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Abstract

This report reviews the limitations on the performance of the planned B- and
®-factories due to the collective interactions of stored bunches. Together with the
traditional revision of the limitations due to the single- and multi-bunch interaction
with surrounding electrodes, we briefly discuss in this report the limitations on
the performance due to collective beam-beam instabilities of colliding beams and
instabilities due to the collective interaction of beams with the ions.

1 Introduction

The construction of widely discussed now new generation of colliders, the so-called B-
and ®-factories [1]+[4], which have to reach huge luminosities (10% <+ 10* 1/cm’s) in
the .5 - 5 GeV energy range, presents very challenging opportunities both for particle
accelerator physics and technology. With such a high goal luminosity, the performance
of these colliders will very likely be limited by the current-dependent phenomena. If the
total (average) beam current is I = Ne/To, E = yMc? is the particle energy, and 5"
is a B-function at the interaction point (IP), then, with the given threshold value of the
so-called beam-beam parameter ¢ the luminosity of the collider does not exceed

CSﬁo*m ro = e2/Mé’. (1.1)

T 4rgf

This equation is written while assuming the lengths of colliding bunches o, be shorter
than B°. Otherwise, the luminosity £(c,/3") gets additional decay, as is shown in Fig.1.
Thus, to increase the luminosity of a ring, we have to increase the threshold values of the
beam current I and £. Except for the other reasons, these values can be limited by the
collective interaction of colliding bunches as well as by their interaction with surrounding
elements of the vacuum chamber. Although the limitations on the performance of B-
factories due to the interaction of the beam with its environment have been reviewed at
least several times (see, for instance, in [5,6]), a closer inspection of a possible limitations
due to various effects related to particular designs adds more effects to worry about.

In this report, after pointing out some more or less ideas we focus on the following
items:

o The use of the passive tools to cure the instabilities due to the interaction of the
beam with surrounding electrodes;

o Landau damping due to the nonlinearity of betatron oscillations;
e Collective beam-beam effects; and

e The interaction of electron and positron beams with ions.
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Figure 1: Dependence of the luminosity on the bunch length.

Once the main goal of this paper is to review collective effects which are specific to
B-factories, we typically use relevant approximations which hold in the region of the
parameters defined in the Table. For the same reason, except in some particular cases,
many equations are given in their final form. In these cases the corresponding detailed
calculations can be found in the cited references.

To obtain a luminosity 10** 1/(cm?) in a ring with E = 5Gev, #* = lcm and ¢ = .05
by Eq.(1.1) the total beam current should be I ~ 3.5A. Since such a large current cannot
be obtained in one bunch with a reasonably small length and emittances, in all projects
it is planed to work with beams containing many bunches, such that I = I, and when
current I, of the bunch ensures its desirable parameters. The choice of the number of
bunches in the beam & is determined by a reasonable compromise between the limitations
due to single- and multi-bunch instabilities, which can occur due to the interaction of
the beam and the surrounding electrodes. Since the use of various feedback systems is
typically considered as the possible way to cure these instabilities, in, for instance, SLAC
[3] and KEK [4] projects this number of bunches was chosen so as to simplify single-
bunch problems. The Table can give the reader some impression on the discussed beam
parameters.

Another scope of the limitations on bunches and ring performance can be caused by
coherent beam-beam instabilities. The first careful study of this phenomenon [7] indicated
it as being a severe instability, which generally limits the value of {. Due to the strong

nonlinearity of the beam-beam kick, the design has to ensure the stability not only of
the dipole, but also of some initial multipole coherent oscillations. As recently found in

[8,9], for short bunches with o, < * the Landau damping due to a nonlinearity of the
beam-beam force does not help very much against this instability. Qualitatively, this was
explained in [10], were it was shown that roughly only 15% of ¢ contributes to Landau
damping. As shown in [11], the stability of colliding bunches which have a round cross
section can be improved in the region o, > §* due to an effect which was predicted by




S.Krishnagopal and R.Siemann in [12]. However, this suppression of collective beam-beam
resonances does not work for flat bunches (since typically B2 > o,). The development of a
feedback system which is capable to stabilizing coherent beam-beam oscillations presents
a very difficult problem.

The limitations due to beam-ion interactions are typically associated with the possi-
bility of the accumulation of ions in the electron beam, when these ions can cause very
strong perturbations of the particle motion. However, in the case of a B-factory with a
very close location of bunches inside the beam, the production of ions can provide un-
desirable coupling and, hence, an instability of the coherent oscillations of bunches, even
when ions can not be trapped by the beam. This effect can limit the performance of both
the electron and positron rings of a B-factory.

As a general conclusion of this section we remind the classification of collective insta-
bilities, which was suggested in [13], and as far seems to be in agreement with practical
estimations and expectations. By this classification, depending on the memory of an el-
ement interacting with the beam, all instabilities can be divided into 3 groups. The 1st
contains the resonant instabilities due to the interaction with wakes, which decay during
many revolution periods. This means that the beam interacts with some high-Q value
cavity (or another resonant element) and oscillations become unstable, provided that the
frequencies of the cavity wi and of the beam (mgwe, @ = z, z, 3) satisfy a summation-type
resonant condition [14]

WE = MaWwe + g, wp = 27/ Ty, (1.2)

Since in this case the coupling of coherent oscillations of the bunch with oscillations of the
induced fields can be very strong, the instabilities of this type are the most severe. With
such a milti-turn interaction the increments of unstable modes are determined by the total
current of the beam. The obvious way to cure these instabilities by detuning the cavity
or the beam from the resonance is typically embarrassed by the fact that they appear
accidentally and can hardly be calculated beforehand. This difficulty is well known and,
once again, was pointed out by P. Morton in [5]. The interaction with a high-Q passive
cavity in a differential-type resonance obviously damps the coherent resonant mode due
to redistribution of the cavity-mode decrement between the field and beam oscillations. If
Ak is the decrement of a cavity-mode, the maximum decrement, which can be transferred
into coherent mode, is obviously \./2.

The instabilities of the 2nd group are caused by the interaction of the beam with wakes,
which decay during time intervals comparable to the revolution period. The most famous
example gives the resistive wall instability [15]. The increments of these instabilities
contain both single- and multi-bunch (multi-turn) parts. The ratio between these two
parts generally depends on the working point of the ring, on the ring chromaticity and
other parameters. A careful calculation of decrements as well as a proper choice of the
working point of the ring can simplify the damping of multi-bunch modes of the beam.
Multi-bunch modes can be damped using a relevant feedback systems (see in [1]+[4]). In
the described B-factory projects (1]+-[4] the instabilities of the 2nd group are typically
associated with the interaction of the beam with the higher order modes of various cavities.

Finally, the coherent effects of the 3d group are caused by the interaction of bunches



1ti ) ; period in the ring (in the case of
multi-bunch beam, the wake must disappear within the bunch-to-bunch distance) Thesfa,L

are the so- 1 i
e;fzﬂtse‘sot}cla,lled single-turn (or single-bunch) effects. Ope of the specific features of these
“5 15 the very weak dependence of decrements (increments) of coherent oscillations

e, when such an interaction damps coherent

the first two groups (16]. The i
! A practical use of such dampip t
careful high-frequency matching of the elements. P e usually demands o

2 Single-Bunch Effects

mstablhtles- due to single-bunch effects are more important for rings, where the number
of bunches is not very high and, therefore, the current in a single bunch can be relatively
high. The damping single-bunch effects due to interaction with the either passive, or
active devices seems be useful in all cases (see, for instance, in [3,4]). ,

A careful analysis of single-bunch effects is usually troublesome due to the inevitable
necessity to solve very complicated integral equation, or a system of integral equations
which describe the interaction of particles within a bunch. Apart from evaluating the safe
margins for the coupling impedance, these equations must be solved numerically. In these
circumstances an important supplement to numerical calculations can provide solvable
examples (see in [10]), as well as a calculation of values which do not require any direct
solution of these equation. As an example, we mention the calculations of various sums
of the decrements of the collective modes, which are defined as the traces of the kernels
of relevant equations. Since these sums do not depend on both the coupling of bunches
and on the coupling between particle degrees of freedom [17], its calculation becomes
especially important for estimating the effectiveness of the damping systems of coherent

oscillations.

2.1 Transverse Single-Bunch Effects

Before listing some typical effects which can limit the parameters of the rings'in particular
projects, we make the following general remark. Typically, the wake-fields induced by a
bunch in the environment are directed against its total current. In many cases the part of
the wake related to the excitation of fields by the longitudinal (synchronous) motion of the
bunch dominates. Then, for the most important dipole modes of transverse oscillfttic'ms
the description of wakes in terms of the transverse impedance yields a suitable description
of the instability. Meanwhile, there is another important class of elements of the vacuum
chamber, such as matched plates, when the excitation of wakes by t.ransverse current
gives the dominant contribution to the decrements of coherent oscillations of the bux}ch
(see, for instance in [16], [18] and [19]). This is the so-called effect of the fast d.ampmg
of coherent oscillations, which was first observed in VEPP-2 in Novosibirsk (see in [20]).
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are not know in advance, and can only be estimated by some para,mete.r Q,‘n using, say,
perturbation theory . For the most important case of dipole coherent oscillations, {1, can

be defined as follows
Ibe

2pvy

O = — 7 dnZy(n). (2.1)

Here, I, = Nye/Ty is the bunch current, p = E/c the particle momentum, v the betatron
tune, and Z; (w) the transverse impedance of the pipe. Physically, Q. yields coherent
frequency shift of the bunch with the zeroth length. If the ratio

|2

Ws

b= (2.2)
is small , a coherent interaction only slightly distorts the unperturbed spectra. In this

case, if M, and m, are the multipole numbers of transverse and synchrotron oscillations,
the eigenfrequencies of the coherent oscillations occur close to the combinations:

W= 77—"1,_1_(3_1_ + m,wy, (23)

while the modes of oscillations can be classified using the synchrotron multipole number
m, into the betatron, synchrotron and synchrobetatron modes.

Since both coherent frequency shifts and increments of coherent oscillations increase
with an increase in the beam current, it may occur that a coherent interaction will couple
the synchrotron modes of the bunch, and the multipole number m. will no longer classify
its coherent modes. Physically, this fact corresponds to the development of coherent
oscillations during time intervals comparable to or faster than the periods of synchrotron
oscillations of the bunch particles. Typically, the coupling of synchrotron modes of the
bunch breaks the stability of the coherent oscillations. In the region of rather moderate
mode coupling (b ~ 1) the study of the collective stability of the beam usually requires the

1For instance, to prevent the wideband bunch-to-bunch interaction, in KEK B-factory [4] the length
of such devices should not exceed 30 cm, in SLAC project [3] - 60 cm.



solution of an infinite system of the coupled integral equations (see, for instance, in [21]).
Its truncation yields both the eigenmodes and eigenfrequencies, as well as stability criteria
of coherent oscillations. Although careful calculations of the collective spectra in cases of
practical interest requires the use of numerical methods, 2 the lowest instability thresholds
can be evaluated using perturbation theory. Simple calculations (see, for example, in [23])

Aw,,

m, =1
W, E =
0.5
Fity = 0
. : — QO /w,
0.1 0.2 0.3 0.4 5 B
-0.5
_1_.__,//

m, = —1

Figure 2: Dependences of coherent frequency shifts of the betatron and first two synchro-
betatron modes on the bunch current.

show that the betatron and the first synchrobetatron modes merge (see in Fig.2) when

|Qm| > .3w;. (2.4)
Using the relationship between the transverse and longitudinal impedances,
1w 0?
Z ES Z , T 25
1(w) o (5252f II(U,""LN) ﬂ:o) ) (2.5)

and estimating the derivatives by the order of value,

92 2
~ 2l 2
52 ZJ_ ) ( 6)
where [, is the pipe radius, we can also write
Cc ZZH(w)
Zuw) 2 L2 (2.7)
Substituting this relation in Eqs(2.1) and (2.4) yields
7 E R}
/ dnZy(n)/n| < 0.6v,v, —=2, (2.8)
eI,, [i

2A simple model, which enables exact solution of the synchrobetatron mode-coupling equations, has
been recently proposed by V. Danilov and E. Perevedentsev in [22]. Relevant solutions of the mode-
coupling equations have been obtained in [23].



where 27 Ry is the perimeter of the orbit. For example, for the KEK B-factory in the
TRISTAN MR tunnel (see in the Table), and for [, = 3 cm, the integral in the left-hand
side of Eq.(2.8) should not exceed 20 KOhm. Since below the pipe cutoff frequency Z)/n
is approximately constant, and then decreases roughly o RZ/(nl,)?, Eq.(2.8) estimates
the threshold impedance of the ring as

(Z)/n) < 250 mOhm, (2.9)

Note that the increase in both the transverse and synchrotron tunes generally suppresses
the mode-coupling instability and, therefore, increases the acceptable value of Zj/n.
Generally, the stability of coherent oscillations of bunches can be provided by syn-
chrotron radiation damping (SRD) and by Landau damping of the collective modes. As
can be seen from the Table, the decrements due to SRD in the present B-factory designs
are expected to be rather weak. The strength of the Landau damping is defined by the fre-
quency spread of the beam. The frequency spread due to the nonlinearity of synchrotron

oscillations is
T

2 o, \?
Aw, = Zw, (Am> . T .
This value is even smaller than the SRD-decrements for all projects. For this reason we
may conclude that the stability of the synchrotron coherent oscillations of a bunch is
determined by the SRD, or by a suitable feedback system.

For betatron (synchrobetatron) coherent oscillations , useful information concerning
the capability of the Landau damping can be obtained by inspecting the stability diagrams
in the plane of the complex variable Q,, . If g,,(w) is the frequency distribution function,
which corresponds to the mode m, the parametric equation of this curve has the form
(see in [10] and in Appendix A for details)

1 7 dugn(w)
Qo (Awr,) —_oo Aw,, —w + 10

(2.10)

The frequency spread of the betatron coherent oscillations can be defined by two kinds
of nonlinearities. First, in a colliding-beam mode this is a nonlinearity of the beam-beam
kick. The relevant stability diagram [10] for dipole betatron oscillations is shown in Fig.3.
Although, it indicates that only 0.15¢ contributes to the damping effect, the nonlinearity
from the main interaction point (IP) cancels the coupled-mode instability if £ exceeds v,
at least twice.

Second, in the single-beam operation mode Landau damping of coherent oscillations
can be provided by the cubic nonlinearity, produced by a family of octupoles. If \/J 3,
and /J.B, are the amplitudes of the horizontal and vertical betatron oscillations of a
particle, the tune shift of the, for example, vertical oscillations due to that family, has the

form:
v, v,

AVZ:B—JZJZ-I——BTI

Fes (2.11)
where

(2.12)

11
ov, e O*H,
87,. | 8rE O/d‘sﬂ"(s)ﬂf(s) ( o2 )
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Figure 3: Stability diagram of vertical coherent oscillations for the case when the
beam-beam nonlinearity defines the frequency spread.

Since for flat bunches g, > ¢,, except for the special location of the octupoles, the tune
spreads of both vertical and horizontal oscillations will be determined by the horizontal
emittance £,. In this case the stability diagram for vertical oscillations essentially limits
the use of devices, producing the positive coherent frequency shifts (see in Fig.4). The
stability diagram for horizontal coherent oscillations has the usual shape (Fig.5). Once
the working point in the plane of {2 must be found inside the stability region, the use of
Landau damping limits both the real and imaginary parts of the coherent frequency shift.

The tune spread, which is equivalent to that from the IP, can be produced by the

family with the strength
5
/ds (a A, ) ~ 120 T/m?.

If the ring impedance is below the limit, which is defined by Eq.(2.9), transverse
coherent oscillations can still be unstable due, for instance, to head-tail instability. In
the region b < 1 and neglecting Landau damping, the instabilities limit the real part of
the impedance. For the case of short bunches, which is specific for ete™-factories, the
increments of head-tail modes can be estimated by the following simple formula (dipole
vertical betatron oscillations are assumed):

ely R /d ReZ,(n — m, C)
P, 212 n —m,(

b, = —Imw = m,—

. (nwo), m, ==+l (2.13)

Here, ¢ = dv,/dIn Ry, J(z) is the Bessel function and ¢o = 0,/ Ro. Since ReZj(n) is an

even function of n, and

o Jh =1, (2.14)

ms=-—00
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Figure 4: Stability diagram of the vertical dipole coherent oscillations for the case when
the horizontal emittance defines the frequency spread of vertical oscillations éw. The
negative sign of the nonlinearity prevents the minimum in the total tune shift and the
corresponding dynamic aperture reduction.

Im,,
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Figure 5: Stability diagram of the horizontal dipole coherent oscillations for the case when
the horizontal emittance defines the frequency spread of horizontal oscillations éw.
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the sum of the decrements in Eq.(2.13) is equal to zero:

2 ely, Ro | , ReZy(n —m,()
=m,——. | dn
pv, 212 . n —m,(

l
e

(2.15)

For short bunches (|{|po < 1) this sum rule separates the signs of the decrements of
the betatron (m, = 0) and of the synchrobetatron (m, # 0) modes. If the betatron
oscillations are stable, the synchrobetatron oscillations occur unstable and vise versa.
For a pure resistive impedance (Zj(n) = Z) the integration in Eq.(2.13) results in the
following very known formula 3

elyZ Ryo, ¢

bpm, = . 2.1
m ST gm0 (2.16)

However, the limitations due to this instability on the impedance or the ring chromaticity
cannot be discussed without additional assumptions concerning the stabilizing effects. As
an example, we give an estimation of the threshold impedance in the KEK LER due to
Landau damping, which is caused by the nonlinearity of the beam-beam force,
Z. < .156¢ g & 18 KOh (2.17)
156 — g {Ohm. X
- ely (Roo,

Another stabilizing effect can result from the interaction of a bunch with a system
of matched plates which was mentioned above. Such a system can be installed in the
ring for different purposes: for the ion cleaning, for the detection of coherent oscillations,
etc. A piece of the vacuum chamber with such a plate presents the segment of a double-

connected waveguige. Provided that it is terminated by the characteristic impedance Zg,
the interaction with the fundamental TEM-wave of this waveguide damps the betatron
coherent oscillations of a short bunch. The relevant damping decrement is defined by the
equation [16] * ({ is the length of the plate)

EIbZO I/

:wo—ﬁg, O"s<l, ¥ > 1. (218)

The fact that this decrement does not depend on the bunch length o, is specific for the
effect of fast damping [20] and indicates it as being an effective tool to damp coherent
oscillations of short bunches. The practical usage of this effect to damp coherent oscilla-
tions demands a long bunch-to bunch distance, careful matching of the plates until the

9Both this equation and Eq.(2.13) are written for the so-called hollow-bunch distribution function in
the amplitudes of synchrotron oscillations, when all particles in the bunch have the same amplitude of the
synchrotron oscillations. For more realistic, smooth distribution functions decrements can be estimated
by the extrapolation of the collective spectra from the high frequency region |n| > (|m,|Ro/c,) (see, for
instance, in [10], or [19]). This results in the equation similar to Eq.(2.16), except maybe for additional
factor 1/(|m,| + 1), which is not important here.

“Note that, since the main contribution to the decrement yield the excitation of the TEM-mode by
transverse current of the bunch, this effect cannot be described using traditional concept of the transverse
coupling impedance.

11
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harmonic numbers of at least n ~ Ro/l;, working with a definite sign of the chromaticity
to stabilize synchrobetatron modes and sufficient space for the plates. As can be seen
from Eq.(2.18), it is more beneficial to locate such plates in places with a small value
of the B-function. For instance, the interaction of a bunch which contains /; = .5 mA
with a system of plates, which have Zo = 50 Ohm, [, = 3 c¢m and the total length 0.1 of
the ring perimeter, gives § ~ 3.5 10™%w,. For the B-factory in the TRISTAN MR tunnel
this corresponds to 7 = 1/§ = 0.4 ms; for the Novosibirsk project it is 0.1 ms. We also
remind that the use of damping systems instead of Landau damping does not blow-up
the phase-space volume of the bunch.

2.2 Longitudinal Single-Bunch Effects

In most of the B and ®-factory projects the limitations due to longitudinal single-bunch
effects are associated with the growth of the bunch length with its intensity. The theory of
this phenomenon is yet far from its completion (see, for example, in [24]), and particular
designs are typically based on the half-empirical rules, or the simulations. Generally, the
interaction of a bunch with the wideband environment results in two kinds of effects:
in a distortion of the RF potential well, and in an instability of synchrotron coherent
oscillations. It seems that the experimental results indicate that a flattening of the RF-
well and associated bunch lengthening is observed at a lower beam current. This gives at
least some basis to consider these two mechanisms of bunch lengthening separately.

If the bunch only slightly distorts the potential well and, therefore, the bunch lengthen-
ing is weak, it can be calculated using perturbation theory (see, for instance, in Appendix

B). The result is °
2 2
%5 A Jar £le(Z/n)oll Ry (2.19)

a? osheVsing, 1’

where h is the harmonic number of the RF system and (Z/n)o is the value of the impedance

below the cutoff frequency.. Taking into account that at relativistic energies V oc 44,

we can rewrite Eq.(2.19) in the form which was used to scale the bunch lengthening

experimental data in early papers (see, for example, in [25])

2
N

< =1+C—

ag
2 4
Ts0 Y Os

: (2.20)

where C is a factor which depends on the ring parameters. Eq.(2.19) can be used to
estimate the limitation on the production I,(Z/n)o, when the desirable bunch lengthening
does not exceeds, say 20%. If we take again as an example the ring in the TRISTAN MR
tunnel, this yields I,(Z/n)o < 1.3 107* V, or with I, = .5 mA, (Z/n)o € 260 mOhm.
The calculations related to bunch lengthening due to potential-well distortion within
a wider region of the parameters are based on the assumption that due to the balance
between the excitation of the synchrotron oscillations due to quantum fluctuations of the

5To simplify equations in this section we write Z, instead of Z)(n)

12
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synchrotron radiation and synchrotron radiation damping the bunch reaches the Boltz-
mann equilibrium distribution with the linear density

p(p) = poexp (—U—E,f—)> : (2.21)

Here, ¢ = s/Ry — wot gives the longitudinal position of a particle inside the bunch,
U(yp) is the potential energy of the particle, and 7' is the longitudinal temperature of the
bunch. It is obvious that in using Eq.(2.21) we assume the collective stability of the bunch
beforehand. The substitution in Eq.(2.21) of the potential energy of the synchrotron
oscillations after its modification by the bunch wake results in the so-called Haissinski
equation [26]
2 [ee]
p(p) = poexp (— z /dso’w(w’ = w)p(w')) (2.22)

202 J
Here, Ryoq = 040 1s the unperturbed bunch length and

2 [ee]
58 g - / dn(—iZ, [n)e=™%. (2.23)

W) = heV sinyp 08 .

Eq.(2.22) is a nonlinear Volterra-type integral equation. For reasonable wakes
w? = / dpw?(p) < 0o (2.24)
—oQ

it always has a unique solution, which can be found by at least using successive iterations
[27](see also in Appendix C). In the case of strong bunch lengthening (w?)/2 > 1, the
interaction with dissipative surrounding results in a strong asymmetry of the linear density
along the bunch. For the case when the bunch interacts with a pure resistive impedance
Z, = Zo, the Haissinski equation can be solved directly [28]. The result is

1 exp(~2%/2)/(v27a0)

— , = ) 2.25
p(.’l?) 61 COth(f/) 5 erf(:c/\/ﬁ) z 90/0'0 ( )
Here, the value
_ , _elyZoa
£ =20"=m V2 (2.26)

specifies the strength of the lengthening. Eq.(2.26) has simple asymptotes. In the region
¢" <« 1 the distortion of the bunch length is small, while p(:v) is close to a Gaussian
distribution
p(z) = exp(~z2/2)/(VErao)[l — E'eri(z/v/3))
On the contrary, in the region ¢’ > 1 the linear density p(z) gets a specific triangle
shape (see, for instance, in[24,30] and in Fig.6):

b (=) T
p(z) = {i glz - (2.27)
El+e@(—1/2) =<0

13
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where

_ exp(—z2/2 + 2¢)
g(z) = \/Q}.’x’ :

The width of p(z) in this case is obviously

—2\/t' <z <0,

and significantly exceeds the natural length of the bunch o,

(2.28)

> Ts0- (229)

-

-4 -2 2 4 /oy

Figure 6: Deformation of the shape of the bunch linear density with the bunch intensity.
From left to right ¢": 5, 2.5, 1, 0.01.

A strong asymmetry of the linear density in Eq.(2.27) generally indicates that such
states of the bunch can be reached only through a strong instability of synchrotron coher-
ent oscillations, which roughly stops in the region where the amplitudes @ .n ~ 04(N)/2,
while phases 1, are concentrated around =. Moreover, in this region of parameters the
wakes significantly decrease the frequencies of synchrotron oscillations, which simplify the
conditions for the synchrotron mode-coupling instability of the bunch.

The instability of synchrotron coherent oscillations can result in additional heating of
the beam. Starting from paper [31] the bunch lengthening due to coherent instabilities of
a bunch was called as the turbulent one. A closer inspection of this phenomenon indicated
(see, for instance, in [10] and [32,33]) the importance of two effects for the beam heating
by its unstable coherent oscillations: the turbulent stabilization of the oscillations due to
a nonlinear dependence of the increments of unstable modes on the amplitudes of coherent
oscillations; and absorption of the energy of coherent oscillations by particles, when the
collective oscillations are stabilized by Landau damping, or some other damping effect.
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Both the analytic and numerical predictions related to the turbulent bunch lengthen-
ing are still too speculative (see, for example in [34]), and are typically focused on the
most convincing calculations of the stability thresholds for the linear synchrotron coherent
oscillations. Below the threshold of the synchrotron mode-coupling instability the calcula-
tion of the safe margins for the longitudinal impedance uses typically Z [ncriterion, or its
suitable modification. However, since for the most B-factories the SRD-decrements exceed
the frequency spread of synchrotron oscillations, the threshold currents, or impedances,
are defined by the balance between the increment of the instability and 1/75%. For the
data given in the Table, this typically results in roughly one order of magnitude higher
thresholds than that given by the Z/n-criterion.

In the case of strong bunch lengthening the RF potential well distortion due to the
bunch wakes significantly decreases the instability thresholds for the longitudinal coher-
ent oscillations [35]. For these reasons it seems that the region £ > 1 cannot be reached
without some extraordinary efforts. It is clear, however, that the use of passive or active
damping systems to increase the thresholds of instabilities is desirable anyway. Except,
maybe, for the possibility to use the systems, including notch-filters, synchrotron oscilla-
tions usually do not provide strong enough modulation of the coherent energy loses. If
the damping of transverse oscillations is strong enough, the damping of the synchrotron
coherent oscillations can be enhanced by the elements with the radial gradient of the
coupling impedance [16]. The relevant addition to the decrements of synchrotron modes
can be estimated by the following expression

eI, { ORe(2)
b, = ol (n ] (2.30)

where 7 is the value of the dispersion function at the position of the damping system, and
the derivative is calculated on the closed orbit. The damping effect takes place if

/ ORe(Z)
("—ax_)o > 0. (2.31)

This condition has a clear physical sense: the sign of the gradient of the impedance must
increase the energy loses of synchrotron coherent oscillations with an increase in their
amplitudes. As an example, the instability with the growth rate 7 = 100 ps in the LER
in the TRISTAN MR tunnel could be damped by a system with VZ = 32 KOhm/cm.
Since the sum of decrements of coherent oscillations does not depend, in particular, on
the radial-longitudinal coupling [17], the interaction with this system will simultaneously
decrease the decrements of the dipole horizontal synchrobetatron coherent oscillations 6,’,{,

to maintain the sum rule
ZA(@IZ’) = —26,,“. (2.32)

The increase in the total sum of the decrements is a general requirement to a design of
all damping systems. With the use of wideband dampers this demands an increase in the
contributions in decrements of the effect of fast damping. Note that the decrements, or
increments, in Eq.(2.30) do not depend on the ring momentum compaction factor c. The
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instabilities due to an interaction with the environment having a radial gradient of the
longitudinal impedance can limit the performance of the rings with extraordinary small
values of momentum compaction [36]. A non-symmetric position of the closed orbit in a
vacuum chamber is typical for many B-factories. Such a gradient can also be caused by
the closed-orbit distortions.

3 Multi-Bunch Effects

If the bunch wakes last longer than the bunch-to-bunch distance the interaction of bunches
couples their coherent oscillations, which can cause a multi-bunch instability of the beam.
It is clear in advance that the worst stability has a beam containing « identical bunches.
In this case, the symmetry of the stationary state relative to the rotation on the angle
27 [k results in the propagation along the beam of uncoupled multi-bunch modes with

wave-vectors of 9
Ta
ki ==, a=0;1y:.s
K

k=1 (3.1)
This increase in the degrees of freedom of a multi-bunch beam makes its dynamical fea-
tures more similar to the case of a coasting beam and, therefore, even more unstable
when « increases. The main difficulty in this case is caused by the multiplication by the
bunch-to bunch interaction of the multi-turn stability diagram of a single bunch. Let §(v)
be the multi-turn part of the decrement of a dipole mode of a single bunch. Due to the

multi-turn interaction it is a periodic function of the tune v
(v +1) =é(v). (3.2)

Somewhere between v = 0 and v = 1 the function §(v) usually changes sign, which
defines the width of the stopband of the instability. As an example, we can take that this
happens when v crosses the point ¥ = 1/2, as in the case of a resistive wall instability,
or an instability due to interaction of the beam with a low-Q cavity. If, now, the beam
contains k identical bunches, and interacts with the same system, the decrement of the
a-th multi-bunch mode is defined by the same function, which, however, depends on v
and a through the following combination: ‘

_ Imw(v) = &6 (”“). (3.3)

K

If, for instance, the stability condition for a single bunch is
0<v<1/2,
for k bunches we must simultaneously satisfy « stability conditions of the form
0€v+a<se/2y, a=0,1ic.sn—1 (3.4)

This means that, if some mode with a mode-number of a < k/2 is stable, its reflect-
ing partner xk/2 — a would be unstable. Although the fact of instability seems to be

16



independent of v, the sum of the decrements of all multi-bunch modes
x—1
2 b
a=0

does not depend on the bunch-to-bunch coupling. Moreover, it is exactly equal to the
sum of the multi-turn parts of the decrements, calculated for particular bunches while
neglecting their coupling. In this sense the correct choice of v can simplify the stabilization
of unstable modes.

The multi-bunch instabilities can usually be suppressed by a relevant decrease of the
Q-values; by the varying the parameters of the bunches (typically the tunes) along the
beam ¢ and by using suitable feedback systems. The 1-st and the 3-d possibilities have
been more carefully inspected to overcome the multi-bunch instability in B-factories (see,
for instance, in [3], or [4]).

In some sense, multi-bunch instabilities due to the interaction of the beam with some
parasitic cavities or modes can be considered to be less dangerous. Once the parasitic
element is specified, definite efforts can be spent to decrease its impedance and to cure
the instability. It becomes less easy, however, for the case when the beam interacts with
the fundamental mode of the accelerating RF-system. Recently [4], the instability of this
kind has been reported as a serious limitation on the performance of B-factories with long
rings. For short bunches (0, € Agp, where Agp is the wavelength of the accelerating
field), the maximum increment of coherent oscillations of the beam due to its interaction
with the fundamental mode of the RF-system, containing V. accelerating cells, is defined
by the parameter: ,

0= Nci%@-%f, h= wRF/wO. (35)
Taking (Z/Q) = 197 Ohm, the beam current I = 1 A and all other necessary param-
eters from the Table for the LER in the TRISTAN MR tunnel, we can estimate the
corresponding growth rate of the dipole synchrotron modes as

1/7, ~ 0 ~29210% 1/s. (3.6)

Since this value is very close to w, = 4.5 10* 1/s, the instability is indeed fast. On the
other hand, direct calculations of the dipole multi-bunch decrements (§ = —Imw) due to
nonresonant interaction of the beam with the cavity result in (see, for example, in [4], or

[10])

h
b = mQ exp (-— " ) F(vg,mv, + a), (3.7)
KQL
m = %1,
™ cos(2re_) — p cos(2may) — p
F = — — 3.8
(2,9) K { 1 —2pcos(2ra_)+p* 1—2pcos(2may)+p?)’ (38)

6As was already mentioned, the stability of a single bunch is determined by the proper choice of the
working point, and in this sense coherent oscillations of a single bunch can be done stable easily. Hence,
we may conclude that a multi-bunch system can be stabilized by a suitable distribution of bunches along
the orbit.
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zty ( 7h )
ay = , p=exp|— :
K QL

Here, vy = wi/wo (wg is the frequency of the cavity mode k), and @), is the loaded Q-
value of the cavity. From Egs (3.7) and (3.8) one can see that integer ratios h/x are
the roots of the decrements (increments) of all multi-bunch modes. Therefore, tuning of
the cavity in exact resonance with the beam (vx = h) eliminates this instability. In real
operation, however, to compensate for the reactance due to beam loading and to minimize
the reflected power, the frequency of the fundamental mode of the cavity must be shifted
down the resonant frequency wgp to

Aw I(Z]Q)
Rl ¢ S 4/
WRF ACQV singa,’ (39)

where, V cos ¢, is the accelerating voltage. Due to this detuning, the phase advance of
the wake of the fundamental mode on the bunch spacing gets a fractional part of 2w,
which enhances both the increments of unstable modes and the decrements of the stable
modes of the beam. One can see from Fig.7 that the minimum value of the growth time
can reach the us region. Calculations of the increments (decrements), assuming a definite

Imw (1/ms)

25
20
15¢

10}

Figure 7: Dependence of increments of the dipole synchrotron coherent oscillations on the
beam current. From the top to the bottom a = 1023, 1022, 1021, 1020; x = 5120 .

multipolarity of the synchrotron coherent oscillations m, gives reliable results only in the
case when the values increments do not exceed the frequency of synchrotron oscillations
w,. This condition limits the range of the detuning of wpr from the resonant value. For
instance, the requirement that

0 <w,/2
simultaneously demands that

12/Q) _

Aw = .
w = wrrl 2V sin g

wo.
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The fact that the beam has collective degrees of freedom makes its properties similar to
that of a dielectric media [10]. In the case of the interaction with a cavity, this results
in an increase of wy on the frequency shift, given by Eq.(3.9) (see in Appendix D). This
effect must be taken into account in the injection and in the cavity tuning scenario.

As a general conclusion of this section we may state that except for the case when
modification of the bunch-to-bunch coupling i1s used to cure multi-bunch instability, their
damping demands an enhancement of the collective single-bunch stability. In spite of the
necessity to damp only some unstable modes this can require the use a damping system
with bandwidths corresponding to distances shorter than the bunch spacing in the beam.

4 Collective Beam-Beam Effects

Usually, the limitations due to a collective beam-beam instability are not so widely dis-
cussed like, say, the limitations predicted by a weak-strong analysis of beam-beam insta-
bility. This is probably due to the fact that an analysis of the strong-strong interaction
and its first step — the collective stability of colliding bunches — is not easy for either
analytic and numerical methods. Moreover, except for general expectations, there are not
many direct experimental indications of the limitations due to a collective beam-beam in-
stability. However, the understanding that the collective interaction of colliding bunches
can dramatically shrink the stability diagram, if the rings have different perimeters [37,38],
has completely canceled discussions of the B-factory schemes involving a short LER.

Both analytic and numerical studies of the collective beam-beam interaction are em-
barrassed by two complementary effects. The 1st is the strong tune dispersion across the
bunch due to the nonlinearity of the beam-beam kick. This results in the necessity to take
into account in calculations the Landau damping, which strongly complicates the equa-
tions. The 2d difficulty comes from the incoherent beam-beam interaction of the bunches.
The calculation of the interference of coherent and incoherent beam-beam instabilities is
very complicated problem even for numerical calculations, and is ignored in all analytic
approaches. This means that predictions of such calculations should not invade in region
of the incoherent beam-beam instability.

In the models, ignoring this interference and the Landau damping of modes, the sta-
bility of colliding bunches can be analyzed more or less easily. First, the rates of the
time dependencies of the amplitudes of coherent oscillations are defined by éwqg, where
¢ is the beam-beam parameter. This means that for the initial modes, say, the dipole
and quadrupole can be rather fast. If the tunes of oscillations are far enough from the
resonant values, for instance

MmyVe +m,v, = n, (4.1)

where m,, m, and n are integer numbers, the oscillations of bunches are stable, while their
interaction results in a coherent frequency shift. The value of this shift wsAv generally
depends on the unperturbed distribution function and on the geometry of the mode. For
example, for dipole oscillations it can be estimated by Av = 26A with A ~ 1. This fact
can be used to measure £. However, the interpretation of such measurements requires
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exact knowledge of the unperturbed distribution function (to calculate A) as well as the
taking into account the nonlinearity of coherent beam-beam oscillations [39].

In the vicinity of resonances coherent oscillations of colliding bunches can be unstable.
The strength of this instability strongly depends on the tunes of oscillations as well as
on the symmetry of bunches. The interaction of identical bunches separates the modes,
describing relative oscillations of bunches (7r-modes), from modes, when bunches oscillate
with the same phase (0-modes). The increments and widths of stopbands of the instability
can be estimated using the dispersion equation (the sign + corresponds to m-mode)

i
1= izﬂ——A_%’n’ (4.2)
me€s(1+7)+m. (1 +1/r)
B = , (4.3)
[mam.|(mir + mi/r)
Here, A, = mgve + myv, —n; €, and €, are the partial beam-beam parameters:
NGQIB*
, = z , 4.4
¢ 2rEo, (0, + 0,) (4.4)
Neg:
{z - (4.5)

B 2rEo (0, + 0,)’

o, and o, are the horizontal and vertical rms beam sizes and r = 0,/0, is the beam
aspect ratio. According to Eq(4.2) the positions and the widths of stopbands in the plane
(ve, v,) are defined by the following inequalities

|An] < 2[E.], (4.6)
AnZ, <0, 7 — modes, (4.7)

and
AnZn >0, o0—modes (4.8)

Since the tunes in A,, include the incoherent beam-beam tune shift, for one-dimensional
oscillations the stopbands of 7-modes occur below and for o-modes — above of vy =
(n/m) — &, where v, is an unperturbed betatron tune. This means that the stopbands for
o-modes can invade inside the stopband of the incoherent oscillations

(n/m) —€ < vy < n/m.

In this case, more reliable predictions concerning the behaviour of colliding bunches can
give the numerical analysis.

According to Eqs(4.3) and (4.6) the relative importance of various two-dimensional
resonances depends on both the symmetry of the mode m,,m, and on the aspect ratio
of the beam r. The instability of a mode with a multipole number of 77 is caused by a
sum-type resonance of this mode and the —m mode . For flat bunches (r < 1) the widths
of stopbands are mainly related to the excitation of vertical oscillations:

2,

m|mg|’

Ao’_‘;’

(4.9)
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The broadest are sum-type resonance v, + v, = 1, and the main coupling resonance
Vs = U

For round beams (o, = o,) there is no stopband along the main coupling resonance,
while the most powerful two-dimensional is the linear sum-type resonance. In this case
with an increase in the beam current the working point moves along the line v, = v,; its
vicinity may become more preferable for the position of the working point of the ring.

The difference in transverse beam sizes, say ¢ > o(?) generally suppresses the
coherent beam beam instability [7]. For instance, for a water-bag distribution and one-
dimensional oscillations with a multipole number of m, the value ¢ in Eq.(4.2) must be
replaced by

ey = (P o)™ <& (4.10)

This suppression of the collective beam-beam instability for bunches with unequal trans-
verse sizes can be one of the reasons for their flip-flop instability.

The calculation of the Landau damping for the beam-beam instability can be done
more or less easily for horizontal oscillations of identical, very flat bunches which have
a Gaussian distribution in the amplitudes of horizontal oscillations /JB. If z = \/—J_/g,
where ¢ is the horizontal emittance of the bunch, and X(z) is the Fourier-amplitude of the
7-mode with a multipole number of m 7, then one can find that the function w = /z X (z)
satisfies the following differential equation [8]:

m?—1/4

w" + (2Vm($) - 22

) w(z) = 0. (4.11)

Here,
4A(2")£ 6—1:2/2
(v/m)? — A%(z) '

wgv is an unknown frequency of the coherent mode, A(z) = v.(z) —n/m = Aq + Av,.(z),

Vilz) =

(4.12)

2
Ava(Jz) = — 1 —exp(-2%/2)], &= (4.13)
Although Eq(4.11) is still difficult to solve directly, many important properties of the
eigenfunctions w(z) and of the spectrum of eigenfrequencies v can be obtained using the
fact that Eq(4.11) has the form of the Schrédinger equation in quantum mechanics, which
is written for a particle with zeroth energy, moving in an effective potential well

Ups() = -m—;,ﬂ — 2V, (2). (4.14)

7If we use, for instance, Vlasov’s approach, when the collective oscillations of bunches are described
by the harmonics of the distribution function in phases of incoherent oscillations

£ = fo 4 3 SED) explimy — iwt),

m#0

then
X(J) = () = £2).
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Since w(z) is concentrated between the stop-points of the mechanical problem when
Uess(z12) = 0; and outside decreases like

{zl/”’" z—0
w(z) = ’ ’

/=m0,

the analysis of the stability problem can be reduced to an inspection of the variations of
the potential curves with a variation of v. In particular, this indicates (see in Fig.8) that
at least for initial modes of m = 1,2,3 Landau damping does not completely suppress the
instability. This result was recently confirmed by numerical calculations in [9)].

U(x)
10

-5l

-10

-15

Figure 8: Effective potential wells for (from bottom to top) the dipole, quadrupole and
sextupole modes; Ag/¢ = —1; v/ =0.17 .

As far as Eq.(4.11) presents a particular case of the more general Sturm-Liouville
equation, its spectrum can be estimated using the general relationships. For instance,
exact solutions w(z) = w;(z) minimize the integral

= 7dx [(w')2 + ﬂ—zi/—‘lw2 —~ 2Vmw2] (4.15)

T

This yields the normalization condition for eigensolutions

/dz ((w b 1/4 j) =2, (4.16)

and the dispersion equation of the problem

T - 12 4A(I)§ 6—12/2 _ muy
O/d il e — A7) 1, Imv > 0. (4.17)

If eigenfunctions w; are not known, both they and spectra can be found using minimization
routines starting from more or less suitable set of probe functions w(z).
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Another issue, which can be especially important for B- and ®-factories, is the influence
of the bunch lengths on the beam-beam instability. As was previously mentioned, in the
region f* ~ o,, the strong modulation of the betatron phase on the IP suppresses the
beam-beam resonances of synchronous particles [12]. Direct calculations [11] show that
a similar suppression is valid for the coherent beam-beam instability when it is described
by a renormalization of the beam-beam parameter:

berr = EYm(0a/B7). (4.18)

where for identical bunches with a round cross section

T du

Yall) = / T exp[—u? + 2igarctan((u)], (4.19)

— 00

q:(mx+mz)a CZUJ/ﬂ.v

and for vertical oscillations of identical bunches with a flat cross section

Yi(()= / \d/l;exp[—ﬁ—%—?imz arctan(Cu)]y/1 + (2u?, (4.20)

In some cases the calculation of the functions Y,, and ¥, can be simplified by their
representation in terms of the confluent hypergeometric function ¥(a,b, z) [40]

U(a,b,z) = L )/dit“‘l(l fji=etg—=t,
0

(@)

Direct calculations (see in Appendix E) yield

Ya(C) = (247:)! é(—l)m"*ﬁ%k—)!w(m, k+1/2,1/¢%) (4.21)
and s .
Yn{(() = %é(_l)m—k%ql(m—1/2,k,1/§2)_ (4.22)

One can see from Eqs(4.19) and (4.20) that for round beams due to |Y,,| < 1, the
modulation of the betatron phase along the IR always suppresses coherent resonances.
For flat bunches due to a mismatching between the modulation of the beam-beam kick
and the beam cross section we can write

Y] < 1+ (0,/8)2

Hence, the modulation can amplify the coherent beam-beam kick for very long bunches.
However, Fig.9 shows that the region o, ~ (* is quite safe for the vertical coherent
oscillations of flat bunches. Schematically, this can be demonstrated by Fig.10, where we
plotted £/L, assuming that £ in Eq.(1.1) is limited by the resonance m = 4. One can see
that £/L, significantly exceeds 1 in the region 0.5 < 0,/8* < 2.
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Figure 9: Dependence of Y, for flat bunches on the bunch length; 8" =1 cm.
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Figure 10: Dependence of the luminosity on the bunch length; limited by the 4-th order
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Since an incoherent tune shift does not depend on the phase advance of oscillations on
the IR, the described suppression of coherent beam-beam resonances in the region o, ~ §*
will enhance the Landau damping of the instability in round beams for both vertical and
horizontal oscillations. For flat beams, due to the fact that 8; ~ o, < B2 this will be
valid for only vertical oscillations; horizontal coherent beam-beam oscillations, however,
will still be unstable. This fact gives one more dynamical advantage to round colliding
bunches.

5 Instabilities Due To Ions

When the beam moves along a closed orbit the collisions of particles with atoms of the
residual gas produce positively charged ions. Among others possibilities, the interaction
with these ions can cause various instabilities of coherent oscillations of the beam. The
specific features of these instabilities strongly depend on the lifetime of the ion inside the
beam and, in particular, on the possibility for ions to be trapped by the beam. By this
reason, we discuss below the issues related to the interaction with ions in electron and
positron rings separately.

5.1 Ions in an Electron Ring

A train of electron bunches presents for ions a sequence of focusing lenses, separated
by time intervals, in which ions are defocused due to their space charge. Provided that
the betatron oscillations of the ions are stable, they can be trapped in the beam and
can perturb the motion of electrons. Generally, two effects are associated with the ion-
trapping. The first is a tune shift and spread due to ions, which can be estimated by (see,
for instance, [41])

Niro

Ay =
Y 2mye’

€ = /€€, (5.1)

where N; is the number of the stored ions. For realistic parameters [41] the value of
Av can reach .05. Due to the nonlinearity of the Coulomb force this effect increases the
Landau damping of coherent oscillations of an electron beam and, in this sense, can be
considered as being a positive one. On the other hand, since Landau damping dilutes
the phase-space volume of the beam (see, for example, in [10]) it generally can limit the
performance of the ring.

However, stronger limitations can be caused by the interaction of stored ions with
coherent oscillations of the beam. Although the description of instabilities due to this
interaction is very speculative, some of its general properties can be predicted using the
analogy of this instability and the instability of colliding bunches. In particular, we may
expect the unstable coherent oscillations below the resonances

m,v, + miy; =n, m,m; > 0, (5.2)

where integers m,; define the multipole numbers of collective modes of the electron and
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ion beams. The increments of this instability would be proportional to [7]

bo ox woy/ AvE; o wq —I\Z’Y———rs‘;&, (5.3)
and will slowly depend on the multipole numbers (m,, m;). Here, A; is the atomic weight
of the ion and r, = 1.5 107! cm is the classical radius of the proton. For the reasons
described in the previous section, we can expect that such an instability will be hardly
suppressed by Landau damping. Since the configuration of electron and ion beams, which
have different transverse sizes, is more stable [7], we may also expect the flip-flop instability
of the beams.

Ions will definitely not be accumulated inside the beam if the bunch spacing is chosen
to make the betatron oscillations of the ions unstable. This criterion defines the critical
ratio R = N/« (see, for instance in [41,42]) when the ions are swept out of the beam due
to their overfocusing:

2A;0,0,(1 + 1)
ryll ’
Here, r = 0,/0, is the bunch aspect ratio. If we take, for example, A; ~ 30 (CO) and
e~ 21077 cm, Eq.(5.4) yields Ro = 1.3 10°. This value significantly exceeds the corre-
sponding ratios for all of the presently discussed B-factories and, without special efforts,
ions definitely will be trapped in electron rings. Additional cleaning can be achieved by
using either clearing field electrodes, or missing the necessary amount of bunches from
the train. As was mentioned, the matched clearing field electrodes can be used as a single
bunch dampers of coherent oscillations. In most design reports simpler method with the
missing of roughly 10% of bunches from the beam is used to prevent ion trapping.

R>Ro= (5.4)

5.2 Ions in a Positron Ring

Positively charged ions cannot be trapped in a positron beam. However, the ions, once
produced by a bunch, cannot be removed from the orbit immediately. As long as the ion
trace of the bunch carries information about its coherent oscillations, it can cause at least
a multi-bunch instability of the beam. Since the instability of this kind is not associated
with the trapping of ions, it can be important for electron beams in cases when the motion
of ions is unstable. In the estimations given below we use the results of a paper [43] where
this problem was studied in many detail for proton bunches.

Once ions are not stored in the beam, it is obvious that the strength of the instability
significantly depends on the pressure of the residual gas in the ring and on the loss factor
of the ions from the beam. The first factor defines the ion production rate, while the
second defines the bunch-to-bunch memory. In the case of positron or proton beams, the
most important aspect is the deflecting of ions from the orbit by the beam space-charge.
If we assume that at low pressure the residual gas mainly consists of hydrogen atoms, the
rate of the increase in the radius of the ion spot can be estimated by the dimensionless

increment
2N
v; o4 Erpu’ € ~ \/E-€;. (5.5)
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Then, the standard calculations of the multi-turn part of the increments of coherent
oscillations of a single bunch results in [43]
N562 .
e = (nAcai)Am——E‘—e—SW exp[—27rvimsin(2rmv,). (5.6)
Here, ny ~ 4 10'® P [Torr] is the density of the residual gas, o; is the ion production cross
section, m is the multipole number of the coherent mode, and

A = %d’(—m%@ W(z) = ﬁ%@. (5.7)

For the sake of simplicity we write the decrement of one-dimensional (vertical) coherent
oscillations. Eq.(5.6) indicates at least two important features of the discussed instability.
The first is that in the working plane v,, v, the position of the stopbands of this instability
is inverse to that of the resistive wall instability. For instance, one dimensional oscillations
are stable, when

k—1/2<|mlv, <k, k=1,2,... (5.8)

The second is that due to a strong nonlinearity of the Coulomb force the increments slowly
depend on the multipole mode number m, and, apart from the dipole, some initial higher
multipole modes can contribute in the limitations.

Now, combining Eqs (5.6) and (3.3) yields the decrements of multi-bunch modes:

2 .
bipw = (nAco,')Amw exp (-—m) m sin (M>, (5.9)
Ee K K
a=0,...,6—1.

For the LER with a vacuum of P = 107% Torr (ng =~ 4 107 cm™3), and the data, given
in Table, Eq.(5.9) estimates the increment of the dipole mode by §, ~ 12 1/s for a
bunch spacing of 3 m, and by § =~ 10* 1/s for a bunch spacing of .5 m. The first
number is smaller than the decrements due to synchrotron radiation damping and hence,
is quite acceptable. In the second case the instability must be suppressed by a suitable
combination of feedback damping and a decrease of the pressure in the ring. We point
out that due to slow dependence of increments in Eq.(5.9) on the mode number m, the
feedback system must ensure the damping except for the dipole also quadrupole and
maybe sextupole modes. The relevant gap in the bunch train definitely must help against
this instability. However, this possibility must be studied more carefully, because the
breaking of the feedback between the head-on and tail-on bunches still does not prevent
a beam breakup instability of the train.
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A Stability Diagrams of Betatron Coherent Oscil-
lations

The stability diagram of coherent oscillations is defined by the dispersion equation, when
the frequency of oscillations tends to the real axes (Imw — +0). For a bunch interacting
with surrounding electrodes, the dispersion equation for, say, vertical dipole betatron
coherent oscillations reads

J.0fo/0J,
w— wy(Jzy Jz)’

] = -k, /dJIdJ, Imw > 0. (A1)
Here, fo(Jz,J:) is the stationary distribution function of the beam. If we define the
frequency distribution function

3fo

a7, ——b(w — w,(Jz, J2)), (A.2)

glw) = — / ST 230

we can rewrite Eq.(A.1) in a form similar to that of Eq.(2.10)
1= m/a’w 9(w) " Imw > 0. (A.3)

The solution of Eq.(A.3) yields the unknown frequencies of the collective modes w = wy,.

Another way to use Eq.(A.3) is to plot stability diagrams of coherent oscillations - i.e.
curves in the plane of the complex variable (,,, which separate the region containing stable
solutions (Imw,, < 0) from the region containing unstable solutions. The parametric plot
of this curve is defined by Eq.(A.3), when w tends to the real axes from above (w — w+10)
and when Eq.(A.3) yields Eq.(2.10)

_ g(w)
/d W — w+zO (4]
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The calculation of the particular stability diagrams demands knowledge of the stationary
distribution function fy and the dependence of the frequency of incoherent oscillations on
amplitudes J, and J,. If, for instance,

p=gmo (- +3)
™ 4e.e, Xp 2, 2,1/’

and the frequency spread of the vertical oscillations is defined by the cubic nonlinearity

and, moreover,

v, v,

8J,:6I > a—‘]z—ez 5 (AE))
Eqs(A.2) and (A.3) yield
Sw _ BT .
0 ) = Fo(y) = e7¥ [Ei(y) —iw0(y)], (A.6)
where 5
Yy =w/bw bw= 3—12;-2%’

Ei(z) is the exponential integral function
o et
-T

and
L., &30,

6(53):{0, z<0.

Similar calculations result in the stability diagram for the horizontal coherent oscillations:

bw

o Fi(y) = yFo(y) — 1. (A.T)

The case when the nonlinearity of the beam-beam force defines the frequency spread
of the beam is more difficult due to a more complicated dependence of the tunes on the
amplitudes of incoherent oscillations. Apart from the possibility of numerical integration
in Eq.(A.1), the main features of the stability diagram can be found using the simplified
model, where

W, = W, + woﬁ——é.?/—s. (AS)

Substitution of this expression in Eq.(A.1) yields

wOé__ __w—wzo
Qm_l;}?b(y)) Yy = w06
where
1 1 1l—y l—y)[,(l—y) ;
Fyp=—4+— — exp| —Z | |Ei | —= ) +170(y)8(1 — y)|. A9
R p(y - ()61 - ) (A.9)
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B Weak Bunch Lengthening

We start with the equations of the synchrotron oscillations of the particle, which are
distorted by the bunch wake:

2,52 P )
dAw = —wyop — 2MNAw — Me—woa_/ dnZ,pn(e™” — 1)+ X(t), (B.1)
dt Ip
—co
d(,.o . _ /e _ 18W
-d-t— = Aw, Aw = —-E'—AE, X = §aE8. (B2)

Here, ¢ is the deviation of the particle’s phase from the synchronous value ¢,,

heV|sin @, |a
PR (8.3)

is the frequency of unperturbed synchrotron oscillations, W(FE) is the average power of
the synchrotron radiation of the particle and X (%) is the random force describing the
excitations of synchrotron oscillations due to quantum fluctuations of the synchrotron
radiation. Below we use the following properties of X:

<X(@)>=0, <XBOX(t)>=<X?>4(t-1). (B.4)

Assuming that the wake is a slow function of ¢, and can, therefore, be expanded in a
Taylor series, we can write in the linear approximation

P+ 209 + wio = X(1), (B.5)
2 . Nyewy
%, .0
w; = wly {l ZheVlsin (Ps|_/ an(n)np(n)} ; (B.6)

The driven solution of this equation has the form

o(t) = [ do_K)e™ (B.7)

27 w? — 20w — w?’

-5
or
’ sinw, (t — ;)
o(t) = /dth(tl)e'A(““)L——l—. (B.8)
Ws
0
Its mean square has the asymptote
1< X?>.
2 = -
<cp(t——>oo)>—w3 T (B.9)
Since for Gaussian distribution functions we have < ¢* >= ¢}, and defining
1 <X?>
af = (B.10)
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as the unperturbed bunch length, we can write

0} (wh)o _ 1

os w? Nye*wq (BudL)

a 1 - zmjan(n)np(n)]

For more detailed calculations we need some particular expressions for Z/n and p(n).
Taking, for instance, ®

= n3 B n?o3
= @nozi, o) =exp (-212), (B.12)

n

we can estimate the integral in Eq.(B.11) for short bunches (ngoy < 1) as follows:

o0

[ n (28 wtpta) = L2

-0

Substituting this expression into Eq.(B.11), we can write

0'¢ 1

ol ely(Z/n)e 1 R0
[1 + \/_heV|sm<p,| o, |

(B.13)

From Eq.(B.13) one may expect the bunch lengthening for the case that (Z/n), < 0, i.e.
when the bunch interacts with an inductive-type impedance; vice verse, bunch shortening
may occur when the bunch interacts with a capacitive-type impedance. This result is not
very surprising, since the inductive-type coupling decreases and capacitive, thus increases
the rigidity of the potential well due to a driving RF. If the bunch lengthening is small,
the expansion of Eq.(B.13) in a linear approximation yields Eq.(2.19).

C On the Iteration of the Haissinski Equation

Let us prove that the nonlinear Haissinski equation has a unique solution, if the bunch
wake satisfies the condition in Eq.(2.24). We also can rewrite this condition as follows

= Nye?wq dn
2 o fe i B 2 <« . 3
WP =2 (thsm%ag) l i R (C.1)

8Note that, if p(p) is an even function of ¢, only reactive part of Z is important
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First, we write Eq.(2.22) in the form

p(@)/po= exp(-z*/2—u(z)), == /oo,

Ug = 0,
iy{a) = /dmlw(l‘l — z)e™"/2, (C.2)

tnei(z) = /dmlw(xl — z) exp(—23/2 — ua(z1)).

Due to condition (2.24), the function u(z) has the following properties. It is limited

o0 o 2
2 < d 2 " = d P (131)
u?(z) “zj zw* (2, z)I/ z 7 (C.3)
< Nw? = T
T . Pz)
N:l dx,p—0;, (C.4)

and can be normalized:

7da:u2(z) < exp(2umax) 7da:uf(:n)

< exp(2um,x)/g—fr-|w(k)lze‘kz,

w(z) = / -;—:eik”w(k).

This, in particular, means that the potential well distortion u(z) is distributed within the
finite interval of z with a width of

Az~ (w?)*. (C.6)
If |Az| > 1, this relation estimates the lengthening of the bunch as follows:

ely(Z/n)o 11

7 Ro heV sinp, I} L
Since the function |u(z)| < Umax is limited, we can write
le™ — 72| < ePmar|uy — uy). (C.8)
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Then, the convergency of iterations in Eq.(C.2) can be proved using the standard calcu-
lations [27], which result in

() 0

|Unpr — Un| ox - > 1.

This expression shows that the iterations in Eq.(C.2) converge and, thus, Eq.(2.22) has a
unique solution [27], provided that the condition in Eq.(2.24) is valid. On the other hand,
this estimation indicates that, if the potential well distortion is high (w? > 1), higher
order corrections in the iteration row

w(z) = v + (@ — My 4 (D gy (C.10)
will decay after

n > ng ~ \/F (Cll)

We also note that the discussed estimation concerning the convergency of the iterations in
Eq.(C.2) is based on a rather rough evaluation the integrals involved in these equations.
Therefore, Eq.(2.24) specifies the condition when Eq.(2.22) has a solution beforehand. Its
violation does not necessarily means that Eq.(2.22) has no solutions.

D Dynamic Beam Loading

In this section we calculate the modification of the impedance of the fundamental mode
of the cavity from the side of the fundamental coupler due to a collective reaction of the
beam. For the sake of simplicity, we do the calculations for a single bunch.

First, we write the longitudinal component of the vector-potential of the fundamental
mode in the form

A(r,1) = cAx(r)au(t), (D.1)

and assume that the eigenfunctions A, obey the equation
w?
AAK() + 22 A4(r) = 0, /d3r|Ak(r)|2 = dre. (D.2)

Here, wy, is the frequency of mode k. For the mode with the Q-value equal to @ = wi/(2A¢)
from Maxwell equations we find

Gk + 2Medi +wigy = Ne/drfA;(s) +jo4t),  dT = RedApde, (D.3)

where the current ji*(¢) = ji** exp(—iwpgpt) describes an external excitation of the cavity.
Below we use the expansions:

Ai(s) =) Awexp(ind), s= Rof = ct + ¢,

35


http:Eq.(2.22
http:Eq.(2.22
http:Eq.(2.24
http:Eq.(2.24
http:Eq.(2.22

and

fL,t) =3~ fm(1,t) exp(imy),

where I and 1 are the action-phase variables of the synchrotron oscillations. For syn-
chrotron oscillations the variable I and the amplitude of oscillations ¢, are related through

Ev, ,

1 = @5 (D.4)

2(.4)0&

From the Vlasov equation, written in action-phase variables (ya > 1)

Ofm afo
g + 1w, fr, = (91; ecqi(t) EA;m (np.) exp(inwpt), (D.5)
we express the amplitudes of the expansion
= Z frnn €xp(—twprrpt + tnwot), (D.6)

through the the Fourier-harmonic of gx(wgp):

m(0fo/0I)

WRE — NWo — Ty

fmn:—'

Now, we rewrite Eq.(D.3) in the form

eCAkndm (n@e)qe(wrr). (D.7)

qulwar)w? — 2idwpr —whe] = 2rNe ZZA,m / A fondm(npe) + 367, (D.8)

Substituting in this equation f,, from Eq.(D.7), we obtain
qk (pr)[wi = 21AwrF — whp] = I + Qk(wRF)X

2m? w,An D.9
QTJVE CZZ | k | 2w2/d We cal mnﬂoc) ( )

m=1 n CURF—TLUJO

Since wrr = hwg, the contribution of the resonant term n = A in the sum over n domi-
nates. Neglecting the contributions of the nonresonant terms and using the relationships

Z
AP =22 (2 D.10
Al = 222 (2], (D.10)
dfo _ W 0 fo _ __Wox exp(—@?/%i) (D.11)
oI Ev,8(92/2)  Ev, 2may ’ '
we obtain for short bunches hoy < 7:
1(Z h? :
gr(wre) |wE + wkMa—f — 2 wRF — WhE| = 57 (D.12)
T()E v

This equation shows that due to a collective reaction of the beam the frequencies of
all modes of the cavity (including the fundamental one) become higher than w; on the
amount, defined by Eq.(3.9) . Without special efforts this frequency shift decreases both
the accelerating voltage, induced by the fundamental coupler, and the voltage, which the
beam induces during its stationary rotation along the orbit (the stationary beam loading).
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E Calculation of Collective Beam-Beam Suppres-
sion Factors

The factors Y,,(¢) (with ¢ = o0,/87), describing the suppression of the collective beam-
beam resonances, can be expressed in terms of the confluent hypergeometric function
U(a,v,z) [40]. This can sometimes simplify the estimation and plotting of the function
Yn(¢). Let us start with calculations for the flat beam. Using

z 1

sin(arctan(z)) = A cos(arctan(z)) = i

we can rewrite Eq.(4.20) in the form

Y0 = | Gl + i) (E1)
Then, using
Rl + iu)'"] = 3 ot (1) G, (E2)

and the substitution

1 _ m—3/2 -s(1+<2 2)
0T et = Tm = 1/2)/(153 (E.3)
we can rewrite Eq.(E.1) in the form
2 i (Qm)! y _
f _1\ym—k f2(m—k)
where
mek m/duu T k)e_“ ./d.SSm 3/2 _S(1+C2 2). (EE))

Now, upon changing in this equation the order of integration and by substituting u? = t,
we find that the integral over u yields

T 2 Pim —k+1/2)
2m—k) g~u? (14¢%s) _
_/duu (1 _+_<2 )m—k+1/2'

Substituting this expression into Eq.(E.5) gives

T(m —k +1/2)
2(Fm=1T(m — 1/2)

Wk = /dttm 321 4 ¢) k2t C (E.6)
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or [40]
F(m2—('2ij-11/2) U(m —1/2,k,1/¢?).

W e =

By also using
F(m—-k+1/2) VT /2
2(2m —2k)! (m — k)l4(m-R)?

we obtain

vi(e) = ZE 551y —ﬁ/‘LW(m-l/z,k,l/c’)-

~ (2k)!(m — k)!

Similar calculations for the round beam result in

m 2\k
Yull)= e )Z( l)m‘k%\ﬁ(m,k+l/2,l/@).
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Table 1: Some Parameters of the B-Factories Projects.

BINP(Nov-sk) Cornell SLAC KEK
Energy (GeV) 7/4 8/3.5 9/3.1 8/3.5 8/3.5
Perimeter II (m) 765.0 765.0 2199 3018 1273
Vertical emittance 91 1.95 1.9/3.9 .19 19
€, (nm)
Horizontal emittance 5.8/4.0 130 48/96 19 19
£, (nm) '
Ap/p (x10%) 10 8.4/65| 6.1/95 |72/77  1.2/79
By (cm) 9 15 3/1.5 1 1
B (cm) 40 100 75/37 100 100
o, (cm) A 1 1 5 5
Ev .05 .03 03 .05 .05
En 017 .03 03 .05 .05
Ny(x10719) 11/19 6/13.7 4/6 1.4/3.3 1.4/3.3
Bunch spacing (m) 4.2 3 1.26 .6 6
Beam current (A) 1.2/2.1 9/2 1.5/2.1 1.1/2.6 1.1/2.6
Number of bunches 177 230 1658 4950 2090
Vertical damping time 11/33 7.8/24 37/36 16/32 16/32
7R (ms)
Horizontal damping 5.9/33 7.8/24 37/36 16/32 16/32
time 727 (ms)
Long. damping time 10/17 3.9/12 19/18 8.3/16 8.3/16
727 (ms)
Vertical tune v, 14.27/15.27 24.18/35.18 | 39.19 25.19/26.19
Horizontal tune v, 27.58/28.58 25.28/32.28 | 39.15 25.15/27.15
Synchrotron tune v, .025 .085 .05 .07 047
Momentum 1.44 8.4/11 2.4/1.5 1 1.8/1.5
compaction (x10%)
RF frequency (MHz) 500 500 476 508 508
RF voltage (MV) 15.4/861 | 35/12 | 18/19.5 | 48/22  35/15
Harmonic number 1260 3492 5120 2160
Number of cavities 12/4 20/10 56 (8) 56 (8)
Luminosity 1 3 3 1 1

(x10% em~2%s71)
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