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Abstract 

General relativity is extended to include electromagnetism by considering 

two aspects of torsion: its relation to spin established in Einstein-Cartan the

ory and the possible interpretation of the torsion trace as the electromagnetic 

potential. Starting with a Lagrangian built of Dirac spinors, orthonormal 

tetrads, and a complex rather than a real linear connection we define an ex

tended spinor derivative by which we obtain not only a natural geometrization 

of electromagnetism, but can also clarify the underlying fibre bundle struc

ture. Thereby the relation between torsion and electromagnetism turns out to 

be only a formal remnant of this geometrical background. Also, a new type of 

contact interaction between spinors emerges, which differs from the usual one 

in Einstein-Cartan theory. The splitting of the linear connection into a met

ric and an electromagnetic part together with a characteristic length scale in 

the theory suggest that gravity and electromagnetism can be embedded into 

a common geometric framework. 

04.50.+h 

Typeset using REV1EX 



National Laboratory for High Energy Physics, 1996 

KEK Reports are available from: 

Technical Infonnation & Library 
National Laboratory for High Energy Physics 
1-1 Oho, Tsukuba-shi 
Ibaraki-ken,305 
JAPAN 

Phone: 0298-64-5136 
Telex: 3652-534 (Domestic) 

(0)3652-534 (International) 
Fax: 0298-64-4604 
Cable: KEKOHO 
E-mail: Library@kekvax.kek.jp (Internet Address) 



I. INTRODUCTION 

In general relativity the metric gp.lI completely determines the linear connection rap,p, 

which becomes simply the Levi-Civita connection 

rap,p ep.p}:= ~gaf (Op.gfP +Opgfp, OfgP,P) 

The space-time geometry is influenced only by mass-energy, which causes curvature via the 

Einstein equation, and remains unaffected by spin. 

In Einstein-Cartan theoryl the connection is only required to be metric, 'ilagp,1I 0, and 

is allowed to have non-vanishing torsion Tap,p = rap.p r a!3p. contrary to the torsion-less 

Levi-Civita connection. The structure of the connection now becomes l 

r ap.!3 {ap.!3} + ~(Tp.a!3 +Tpap. +Tap,p) . (2) 

This generalization enables the space-time geometry to respond not only to mass but also 

to spin, where spinning matter produces torsion. For Dirac particles the torsion is totally 

antisymmetric in its indices and creates a cubic self-interaction term in the spin or equation2 

i,p.V;"" - ~c"" + ~102(-tiJ,5l""h5'6"" = 0 , (3) 

where 'il; is the covariant spinor derivative with respect to the Levi-Civita connection, see 

(22), and 10 is the Planck length. 

Besides this well-known aspect of torsion another physical role for it has been suggested 

in several works on the unification of gravitation and electromagnetism. The idea of such a 

geometrical unification is to omit any restrictions on the real linear connection rap'p and to 

incorporate the electromagnetic phenomena into this extended space-time geometry. More 

precisely, the electromagnetic vector potential AI' is identified with the torsion trace Tp. = 

Tap.a' In the so-called non-symmetric unified field theory,3 Einstein has considered a general 

linear connection, but his aim was to incorporate electromagnetism into the metric. He 

introduced a non-symmetric metric 91'11(# 9111') and identified its antisymmetric part with 

the dual of the electromagnetic field strength. His theory was unsuccessful because it could 

not account for the equation of motion.4 To remedy this and various other shortcomings of 

Einstein's theory several authors have suggested to make the above mentioned identification 

Tp. AI' in an ad hoc manner,5 still using a non-symmetric metric. In subsequent works I"V 

of McKellar6 and Jakubiec and Kijowski7 this is achieved without ad hoc assumptions, 

using the usual symmetric metric. McKellar starts with the metric gp.lI and a general linear 

aconnection r p.p and obtains 

rap,p = {ap.!3} + ~8ap. Tp. (4) 

as the solution of the field equation, with the convention 'ilp.Xa = op.xa + rap.pXP for 

the covariant derivative of a vector field X a . His field equations taken together resemble 

the source-free Einstein-Maxwell equations, provided that Tp. AI' holds. Ferraris and I"V 

Kijowski8 start not with a metric but with rap.p alone and arrive at (4) but, contrary to 

McKellar, they regard rap.a, which is not a vector, as the electromagnetic potential and 

deduce a theory of electromagnetism differing from the usual U(l) gauge theory, whereas 

Jakubiec and Kijowski7 return to the identity Tp. "'" Ap. and include Dirac spinors in the 

unification. Unfortunately, the employed spinor derivative requires two connections r ap.!3 

and {ap,p} from the outset, and furthermore, from the general connection only its trace 

rap,a appears in this derivative. Thus torsion does not sufficiently couple to spin and so its 

important physical role established in Einstein-Cartan theory is missing. In both theories6,7 

the fibre bundle structure of the unification is not clarified, so that Tp. in (4) cannot be 

gauged with U(l), as there is no U(l) bundle constructed in the theory. It is thus only a 

vector but not a potential. 

From the discussions of general relativity, Einstein-Cartan theory, and the unified field 

theories we conclude that a more general linear connection would enable the space-time 

geometry to incorporate further physical phenomena in addition to gravitation. However, 

although the GL(4, JR) connection in the unified field theories6- 8 is more general than the 

metric connection of Einstein-Cartan theory the spin-torsion coupling is missing either be

cause spinning matter was not considered6,8 or because the spinor derivative was somewhat 
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inappropriate.7 

In this work our aim is to obtain a new theory of gravity and electromagnetism including 

the spin-torsion coupling and thereby accounting for both aspects of torsion mentioned 

before. To achieve this we further expand the space-time geometry and allow for complex 

linear connections. Let us explain why this complex extension is necessary. Obviously, 

we must introduce a new spin or derivative containing a spin-torsion coupling besides an 

electromagnetic part. As a consequence, we may imagine that matter will be coupled to the 

connection more tightly and can therefore twist the space-time geometry so strongly that 

even complex degrees of freedom are excited. Another reason for the complex extension is 

the fact that no U(I) bundle structure could be constructed for the torsion trace Tp. of a 

real connection.6,7 

U sing a complex linear connection and an extended spin or derivative we arrive at a 

geometrical theory of gravity and electromagnetism which fully clarifies the fibre bundle 

structure, especially the U(1) bundle. All field equations follow from the variational prin

ciple. Due to the special spinor derivative both aspects of torsion in (3) and (4) must be 

revised: First, the relation Tp. "" AI' turns out to be only a formal consequence of some 

another geometric relation, see (30). Also, the real part of torsion is not related to electro

magnetism. Secondly, the spin-spin contact interaction is now found to occur only between 

distinct particles, thus excluding a self-interaction like in (3). 

In Sec. II we establish notation and introduce the Lagrangian density. In Sections III and 

IV the field equations are derived using the variational method and their physical content 

is discussed. Here we slightly expand the theory to include differently charged particles and 

also consider many-particle systems to observe the new type of spin-spin contact interaction. 

In Section V a short summary is given. The fibre bundle geometry underlying the theory is 

discussed in Appendix A. 
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II. LAGRANGIAN DENSITY 

The basic dynamical field variables of our theory are a complex tetrad u (e/,op.), a 

complex linear connection ra,.b dxp., and a Dirac spinor ¢ on a real 4-dimensional space-time 

manifold M. Greek indices run from 0 to 3 and refer to local coordinates. Latin indices also 

run from 0 to 3 and refer to the internal Minkowski spacetime equipped with the Minkowski 

metric 'fl ('flab) = ('flab) = diag(I, -1, -I, -1). The (complex-valued) spacetime metric 

gp./I is a dynamical variable obtained from the co-tetrads (eap.dxp.) by gp./I = eap.eb/l'flab' Let 

9 := J- det(gp./I) det(eap.). Although the tetrad and the metric are complex variables, 

it turns out later on that they may be taken real-valued. The metric gp./I determines the 

(complex) Lorentz bundle L(M) consisting of orthonormal vierbeine, the structure group 

being given by the special Lorentz group 

L:= {A E Mat(4,q IAT'flA = 'fl, detA I} (5) 

A tetrad u (e/'op.) is then a local cross section in L(M). 

A complex linear connection w is a gl(4, q-valued connection I-form on the complex 

frame bundle, denoted by F( M) which is a GL( 4, q principal bundle. Since L(M) is a 

subbundle contained in F(M), the tetrad u is naturally a cross section in F(M). We pull 

back w by the tetrad u and obtain the complex linear connection in anholonomic or tetrad 

components 

(u*w)ab=: rap.b dxp. (6) 

as our second dynamical variable. This connection rap.b is neither torsion-less nor metric

compatible and is a true I-form,transforming homogeneously under coordinate changes. 

Note that w is a general GL( 4, q connection I-form, whereas the cross sections employed 

to pull back w from F(M) to M are orthonormal tetrads u only. Since gauge transformations 

are generated by the changes of various cross sections and affect the pulled back connection 

on M but not its basic connection I-form on the principal bundle, the gauge group considered 
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in our theory is only the Lorentz group L but not the whole linear group GL( 4, q. (In 

Appendix A we shall enlarge the gauge group to L x U(l).) The restriction of the gauge 

group to L is necessary to introduce spinors in our theory. 

The coordinate components of the connection ra",b are obtained by the well-known rule 

ral',8 = e(J.a i,8ral'b + eca0l'ec{3 • (7) 

The curvature tensor, Ricci tensor, curvature scalar, and the curvature trace of raf'b are 

defined as follows 

Rab",v o",r
a 
vo + raf'Crcvb - Ovra",b - ravcrcf'b , (8a) 

R",v = R a 
hav • eaa e b", , (8b) 

R = Rab",v • ej' e 
bv 

, (8c) 

Y",v = ~a",v = 8",r 
a 
va 8 v r 

a 
",a' (8d) 

a aNote that r va is a vector, contrary to r va • This vector vanishes only in case of metric 

connections because of the Lie algebra condition ra",b + n",a =0 which is equivalent to the 

metricity condition "0:9",v = O. In general however, ra",a =F O. 

Every metric connection f a",b defines a covariant differentiation of a Dirac spinor2•9- 12 

m _ 1m ba (9)"'" 'If; - o",'If; 4" ra",b '"'('"'( 'If; . 

The ,",(-matrices satisfy '"'(0.'"'(0 + '"'(0'"'(0. 211ab n.. In virtue of metricity fa",b= fb",a the 

commonly used Lorentz generators (Joa = ~('"'(b'"'(a - '"'(a'"'(b) have been replaced by '"'(b'"'(a.2.10 

This replacement is not unique, and the remaining ambiguity can be usefully exploited, see 

Sec. IV. 

Let us now extend (9) to the case of our arbitrary linear connection ra",b 

"",'If; =o",'If; - ~r(J.",nb'"'(a'lf; . (10) 

Although GL( 4, q has no spinorial representation, it is nevertheless possible to construct a 

spin connection w. (A9) and define the extended covariant spin or derivative (10) from any 
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complex linear connection I-form w by means of pull-back techniques, provided the gauge 

group of the tetrad (J is restricted to the Lorentz group L as we have done already, see 

Appendix A. Thus the gauge group of (10) is still L and the spin or 'If; transforms under the 

well-known spin-~ representation of L. 

Due to the lack of the metricity condition, eq. (10) can be rewritten as 

"",'If; o",'If; - ~ra"'Wba'lf; - ~ral"fJ.'If; , (11) 

which contains the trace part of the connection. The pull-back techniques employed in 

Appendix A will produce a U(l) gauge structure for this trace part -lra",a' Indeed, it is 

this vector which, after deriving the field equations, becomes the electromagnetic potential. 

As a result, eq. (10) will become covariant with respect to L x U(l). 

Introducing -if;:= 'If;f,",(o, '"'('" := '"'((J.eJ', the mass of the spinor particle m, k = 87rG/e\ and 

a length scale 1we write down the following Lagrangian density 

C = Cm+Ca +Cy 

me-] 9 92=: 9 ·1ie [i,I.,...",,, ,I. - - _,1••1. - -R + -I Y. Y"'v (12)'P f ",'P 1i 'P'P 2k 4k ",v • 

Although it is complex valued we do not make it real, because this would restrict the contri

butions of the full complex connection. For an interesting example of complex Lagrangian 

theory see Ashtekar's formulation of general relativity,13 which might be related to the com

plex structures developed in this paper.14 Apart from being complex the three parts Cm, La, 

and Ly resemble more or less the usual Lagrangian densities of spinorial matter, gravity, 

and the electromagnetic field, respectively. Whereas expressions similar to La and Ly for 

a real connection were already used,5-7 the matter Lagrangian Lm including the extended 

spinor derivative (10) is new and plays a key role in our theory. We stress that the gauge 

group of L (12) is not the full GL(4, q but only L. In Appendix A we shall extend the 

gauge group to L x U(l). 

A squared length [2 was introduced in Ly from purely dimensional arguments, since the 

partial derivatives 0", and the connection have the dimension of inverse length. To compare 

[ with the Planck length 10 := /fI,Ck we rewrite (12) as follows 
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9 [2- 2- 1 12 ]C = k' ilo t/J'1P.Vp.t/J - me kt/Jt/J - 2R + 4 YP.IIY P.II . (13) 
' 

In the last term we recognize 12 as the self-coupling constant of the connection, implying 

that 1is an intrinsic length of the space-time geometry. The first term on the right-hand side 

reveals 102 as the coupling constant between the connection and matter. But if we regard 

Dirac spinors ultimately as geometrical objects, then 10 also is a characteristic unit of the 

space-time. We can therefore expect 1and 10 being of the same magnitude. 

III. FIELD EQUATIONS 

A. Field equation for the connection 

In the following we give only an outline of the computations. Details can be found 

elsewhere.l5 For computational convenience we shall express the field equations in terms of 

the holonomic components of the connection rQp.,8 (7). Define the following complex valued 

third rank tensor 

EQp.13 := rQp.,8 {Qp.I3} , (14) 

A third rank tensor always admits a "4-vector decomposition" 

1 6 
Ecc,81 =Qag,8-, + S,8ga-, + ga,BU1 - 12TJa,876V + Ta,81' (15) 

where the four vectors QCC\ S,8, U7, V6 and the "tensor rest" T a,B1 with the property TccCC7 = 
Tcc7a = T 1cca T(a,B-,J 0 are defined in Appendix B. We have denoted the volume element 

by TJa,B-,6 := g. fcc,8-,6, where fa,B-,6 is totally antisymmetric and f0123 = 1. The decomposition 

(14) and (15) are introduced for computational convenience and differs from those proposed 

by McCrea.16 The field equation for r4p.6 follows from (12) and (14) 

0= cr 
6 

(Cm + Ca +Cy ) . fi'p. eGa ef ' k ¢:} 


U ~ 9 


o= -~il02 ifi'11'1,8'1at/J - ~ [E,8Efga1 + EEfag1,8 - E,8a1 - E1,8aJ - 12gCC,8 V:Y"1 , (16) 

8 

where V; is the covariant differentiation with respect to {Qp.,8}. We now use (15) and the 

definitions of the vector current r := ifi'1Qt/J and the axial current ;56 := ifi;6;6t/J, where 

'15 2 Q 
= i'1°;1'1 '13 and 1/6"h,8Q6'17'1,8'1 = -i'15'16' Contracting (16) successively with g,8-" ga-" 

gQ,8 and 1/6· "h,8Q6 we obtain respectively 

Q Q Q0= -i/0
2 .;a 3Q - 6U -12V:Y" , (17a) 

0= ii102.;,8 - 6Q,8 - 3U,8 _12V:Y",8 , (17b) 

0= -i102. P - 4/2 V:Y"7 , (17c) 

1 2.5 1
0=--10 • J 6 + -V6. (17d)4 12 

It follows -QQ = Ucc = -ilo2/ 4 . r. Inserting this and the last two equations back into 

(16) we obtain T Q,8-, = O. Since the Levi-Civita connection is metric, its anholonomic 

components satisfy {Gp.6} + {bp.a} O. Therefore, rGp.a = EGp.a =Qp. + 4Sp. + Up. = 4Sp. and 

thus YP.II = 4Sp.1I := 4(8p.SII - 8I1 Sp.). These results amount to 

Q
rQp.,8 = l'Qp.,8 + 6 ,8 . Sp. , (18) 

where 

~Q {a} I, 2 (. 'a . ca' Q '56)r p.,8:= p.,8 + 4 0 , • J gp.,8 , • U p.J,8 - TJ p.,861 (19) 

and 

16i12/10
2 V:S""Y = p . (20) 

The last equation implies the current conservation V;p = O. 

B. The Dirac equations 

The Lagrangian (12) immediately yields 0 6C/6;jJ 8Cm /8;jJ or, equivalently, 

i"tP.Vp.t/J - me/lit/J = O. With (18) and (19) this can be written as 

i"tp.(V; Sp.)t/J - ~e t/J + ~/02(jp. + j5p.'15hP.t/J = 0 , (21) 
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where 

V;1/J := 8p1/J -l{aPb}"l/a1/J (22) 

is the covariant spinor differentiation with respect to the Levi-Civita connection. The symbol 

V; is used for the covariant derivative with respect to {app } as well as for the corresponding 

spinor derivative. The spinor equation for 1[; readsI5 

- me - 3 2 - 5 5 
i(V; + Sp)1/J . /p + -,;-1/J - 810 1/J(jp + j P/ hP = 0 (23) 

with v;1[; = V;1/J. The nonlinear terms in (21) and (23) vanish due to the identity 

(jp + j5p/5hP1/J =0, (24) 

'5 which can be derived by straightforward computations, recalling jp and J p 

1[;/5/ptP' 

C. The field equation for the tetrad 

The Lagrangian (12) contains no derivatives of e! and therefore we get 


OC 8C 

0= -ecf3 = -ecp

oec
a 8ec

a 

= [-Cmgap + gine1[;/aVp1/J] 2~ [-gRgaP +gRaPpp + gRPapP] 

1+4k 12 [-gYpvYpvga{3 + 4gYpaYpp] . (25) 

Using (15), (18) to (20) and (21) to (24) this can be expressed asI5 

T~ = r::p + T;p , (26) 

where 

~ := ~ (R:p - ~R*9a{3) , (27a) 

r::p i~e [1[;/a(V; - Sp)1/J - (V; + Sp)1[;. /a1/J + (a +-t ,8)] , (27b) 

Ta{3 
s '- 16 ,2 [S S., IS Spv gap,J (27c).- k Cl"f p -"4 pv 

In (27a) R~p and R* denote the Ricci-tensor and -scalar of the Levi-Civita connection. 
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IV. PHYSICAL INTERPRETATION 

Our theory can not be immersed into a Riemann-Cartan geometry but requires the 

full GL( 4, C) connection I-form, as can be seen at the resulting connection (18), which is 

non-metric, VpgaP = -2Sp . gaP 1- O. In order to obtain a physically sensible (i. e. metric 

compatible) parallel transport on the space-time and to associate the non-metricity vector 

Sp with electromagnetism the connection (18) must be divided into its metric and non

metric parts. As shown in Appendix A the connection (18) can be viewed as a sum of 

athe complex metric connection r pp on the Lorentz bundle L(M) and the U(l) connection 

Sp on the trivial U(l) bundle M x U(l), glued together by canonical bundle mappings. 

Therefore, contrary to other works,5,6 we can indeed separate the whole connection (18) into 

the Lorentz connection (19) and the U(l) potential Sw 

The metric connection rapp (19) carries out the parallel transports of (uncharged) tensors 

on M. But it contains a complex contorsion 1j410
2(i 'l~gpp - i· oapjp 1]app6 j56) caused by 

Dirac particles. Since the contorsion is a tensor, it does not vanish even in a local inertial 

system, which is defined to be the special coordinate system around a space-time point p E M 

with gpv(p) :;:; diag(l, -1, -1, -1) and 8(fgpv(p) = O. Although the physical meaning of this 

phenomenon is not yet clear, we remark that it is invisible to the laboratory experiments 

of today due to the very small magnitude of 102 in the contorsion. Furthermore, rapp is a 

metric connection, so that its parallel transport preserves the metric. This guarantees the 

invariance and conserves the real nature of physical measurements of lengths, time intervals, 

rest masses and various scalar products of particle momenta. 

We now discuss the non-metric part Sw According to Appendix A, its U(l) gauge 

transformation is given by 

et 1-+ e! , lrapa)1-+ Sp +8pA, 1/J 1-+ exp(A)1/J . (28) 

The field equations (20), (21), (23), and (26), 

16il2 j 102 V;SV"f = P , (29a) 
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i"(p.('V; - Sp.)'I/J - ~c'I/J = 0, (29b) 

i('V; + Sp.)i[J . "(p. + ~e i[J 0, (29c) 

T~ =T~+T;I" (29d) 

exhibit precisely the well-known structures of the Einstein-Maxwell theory, provided that 

Sp. is identified with the electromagnetic potential Ap. 

ie 
Sp. ncAp. , (30) 

where e is the (positive) elementary charge. In this case, (28) describes the electromagnetic 

U(1) gauge transformation of a negatively charged spinor, which we identify with electron. 

Then, (29b) is the corresponding charged spinor equation in a curved space-time, (29c) 

being its adjoint. Note that 'V; Sp. in (29b) is the U(1) gauge covariant spinor derivative. 

Eq. (29d) gives the energy-momentum equation involving the energy-momentum tensors of 

gravity (27a), charged spinor particle (27b), and the electromagnetic field (27c). We remark 

that the complex nature of the tetrads and the metric have never been used explicitly. 

Thus, we may restrict the whole theory to real tetrads. However, such a real restriction 

is not possible for the connection components r"p.a, as the field equations (19) and (20) 

obviously render the connection complex-valued. 

In order to fix the length scale 1 we insert (30) into the Maxwell equation (29a) and 

compare it with the usual expression 

P 16i12/102 ie 'V.FII1 :b ..!... 'V. FII1 ¢} 
ne II -e II 

2 1 2 ne 12 
I = -610 ~/ = --/0 :::} 1~ 0.8310 , (31)

47l' e 411" 647l'a 

where a is the fine structure constant. As expected in Sec. II the value of 1 is of the same 

magnitude as the Planck length, which indicates the close relation of electromagnetism 

to space-time geometry and to gravity. If we had taken I := 10 in (12), we would have 

obtained a = 1/6411" and e ~ 1.32· 10-19 Coulomb. In a quantum field theoretic approach 

renormalization procedures could perhaps improve (31) towards I ' 0 , When (30) and 

(31) are taken into account one can easily show that (29) contains exactly the equations of 

Einstein-Maxwell theory with an electron. 

Note that the ansatz Tp. Ap. now must be changed due to (18), (19), and (30) torv 

Tp. == rap.a - raap' = 3Sp. 3Up. = 3!e Ap. + ~il02 jp. . (32)
nC 4 

Moreover, we emphasize that (32) is only a formal equation, since Tp. remains invariant 

under U(I), while Ap. does not. In fact, Ap. is related via (30) to Sp., which has originated 

from a complex linear connection through the field equations and should be understood as a 

U(1) connection on M x U(I) in its own right, see Appendix A: Mathematically, the linear 

connection I-form on F(M) has been pulled back to the bundle (L x U(I))(M). With respect 

to this product bundle Sp. can be viewed as the pull-back of a U(I) gauge potential on the 

subbundle M x U(l) via the trivial cross section i, Sp. = ~rcp'c == i*wc (A13). Therefore, Sp. 

can be gauged with U(l) by passing from i to another cross section exp(..:\)i (AI8). In (32) 

however, the torsion trace Tp., which is defined only on the complex frame bundle F(M), 

has been pulled back via a coordinate reference frame (0/oxP.) and therefore can not be 

gauged with U(I). In order to relate Tp. to Ap. via (32), the special cross section i must be 

held fixed. Since (32) is valid only in this U(1) gauge, it is rather a formal consequence of 

the true geometric equation (30) and has only a limited validity. We observe that in (32) 

the real part of torsion is not involved. Note that since the gauge transformation of Sp. 

takes place on M x U(I) only, the metric part (19) of the connection and also the tetrads 

on L(M) remain unaffected. Especially, the metric 9p.1I remains unchanged. Therefore, the 

gauge transformation (28) is by no means related the so-called conformal transformations 

of the metric. 

Despite the before mentioned agreements of our theory with the Einstein-Maxwell theory 

our interpretation of electromagnetism is geometric in that we regard Sp. as the true elec

tromagnetic vector potential rather than Ap., and describe the electromagnetic interaction 
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through the field equations (29) together with the definite l (31) only, thereby completely dis

regarding (30). This geometrical viewpoint respects the way the U(l) potential Sp. together 

with the "gravitational" metric part (19) originated from a single space-time connection. 

Note that the occurrence of the trivial group structure Lx U(1) above (and, more explicitly, 

in Appendix A) accounting for both gravity and electromagnetism is in accord with the 

well-known theorem that, algebraically, it is impossible to combine space-time and internal 

symmetry in any but a trivial way.17 But the aim of our theory is the understanding, how 

gravity and electromagnetism emerge geometrically from the space-time structure using an 

extended spinor derivative. 

So far we have considered only an electron. In order to include other, differently charged 

particles we observe that in case of a metric connection with rap.b = - rbp.a the spin or deriva

tive (10) can be written as 

Vp.1/J =op.1/J ~rap.bqba1/J + ~rap.a1/J , 	 (33) 

where c; E 1Ft Inserting back our complex connection, this spinor derivative corresponds to 

the charge c;e. 

To discover the spin-spin contact interaction missing so far we briefly discuss a many-

particle system consisting of spinors having charges c;{z)e, c;{z) E IR., and masses mz , 

where zis an index. In (12) only the matter Lagrangian em changes. It becomes now a sum 

of Lagrangians for each spinor 1/Jz, its spinor derivative given by (33) with c; = c;{z). The 

field equations for this system can be handled in the same fashion as in Sec. 111.15 Among 

other changes, the field equation for energy-momentum (26) gain a new spin-spin interaction 

term Wo/3 on its right-hand side, 

W 3 l 4 " (. .p. ·5 '5P.)or; 8k 0 	 L....t }zp.}z' + }zp.}z' go/3, (34) 
z#z' 

where jf = ii}z"fp.1/Jz and j~p. = ii}z"f5"fp.1/Jz< Corresponding terms appear in the Dirac equations 

i"{p.{V; - c;{z)Sp.)1/Jz - m;c 1/Jz + ~l02 L (j:. + j;,p."f5
) "fp.1/Jz 0 . (35) 

z'#z 
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Contrary to the Einstein-Cartan theory (3) the contact interaction occurs here only between 

distinct particles. This and the vanishing of cubic terms in (21) and (23) are due to (24) and 

have their origin in our special choice of em in (12), where the adjoint covariant derivative 

of ii} is missing. Usually, the matter Lagrangian is required to be real, necessitating the 

inclusion of both derivatives of 1/J and ii}.2 Since in (12) the Lagrangians ea and ey were 

already complex, there was no need to make em alone real valued by including the adjoint 

spinor derivative. In our opinion, self-interactions of Dirac particles like in (3) should be 

avoided because of the Fermi-Dirac spin-statistics they obey. We remark that the spin

spin interaction is far too weak to be observed by laboratory experiments, and its influence 

on cosmological phenomena remains to be studied. IS These experimental limitations are 

true also for propagating torsion theories, see Ref. 19. On the other hand, such contact 

interaction may be regarded as a low-energy (below the Planck scale) approximation to the 

fundamental dynamics of the Einstein-Cartan theory. 20 

v. CONCLUSIONS 

We have employed a complex linear connection and an extended spin or derivative to em

bed the gravitational and electromagnetic interactions into the space-time geometry. Con

trary to earlier works at unification the fibre geometric background could be clarified (Ap

pendix A). Especially, the long standing relation Tp. Ap. were shown to be only a formal I'V 

remnant of the geometric relation (30). Also, the real part of torsion is not related to elec

tromagnetism even formally. Further, it follows from our work that electromagnetism can 

not be immersed into a Riemann-Cartan geometry contrary to the work by Hammond.21 

The field equations are derived from a variational principle and exhibit precisely the 

structures of the Einstein-Maxwell theory with a negatively charged spinor particle. How

ever, the many-particle system revealed a new type of spin-spin contact interaction without 

self-interaction, which was necessarily absent in the single-particle case. Furthermore, our 

theory differs from the usual Einstein-Maxwell theory in the geometrical understanding of 

15 
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electromagnetism and its physical consequences. From the fibre bundle structure of our 

theory it follows that a metric connection and an electromagnetic vector potential emerge 

from the single complex linear connection by pull-back techniques. Accordingly, we interpret 

electromagnetism purely geometrically and use as the only physical constant a characteristic 

length 1 close to the Planck length. This geometrization scheme involves the "melting" of 

the charge q and AI' into one single expression. Using a further extension of the covariant 

spinor derivative spinors with arbitrary charges c:e could be treated in the theory. Finally, 

the parallel transports of uncharged tensors on space-time are carried out by the resultant 

metric connection mentioned before, which contains a complex contorsion. Physical mea

surements remain unaffected by this contribution because the metric is preserved under the 

parallel displacements. 
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APPENDIX A: BUNDLE GEOMETRY 

We establish the fibre bundle structure underlying our theory and especially introduce 

the spin structure15,lO,ll essential to define the extended spinor derivative (10). We then 

explain the pull-back techniques used to obtain a special spin connection I-form w, from 

any given linear connection I-form w. Considering local cross sections we show that w, 

indeed results in (10). We stress that the gauge group of the spinor 'I/J is of course not the 

full GL(4,q but only the product L x U(l). 
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In the following Lie group homomorphisms and their Lie algebra homomorphisms will 

be denoted by the same letter. 

1. Fibre Bundle Structure 

Since our goal is to construct a spin connection w, from a linear connection w by pull

backs, we must establish a diagram of bundle mappings between a certain spin bundle and 

the frame bundle F(M) in order to obtain the necessary pull-back mappings. To introduce 

such a bundle diagram, we first concentrate only on the various structure groups involved 

and consider the following diagram of Lie groups to be translated later into the level of fibre 

bundles, see (A4): 

GL(4,q ~ Spin x ex e~ L x ex ~ G ~ GL(4,q (AI) 

In this diagram, ex ~ GL(l, q is the group of non-zero complex numbers, and the multi

plication map ()o is defined by 

()o: L x ex -t GL(4,q, (A,c) I-t Ac. (A2) 

We then define the group G to be the image G := ()o(L x eX) and denote its canonical 

inclusion into GL( 4, q by jo. In (AI) Spin is the spin group of the complex Lorentz group 

L (thus, Spin ~ SL(2, q x SL(2, q, see Ref. 23), and 

eo : Spin -t L 

is the corresponding twofold spin map. Finally, the representation map ( is defined by 

( : Spin x ex -t GL{4, q, (A, c) I-t (0(A)c- 1 , (A3) 

where (0 : Spin -t GL(4, q is the usual spin representation, see e.g. Ref. 23. 

Having explained (AI) we now translate it into the level of (principal) bundles: 

SCM) ti. (Spin x ex )(M) ~ (L x ex )(M) ~ G(M) 

17 

F(M) . (A4) 



In this diagram, generally, the G1 x G2 product bundle (G1 x G2)(M) of two principal 

bundles G1(M) and G2 ( M) is given by the restriction of G1(M) x G2( M) to the diagonal 

t:.. C M x M, t:.. being identified with M itself.22 

ex (M) is the trivial ex bundle M x ex. Because of this triviality, it is possible to define 

the bundle map () analogously to ()o (A2) by 

() : (L x ex )(M) -+ F(M) , ((XO), c) H (cXO) , (A5) 

and define the principal bundle G(M) as the image bundle G(M) := () x ex )(M)), i 

being its canonical inclusion into F(M). In (A4), Spin(M) is the spin bundle of L(M) with 

the corresponding spin structure 

€ : Spin(M) -+ L(M) . 

Finally, (*) in (A4) denotes the building of the associated vector bundle S(M) := (Spin x 

ex )(M) x, (:4, which is the spinor bundle where Dirac spinors are defined as cross sections. 

An element 4> of S(M) is an equivalence class22 

4> = [u,4>ol = [u(A, c), ((A, ct l 4>ol, (A6) 

where u E (Spin x ex )(M), 4>0 E (:4, and (A, c) E Spin x ex. 

We remark that the bundle mappings € x id, (), and i have as their corresponding Lie 

group homomorphisms exactly €o x id, ()o, and io, respectively. 

2. Spin Connection 

With the help of the special bundle diagram (A4) we now construct a spin connection 

W. from a linear connection won F(M) by means of pull-backs. Since pull-back mappings 

of connection I-forms involve not only the geometrical mappings between the corresponding 

spaces but also mappings between the Lie algebras of the structure groups, let us consider 

the Lie algebras first. 

Define the vector subspace m in the Lie algebra gl(4, q of GL( 4, e) 


IS 


m:= {A E gl(4,e) IAT7] -7]A 0 and tr(A) = O} . (A7) 

Denoting the Lie algebra of the Lorentz group L by l, we can easily verify the following 

(vector space) decomposition 

gl(4, q = $ e· n $ m (ASa) 

1 TIl T 1 )A = -(A - 7]A 7]) + -trA·n + -(A +7]A 7] - -trA·n . (ASb)
2 4 2 2 

Now, l $ e . n =: 9 is precisely the Lie algebra of G, and for every Ac E G it follows 

(Ac)m(Ac)-l em. In this case the 9 component of the pull-back rw WIG(M) in (A4) is 

a G connection on G(M),22 which we denote by WG. 

We move in (A4) to the left and further pull back this connection WG via (). Since 

obviously, ()o (A2) induces a Lie algebra isomorphism (it is however not an isomorphism of 

groups), we obtain a connection ();;l()*WG on the product bundle (L x ex )(M).22 By the 

same token 

w" (€o x idtl(€ x id)*(();;l()*wG) (A9) 

is a connection on the spin bundle (Spin x ex )(M), which we call an extended spin connec

tion. 

In order to decompose the connection I-forms on the product bundles in (A4), let p : 

(L x ex )(M) -+ L(M) and q : (L x ex )(M) -+ ex (M) be the canonical projections. Then 

there exist a unique L connection W, on L(M) and a unique ex connection We on ex (M), 

which decompose the connection I-form on (L x eX)(M) as22 

();; 
1()*WG P*WI $ q*We . (AIO) 

This leads to a corresponding decomposition of the extended spin connection (A9), where 

we omit the bundle projections for the sake of simplicity 

W" = CleWl $wc' (All) 

Note the fact that no use have been made of the orthonormal tetrads (J so far. 
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3. Spinor Derivative 

This spin connection W. defines a covariant differentiation on the associated vector bundle 

S(M). We now show that (10) is exactly this derivative. Let u be an orthonormal tetrad 

field which is a local cross section in L, and let 0- be one of its liftings to the spin bundle 

Spin(M). Thus, we have u = ~(o-). Furthermore let i be the trivial cross section on M x ex 

prescribing to each p E U the value i(p) := (p,l). 

Since r4pbdxp (g*W)4b (6) is the pull-back of the whole linear connection, the pull

backs of the L connection WI and of the ex connection We are obtained using (AI0) and the 

algebraic decomposition (AS) 

(u·wd 4b = ~(r"Pb - r bp") and (A12) 

i* IreWe = '4 pc' (A13) 

Thus for the whole connection O;lO*WG on (L x ex )(M) the decomposition (AI0) implies 

((u, ijO;lO*wG) "b ~(r"pb - r bp0.) + ~rcpc ·8"b . (A14) 

The solution (IS) has exactly this structure and can thus be understood as a sum of two 

connections (A12) and (A13) on two different bundles according to (AI0). This viewpoint 

enables the separation of the whole connection (IS) into the ex part Sp (which actually is 

a U(l) part, see below) and the L part rapt' (19). 

We now define the covariant spinor derivative of Dirac spinors using the extended spin 

connection W. (A9). A Dirac spinor 1/J is a cross section in S{M), which may be written 

according to (A6) as an equivalence class with the help of the local cross section (0-, i) in 

(Spin x ex )(M) as 

1/J [(0-, i) , 1/Jo] , (A15) 

where 1/Jo is a C4-valued function usually denoted simply by the same letter 1/J and referred to 

as the Dirac spinor itself. This convention was already used in (10). The local trivialization 

of S(M) in (A15) allows us to express the covariant derivative of 1/J through12 

20 

V p1/J = [(0-, i), 8p1/Jo +, ((0-, irw.) (A16) 

where (see (A3), (All), (A12), and (A13)) 

(((0-, irw,,) '0 ~;l~(o-)·WI ED (-n)· i*we 

-1 b 1(r4 r 0.) 1re n-'V 'V • - L - b - - •4 ' ,0. 2 PrJ P 4 pc 

1r a b= -- pb'Y 'Ya (A17)
4 

This shows the required agreement with (10). Note that we have used here the (usual) 

explicit form of the Lie algebra homomorphism ,~;1,1l.15 leading to the matrix expression 

=t'Yb'Y". The -n in front of i*we is due to the special representation c-1 in (A3), whereas 

cthe important factor i in front of r pc comes from the algebraic decomposition (AS). 

4. U(l) Gauge Transformation 

If we change the section i to exp( A) . i, A being a Cvalued function, then from standard 

theories on gauge transformations it follows 

(exp(A).i)*wc ~rCpc+8pA (A IS) 

and (see (A3») 

1/J [(0-, I), 1/Jo] exp(A) . i), exp(A) '1/Jo] . (A19) 

Since this ex gauge transformation takes place on M x ex the tetrad u and the Lorentz 

connection (A12) on L(M) remain unchanged. Thus the metric is also invariant under ex. 

It is easy to show that the adjoint spinor if; transforms to exp(X) . if;, and that in (12) only 

the matter Lagrangian em is affected by the change and transforms to exp(A + X) . em. 
The invariance of em thus implies A + X 0 or exp(A) E U(l). We must therefore replace 

M x ex by its reduced bundle M x 

21 



APPENDIX B: 4-VECTOR DECOMPOSITION 

Given a third rank tensor EatJ-y define Ta{yp Qa, Sth U"1' and V6 as follows: 

1 
EaP'Y =: ~ I (5Ea(. E(a. 

+(-El( + E·.f3)9a"1 

+(- E/. E\, + 5EE'"1 )9af3 ] + E[af3"11 + T aP'Y 

1 6 
Qa9tJ-y + Sf39a"1 + U"19af3 - 12'IJaf3"16V + Taf3"1' 

For V 6 we have then V6 = 2'IJaf3"16 • Eaf3"1. From the first equation we conclude 

Ea•o = 118 [20Ea•• 4E(a, 4EEoa 

-Eac•o +5E'a( - EEEa 

- EaE. E'a. + 5E',a] + TacO. ¢:} T a (. 0 . 

Similarly, TEf3. T'q = O. Furthermore, E[acP'Y1 = E[acP'Y1 + T[af3"11 ¢:} Tiaf3"11 O. 
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