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Abstract 

A simple model of the coherent beam motions in e+e- colliding storage rings is 

proposed. The model is based on an approximation that the beam distribution 

is always Gaussian with variable barycenters and rms beam sizes. Most of the 

characteristic features of the multi-particle tracking results are reproduced by 

this model. 
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In future high luminosity machines, such as flavor factofies[1,2], the beam­

beam effects[31 will be more serious than present. We, however, still do not 

understand these effects enough. At present, the multiparticle tracking (MPT) 

seems the only tool to evaluate them[4]. MPT, however, does not provide us 

an understanding of the effects: we need a simple model which permits us 

predicting most characteri~tic features of the effects with simple concepts. In 

this connection, the so-called coherent approach[5] seems useful. In particular, 

the Gaussian models have put forward some sound models. 

In the rigid Gaussian model [6] , the bunch distribution is assumed to be 

a Gaussian with fixed variances: only the barycenter variables can change. 

This model could explain the spontaneous beam separation (SBS) for the linear 

instabilities. The model was extended to the case with a primordial beam 

offset[7] in order to evaluate the closed orbit effects[8] due to the peripheral 

(parasitic) collisions [9]. This model, however, has the shortcomings that the 

beam size effects are overlooked. 

In the soft Gaussian model[lO], the beam variances can change but the 

barycenters are kept fixed. It could explain the beam-beam limit and the flip­

flop effects. This, however, predicted too large beam sizes. To improve it, the 

linear-soft Gaussian model was proposed[11,12], where the beam-beam force 

is assumed to be linear. Since, although the force is linear, its focal length 

depends on the beam size of the encountering bunch, the total system is quite 

nonlinear. These models predict chaotic variation of the beam sizes, which, 

however, was not observed in MPT nor in experiments. Below the threshold 

of the chaotic motion, these model give quite reasonable predictions. In many 

cases, in addition, the threshold of this chaotic motion is either unpractically 

large or higher than that of dipole instability. 

In this paper, we will extend these models: we make the rigid-Gaussian and 

linear-soft-Gaussian models merge into a unified model in order to get rid of 

shortcomings of each model. As we will see later, our model can reproduce the 

MPT results fairly well. This fact provides a hope that we can understand the 
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beam-beam effects rather simply. 

Suppose an e+e- storage ring with only one interaction point (IP) and with 

only one bunch in each beam. In this paper, for simplicity, we consider the 

symmetric case only: both beams have the same parameters such as the num­

ber of particles N, the relativistic Lorentz factor I, the nominal (i.e. without 

beam-beam effects) betatron functions Po and the nominal emittance c. Also, 

for simplicity, we assume that beams are very flat and the horizontal force is 

negligible. We thus can restrict ourselves to the vertical motions. As canonical 

variables of an e±, we use 

where dOy is the nominal vertical beam size. 

Important coherent quantities are the barycenters fi = (Yi) (the ( ) is av­

erage over the distribution and i is 1 or 2) and the envelope matrix Mij = 

«Y - Y)i(Y - Y)j). For simplicity, we assume M+ = M_, that is, the envelope 

of both beams behave symmetrically. Technically, it is easy to introduce asym­

metry in M as in Refs. [11,12]. In this case, however, the model inherits an 

abnormal property from the linear-soft-Gaussian model: the flip-flop and the 

chaotic instability occur too easily. By restricting to the symmetric case, we 

can avoid it. 

A particle is kicked at the IP as 

(Yi ~ Ji;*).6.Y1 = 0, .6.1'2 = -21r3/2TJ erf ~ , (1) 

where TJ is the nominal beam-beam parameter 

Nre Poy
77=- . 

21r1 dOxdOy 

The quantity with * refers to the encountering bunch. This induces a map for 

the barycenter variables as [13] 

.6.Yj = 0, (2) 
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For the envelope, we linearize Eq.(l) as 

~(Y2 - JI;) = -!((T/, Yl- ~*, Mn)(Yl - Yl), 

(- _)2)1 Y1 - Yt* 
I( = / 1r1] exp .23 2

JMll ( 2Mn 

Note that the both beams. are focused to their own barycenters, like the tidal 

force. The focusing !{ depends on Mll as well as the difference between two 

barycenters. This makes the map quite nonlinear. Under this simplification, 

the change of the envelope M is simply as 

~Ml1 = 0, ~M12 = -!(Mll , 

At the arc, i.e. from IP to IP for one turn, we have a betatron oscillation 

with radiation effects[14]: 

(3) 

(4) 

where! is the unit matrix and 

U = ( cos J1. SIn J1. ) 
- sIn J1. cos J1. 

Here J1. = 21rV (v being the tune) and ,\ = exp (-liT) (T being the vertical 

damping time divided by the revolution time.) 

N ow the model is fixed. We study the behavior of fi± and M ij • In this 

paper, we are interested in the equilibrium distributions, represented by Y~ 

and Moo. The most probable candidate is the period-one fixed point (PIFP): 

y~ and Moo repeats the same values every turn. When the collision is head-on, 

the natural ansatz for the fixed point is y~ - o. The solution is given implicitly 

as 
M _ 1 + k cot J1. (1 . k ) 0 (~)

k 200 - 1 + 2k cot J1. - k 1 + 2k cot J1. + T' 

where k V21r1]I j(Moo)ll' The solution is unique. Some examples of Moo are 

given in Fig.I. The Mil represents effects of the dynamic-beta[15] and the 
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Figure 1: Examples of MIT for 
various v (written in the figure) 
in the limit T --+ 00. For T larger 
than 100, the behavior is almost 
completely the same. 
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dynamic-emittance[14]. In the figure, we showed v only below 1/2. For v larger 

than 1/2, the same pattern repeats periodically with period 1/2. This applies 

also for all the following figures. 

The problem is the stability of this solution. We make the stability matrix: 

S - o(Y'+ - Y'-, M') I 
- o(Y+ - Y_,M) PIFP' 

where the prime refers to the quantities after one revolution. The quantity 

Y+ +y_ is completely decoupled from other variables and we have Y+ +Y~ = O. 

When one of its eigenvalues is larger than unity in absolute value, the PIFP is 

unstable. 

The matrix S can be blockwise-diagonalized as S diag(Sd' Se), where Sd 

is 2 x 2 and describes the stability of the barycenter motion and 3 x 3 matrix Se 

corresponds to a subspace of M. The unstable regions of each mode are shown 

in Fig.2. 

This diagram, however, predicts the stability of P1FP but nothing more. To 

study it, we peIform the maps Eqs.(2), (3) and (4) iteratively starting from a 

certain initial state. (This is refereed to as a model tracking). The result is 

shown in Fig.3, where we start from M = I and Jit+ -Jit- = 0.1. We show the 

average distance of two barycenters 
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the average effective beam size h/Mii + Mil)av (it is ~ in the model) and 

the luminosity reduction factor R: 

.f 2 [ l(¥i+-Yi-)2]
R= (y Mii +Mil exp -2" Mii + Mli }av, 

where ( }av means average over many turns. The real luminosity L is Lo x R 

where Lo is the nominal luminosity. Both dipole and quadrupole instabilities 

The model tracking shows that the resulting equilibrium is identical with 
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Figure 2: The unstable re­
gion of P 1 FP for T --+ 

00. The branches extending 
from (1/,.,,) (0.25,0) and 
(0.5,0) correspond to the 
quadrupole and the dipole 
instabilities, respectively. 

Figure 3: The tracking 
results of the model and 
MPT. (Above) the luminos­
ity reduction factor R by 
the model (line) and MPT 
( x). (Below) The barycen­
ter difference D (x) and 
the beam size (2Mll)1/2 (as 
error bars) by the model. 
MPT shows very similar re­
sults. Parameters: 77 = 0.06 
and T 1000. In MPT, 
1000 particles were used for 
each beam and tracked for 
10000 turns. 



PIFP except for tunes around 11 = 0.5 and 11 = 0.24. The' former is the half­

integer resonance and can be understood in terms of the rigid-Gaussian model 

only[61. As for the latter, the presence of instability is consistent with the stabil­

ity diagram, Fig.2, but the diagram asserts that the beam size is enhanced while 

the model tracking indicates the barycenter is also affected. This does not imply 

the failure of the model: ~he stability analysis does not tell us what happens 

after the stability condition is broken. Dipole and quadrupole instabilities co­

operate with each other. The unstable mode does not necessarily dominates the 

effects: the beam separation takes place even though the instability is triggered 

by the quadrupole mode. This phenomenon indicates that the present model is 

not a mere superposition of the rigid-Gaussian and linear-soft-Gaussian models. 

At this tune, the 4-th order resonance occurs and the whole single bunch is 

trapped by the resonance: the 2-vector Y+ - Y- repeats the same value every 

four turns with M enlarged but kept almost constant. In order to confirm 

that this observation is valid and not the consequence of the simplification 

of the present model, we perform a MPT: two beams are treated completely 

independent and the Gaussian approximation in calculating the beam-beam 

force is avoided by counting number of particles[71. The result is shown in 

Fig.4. The prediction of the model is confirmed. 

In this connection, we stress the usefulness of our method over the Vlasov 

technique[17]. The latter allows us to draw stability diagram like Fig.2. It 

is true that such approach can be more systematic and rigorous in predicting 

unstable regions. The shortcoming of this approach is that one cannot discuss 

the equilibrium beam distribution nor the luminosity. In addition, they are 

restricted usually to analyzing the stability of infinitesimal deviation from the 

nominal equilibrium state. Thus the Vlasov approach may predict only that 

the luminosity is Lo in stable region and something happens in unstable region. 

As clear from the present example, L =1= Lo even in stable region. 

In Fig.3, we have also shown the evaluation of R by MPT. Considering its 

simplicity, the model agrees satisfactorily well with MPT. This supports the 
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Figure 4: The phase space distribution of e+ and e- bunches (yt±, Y2±) in an 
equilibrium evaluated by MPT. Both are caught by the fourth order resonance 
(v = 0.21). The same configuration repeats every 4 turns. To make the struc­
ture evident, the 'TJ = 0.1 and T = 100 are used. The barycenter and beam sizes 
are both affected. 

validity of our model strongly. The nonlinear resonances seen in MPT around 

v = 0.15 and 0.32 and the detailed structure of the fourth order resonance are, 

however, not covered by the present model[16]. 

We have thus proposed a model which uses simple concepts only, permits us 

analytical calculations and gives practical and fairly reliable predictions of the 

beam-beam effects, though not perfect. The present model treats the simplest 

case but it can easily be extended to more general cases, including the asym­

metry of the ring parameters between two beams, presence of the primordial 

offset and the peripheral collisions and two-dimensional (horizontal and verti­

cal) motions with elliptic beam. In order to discuss the beam-beam limit (i.e. 

the case with large T/), we should include the flip-flop mode (M+ and M_ can 

act independently). This seems more difficult and challenging. More detailed 

and extended work will be published elsewhere. 
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