-bump 
\iVhen we apply an outward (inward) horizontal1r-bump in the arcs, the 

length of the orbit outside the bump region should be shortened (lengthened) 
so that the total orbit length is kept constant. VVe still have a leakage orbit 
even though the optics in the bump region is perfectl. In general , the change 
of the orbit length by a horizontal bump is given as 6L = J(x / p) ds , where 
x is the orbit deviation by the bump and p is the curvature radius of the 
design orbit. The integration is done over the whole ring. From Eq. (7), 

- 1 {31/2(s)sin'IjJ( s)
6L - Z ( ) ds, ( 13) 

bump p S 

where the integration is done over the bump region. Notice that 6L is pro­
portional to Z. Substituting designed {3 and 'IjJ in Eq. (13), we found 6L is 
+0.65 mm per 1 mrad outward corrector kick. The path length outside of 
the bump region is changed by the same amount. The leakage orbit due to 
this effect is proportional to the dispersion function, x(s) = E'f](s) and we 
have c = -2.8 X 10-4 per 1 mrad corrector kick outward2

. In Fig. 8, the 
orbit observed by a horizontal 1r-bump in the arc is shown. 

We consider X, which is the average of the data of the orbit deviation 
observed at the monitors in the outside region. We expect x (= c f)) is 
- 81.0 /-tm per 1 mrad from the model while the experimental data shows it 
is - 86.8 /-tm per 1 mrad. See Fig. 9. Experimental result agrees well to our 
expectation: it is about 7% larger than the model prediction. 

J A vertical bump should have this effect too , but it is very small. 
2The momentum compaction of the model is 7.76 x 10-4 and its design orbit length is 

3018 m. 
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Figure 9: The mean orbit drift outside the bump region i against the kick 
angle of the corrector magnets_ The linear fit is good_ The data shows that 
the mean drift is -86.8 11m per 1 mrad corrector kick. 
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