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Abstract 

This report reviews the limitations on the performance of the planned B- and 
<I>-factories due to the collective interactions of stored bunches. Together with the 
traditional revision of the limitations due to the single- and multi-bunch interaction 
with surrounding electrodes, we briefly discuss in this report the limitations on 
the performance due to collective beam-beam inst abilities of colliding beams and 
instabi lities due to the collective interaction of beams with the ions. 

Introd uct ion 

T he construct ion of widely discussed now new generation of colliders, the so-called B­
and ~-factories [1]+ [4J, which have to reach huge luminosities (1033 + 1034 1/ cm 

2
s) in 

the .5 - 5 GeV energy range, presents very challenging opportunities both for particle 
accelerator physics and technology. With such a high goal luminosity, the performance 
of these colliders will very likely be limited by the current-dependent phenomena. If the 
total (average) beam current is I = N e/To, E = , M c2 is the part icle energy, and rr 
is a ,a-function at the interaction point (IP), then, with the given t hreshold value of the 
so-called beam-beam parameter ~ the luminosity of the collider does not exceed 

(1.1 ) 

This equation is written while assuming the lengths of colliding bunches (15 be shorter 
than ,a-. Otherwise, the luminosity £((13 / ,a-) gets additional decay, as is shown in Fig.l. 
Thus, to increase the luminosity of a ring, we have to increase the threshold values of the 
beam current I and ~ . Except fo r the other reason , these values an be limited by the 
collective interaction of colliding bunches as well as by their interaction with surrounding 
elements of the vacuum chamber. Although the limitations on the performance of B­
factories due to the interaction of the beam wi th its environment have been reviewed at 
least several times (see, for instance, in [5,6]) , a closer inspection of a possible limitations 
due to various effects related to particular designs adds more effect s to worry about. 

In th is report , after pointing ou t some more or less ideas we focus on the followi ng 
items: 

• 	 The use of the passive tools to cure t he instabilit ies due to the interaction of the 
beam with surrounding elect rodes ; 

• 	 Landau damping due to the nonlinearity of betat ron osci llations; 

• 	 Collective beam-beam effects; and 

• 	 The interaction of electron and positron beams with ions. 
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Figure 1: Dependence of the luminosity on the bunch length. 

Once the main goal of this paper is to review collecti ve effects which are specific to 
B-factories) we typically use relevant approximations which hold in the region of the 
parameters defined in the Table. For the same reason, except in some part icular cases, 
many equations are given in their final form. In these cases the corresponding detailed 
calculations can be found in the cited references. 

To obtain a luminosity 1034 Ij (cm2 s) in a ring with E = 5Gev, {3* = l cm and ( = .05 
by Eq.(1.1 ) the total beam current should be I ~ 3.5A. Since such a large current cannot 
be obtained in one bunch with a reasonably small lengt h and emittances, in all projects 
it is planed to work wi th beams containing many bunches) such that I = /'C h and when 
current Ib of the bunch ensures its desirable parameters. T he choice of the number of 
bunches in the beam /'C is determined by a reasonable compromise between the limitations 
due to single- and multi-bunch instabilit ies) which can occur due to the interaction of 
the beam and the surrounding electrodes. Since the use of various feedback systems is 
typically considered as the possible way to cure t hese instabili ties, in , for inst ance, SLAC 
[3] and KEK [4] projects this number of bunches was chosen so as to simplify single­
bunch problems. The Table can give the reader some impression on the discussed beam 
parameters. 

Another scope of th e limitations on bunches and ring performance ca.n be caused by 
coherent beam-beam instabilities. The fi rst careful study of this phenomenon [7] indicated 
it as being a severe instability, which generally limits the value of~. Due to the strong 
nonlinearity of the beam-beam kick, the design has to ensure the stability not only of 
the dipole, but a lso of some ini t ial multipole coherent oscillations . As recently found in 
[8,9], for short bunches wi th a~ < {3* the Landau damping due to a nonlinearity of the 
beam-beam force does not help very much against this instability. Qualitatively, this was 
explained in [10], were it was shown that roughly only 15% of econtributes to Landau 
damping. As shown in [11], the stability of colliding bunches which have a round cross 
section can be improved in the region (Js ~ {3* due to an effect which was predicted by 
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S.Krishnagopal and R.Siemann in [12J. However, this suppression of collective beam-beam 
resonances does not work for flat bunches (since typically (3; » o-s). The development of a 
feedback system which is capable to stabilizing coherent beam- beam oscillations presents 
a very difficult problem. 

T he limit ations due to beam-ion interactions are typically associated with the possi­
bility of the accumulation of ions in the electron beam, when these ions can cause very 
strong perturbations of the particle motion. However, in the case of a B-factory wi th a 
very close location of bunches inside the beam, the production of ions can provide un ­
desirable coupling and, hence, an instability of the coherent oscillations of b unches , even 
when ions can not be trapped by the beam. This effect can limi t the performance of both 
the electron and positron rings of a B-factory. 

As a general conclusion of this section we remind the classification of collective insta­
bilities, wh ich was suggested in [13], and as far seems to be in agreement wi th practical 
estimations and expectations. By this classificat ion, depending on the memory of an el­
ement interacting with the beam, all instabili ties can be divided into 3 groups. The 1st 
cont ains the resonant instabilities due to the interaction with wakes, which decay during 
many revolution periods . This means that the beam interacts with some high-Q value 
cavity (or another resonant element) and oscillations become unstable, provided tha t the 
frequencies of the cavity W k and of the beam (mawa, a = x, z, s ) sat isfy a summation-type 
resonant condi tion [14] 

(1.2) 

Since in this case the coupling of coherent oscillat ions of the bunch with oscillations of the 
induced fields can be very strong, the instabilities of this type are the most severe. With 
such a milti-t urn interaction the increments of unst able modes are determined by the total 
current of the beam. The obvious way to cure these instabilities by detuning the cavity 
or the beam from the resonance is typically embarrassed by the fact that they appear 
accidentally and can hardly be calculated befo rehand . T his difficulty is well known and , 
once again, was pointed out by P. Morton in [5J. T he interaction with a high-Q passive 
cavity in a diffe rent ial-type resonance obviously damps the coherent resonant mode due 
to redist ribut ion of the cavity-mode decrement between the field and beam oscillations. If 
Ak is the decrement of a cavity-mode, the maximum decrement, which can be transferred 
into coherent mode, is obviously Ak/2. 

The instabilities of the 2nd group are caused by the interaction of the beam wi th wakes , 
which decay during time intervals comparable to the revolution period. The most famous 
example gives the resistive wall instability [15]. The increments of these instabi lities 
contain both single- and multi-bunch (multi-turn) parts. Th e ratio between these two 
parts generally depends on the working point of the ring, on the ring chromat icity and 
other parameters. A careful calculation of decrements as well as a proper choice of the 
working point of the ring can simplify the damping of multi-bunch modes of the beam. 
Multi-bunch modes can be damped using a relevant feedback systems (see in [1]-;'-[4]). In 
the described B-factory projects [1]-;.-[4] the instabilities of the 2nd group are typically 
associated with the interaction of the beam with the higher order modes of various cavities. 

Finally, the coherent effects of the 3d group are caused by the interaction of bunches 
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with wakes, which decay much faster than th l' 

multi-bunch beam the wake t d' e r~vo utlOn period in the ring (in the case of a 


, mus Isappear wIthin th b h 
are the so-called single-turn (or singl -b h) cr e unc -to-bunch distance). These 

.tr . e unc euects One f th 'fi 
euects IS the very weak depend f d . . 0 e specl c features of these 

ence 0 ecrements ( ) 
on the working point of the ri n I th O Illcrements of coherent oscillations 

'11 . g. n IS case when such . t .
OS CI atIOns, corresponding de . b' . an III eractlOn damps coherent

vIces can e used as WId b d d . 
the fi rst two groups [16] The t' 1 f e an ampers for Illstabilities of 

. prac lca use 0 such dam . 
careful high-frequency match' f th 1 plllg systems usually demands a 

mg 0 e e ements. 

2 Single-Bunch Effects 

In existing designs of B- and ~-fac tories these i . 
~ating the longitudinal and transverse wid b ~s~es usually provIde the basi~ for esti­
Instabili ties due to single-bunch if t e an . Impedance budgets of t he rIng. The 
of bunches is not ver' e ec s are more Important for rings, where the number 
h' . y .hlgh and, therefore, the current in a single bunch can be re lativel 

Igh. T he dampIng slllgle-bunch effects due to interaction wl'th the e 'th . y
t" d . I er passIve or 

ac I ve eVlces seem~ be u~eful in all cases (see, for instance, in [3,4]). ' 

A ~areful analysIS of sIngle-bunch effects is usually tro ublesome due to the in vi table 
ne~essl ty to. solve ~ery co~p1icated integral equa tion , or a system of in tegral equations 
whlc~ descnbe the m~era~tIon of particles withi n a bunch. Apa rt from evaluating the safe 
n:argms for the co~pling Impedance, these equations must be solved numerically. In these 
Clrcumstances .an Important supplement to numerical calculations can provide solvable 
exa~pIes (see 10 (10]) , .as well as a calculation of values which do not require any direct 
solutIOn of these equatIOn. As an example, we mention the calculations of various sums 
of the decrements of the collective modes, which a re defined as the traces of the kernels 
of relevant equations. Since these sums do not depend on both the coupling of bunches 
and on the coupling between particle degrees of freedom [17], its calculation becomes 
especially important for est imating the effectiveness of the damping systems of coherent 
oscillations. 

2.1 Transverse Single-Bunch Effects 

Before listing some typical effects which can limit the parameters of the rings in particular 
projects, we make .the followi ng gen ral remark . Typically, the wake-fields induced by a 
bunch in the environment are directed against its total current. In many cases the part of 
the wake related to the excitat ion of fields by the longitudinal (synchronous) motion of the 
bunch dominates. Then, for t he most important dipole modes of transverse oscilla tions 
the descrip t ion of wakes in terms of the transverse impedance yields a suitable description 
of the instability. Meanwhile, there is another important class of elements of the vacuum 
chamber , such as matched plates, when the excitation of wakes by transverse current 
gives the dominant contribution to the decrements of coherent oscillations of the bunch 
(see, for instance in [16], [18J and [19]). This is the so-called effect of the fast damping 
of coherent oscillations, which was first observed in VEPP-2 in Novosibirsk (see in [20]). 
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. 1 t damps coherent oscillations of the bunched 
Usually the interaction with such an e eme~ t' 1 to the length of this element. 

, . d t which IS propor lona . 1 
beam with the dampmg ecrem~n, . d mping systems against both the smg e­

1ve
The possibility of using such deVices as pass . a n 'mportant issue of any design with 

. bT t" f the beam IS a 1 . 11
and the multi-bunch msta 1 lies 0 h 1 ld not overlap electromagnetJca y 

. t 'ty Since bunc es s lOU l'fi d . 
the goal of a high beam m enSl . f th dampers will be simp leW 


they interact with such a device, the usage 0 ese

h n Iwe. 


rings, working with a larger bunch. spacmg. 't bi frequency characteristics to enhance 

Another class of damping deVIces use SUI a e in the decrements of coher­

'b t" f om differential-type resonances . 

the mentioned contn u 10~ :. . "d band systems to damp collectJve 
ent oscillations. The posslblhty of usmg pasSlV~ WI e h 

. t eriously consIdered anyw ere. 
instabilities in B-factorles was no s ll' h mena are strongly defined by the 

. f f 'ngle bunch co ectJve p eno f
SpecIfic eatures 0 SI - 'II t' 8 to the angular frequency 0

f . t (d rements) of coherent OSCI a Ions 
rat io 0 mcremen s ec . h the decrements of coherent oscillations 
synchrotron oscillations w3 • In practIce, owever, t n using say 
are not know in advance , and can only be estimated by some parame e.r ~ " 
perturbation theory. For the most important case of dipole coherent oSCIllatIOns, nm can 

be defined as follows 00 

nm = -~ Jdn Z.l(n). (2.1)
2pv.l 

-00 

Here, Ib = Nbe/To is the bunch current, p = E / c the ~article m~mentum, v~ the betatron 
tune, and Z.l (w) the transverse impedance of the pIpe. PhY~lcally, nm Ylelds coherent 
frequency shift of the bunch with the zeroth length. If the ratIO 

b= Inml (2.2) 
w. 

is small, a coherent interaction only slightly distorts the unperturbed spectra. In this 
case, if m.l and me are the mult ipole numbers of t ransverse and synchrotron oscillations, 
the eigenfrequencies of the coherent osci llations occur close to the combinations: 

(2.3) 

while the modes of oscillations can be classified using the synchrotron multipole number 
m. into the betatron, synchrotron a nd synchrobetatron modes. 

Since both coherent frequency shifts and increments of coherent oscillations increase 
with an increase in the beam current, it may occur that a coherent interaction will couple 
the synchrotron modes of the bunch, and the multi pole number me will no longer classify 
its coherent modes . Physically, this fact corresponds to the development of coherent 
oscillations during time intervals comparable to or faster than the periods of synchrotron 
oscillations of the bunch particles. Typically, the coupling of synchrotron modes of the 
bunch breaks the stability of the coherent oscillations. In the region of rather moderate 
mode coupling (b ~ 1) the study of the collective stability of the beam usually requires the 

1 For instance, to prevent the wideband bunch-to- bunch interaction, in KEK B-factory [4] the length 
of sueh devices should not exceed 30 em, in SLAC project [3] - 60 cm . 
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solution of an infinite system of the coupled integral equations (see, for instance, in [21]). 
Its t runcation yields both t he eigenmodes and eigenfrequencies, as well as stability criteria 
of coherent oscillations. Alt hough careful calculations of the collective spectra in cases of 
practica l interest requ ires the use of numerical methods, 2 the lowest instability t hresholds 
can be evaluated using perturbation theory. Simple calculations (see, for example, in [23]) 

1 r--_____m~6 = 1~
w~ 

0.5 

0.1 0.2 0.3 0.4 

-0 .5 

-l L-~----~---

F igure 2: Dependences of coherent frequency shifts of the betatron and first two synchro­
betatron modes on the bunch current. 

show that the betatron and the fi rst synchrobet at ron modes merge (see in Fig.2) when 

(2.4) 

Us ing t he rela tionsh ip between the transverse and longitudinal impedances, 

ZL(W) = : ( a:;z'ZlIh,r~,w(J ' (2.5 ) 

and estimating the derivatives by the order of value, 

aZ11 ZII
--"'- (2.6)8z - 1.L ' 

where 1.L is the pipe radius, we can also write 

Z.L(W) ~ ~ iZII(w) (2 .7)[1 w 

Substituting this relation in Eqs(2.1) and (2.4) yields 

(2 .8) 


2A simple model, which enables exact solution of the synchrobetatron mode-coupling equations, has 
been recently proposed by V. Danilov and E. Perevedentsev in [22]. Relevant solutions of the mode­
coupling equations have been obtained in [23]. 
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where 27r Ro is the perimeter of the orbit. For example, for the KEK B-factory in the 
TRISTAN MR tunnel (see in the Table), and for 1.L = 3 em, the integral in the left-hand 
side of Eq.(2.8) should not exceed 20 KOhm. Since below the pipe cutoff frequency ZII/n 
is approximately constant, and then decreases roughly ex: R6 /( nl.L)2, Eq.(2.8) estimates 
the threshold impedance of the ring as 

(ZII/n) ~ 250 mOhm, (2.9 ) 

Note that the increase in both the t ransverse and synchrotron tunes generally suppresses 
the mode-coupling ins tability and , therefore, increases t he acceptable value of ZII/n. 

Generally, the stabi lity of coherent oscillations of bunches can be provided by syn­
chrotron radiat ion damping (SRD) and by Landau damping of the collective modes. As 
can be seen from the Table, the decrements due to SRD in the present B-factory designs 
are expected to be rather weak. T he st rength of the Landau damping is defined by the fre­
quency spread of the beam. The frequency spread due to the nonbnearity of synchrotron 
oscillat ions is 

~W~ = ~2 Ws (A~r, II = hARF. 

This value is even smaller than the SRD-decrements for all pro jects. For t his reason we 
may conclude that the stability of the synchrotron coherent oscillations of a bunch is 
determined by the SRD, or by a suitable feedback system. 

For betatron (synchrobetatron) coherent oscillations , useful information concerning 
the capabi lity of the Landau damping can be obtained by inspecting the stability diagrams 
in the plane of the complex variable Om . If gm (w ) is the frequency distribution fun ction, 
which corresponds to the mode m , the parametric equat ion of thi s curve has the form 
(see in [10J and in Appendix A for details) 

1 Joo dwgm( w) 
nm (L~.Wm) - ~wm - W + iO' (2. 10) 

- 00 

The frequency spread of the betatron coherent oscillations can be defined by two kinds 
of nonlinearit ies. First , in a colliding-beam mode this is a nonlinearity of t he beam-beam 
kick. T he relevant stabili ty diagram [1 0J for dipole betat ron oscillations is shown in Fig.3. 
Although, it indicates that only 0.15e contributes to the damping effect, the nonlinearity 
from the main interaction point (IP) cancels t he coupled-mode instability if ~ exceeds I/~ 

at least tw ice. 
Second, in the single-beam operation mode Landau damping of coherent oscillations 

can be provided by the cubic nonlinearity, produced by a fam ily of octupoles. If p;JJ; 
and VJJ]'; are the amplitudes of the horizonta l and vert ical betatron oscillations of a 
particle, the tune shift of the, for example, vertical oscillations due to that family, has the 
form: 

(2.11 ) 

where 

01/z e Jn ( ) () (0 
3 
Hz ) (2.12)oJz ,x = =f 87rE 0 ds{3z s {3x S ox3 s· 
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Figure 3: Stability diagram of vert ical coherent oscillations for the case when the 
beam-beam nonlinearity defi nes t he frequency spread. 

Since for flat bunches Cx » Cz , except for t he special location of the octupoles, the tune 
spreads of both vertical and horizon al oscillat ions will be determ ined by the hori zontal 
emittance ex. In this case the stability di agram for vert ical oscillations essent ially limits 
the use of devices, producing the pos it ive coherent frequency shifts (see in F ig .4). T he 
stability diagram for horizontal coherent oscilla tions has the us ual shape (Fig.5) . Once 
the working point in t he plane of 0 must be found inside the stability region, the use of 
Landau damping limi ts both the real and imaginary par ts of the coherent frequency shift. 

T he tune spread , which is equivalent to that from the IP, can be produced by the 
family with the strength 

n (fJ3 Hz) 2I dS ox3 s~120 T/m. 
If the ring impedance is below the limit, which is defined by Eq.( 2.9)' transverse 

coherent oscillations can still be unstable d ue, for instance, to head-tail instabil ity. In 
the region b ~ 1 and neglect ing Landau damping, the instabilities li mi t the real part of 
the impedance. For the case of sh or t bunches, which is specific for e+e--factor ies, the 
increments of head-t ail modes can be estimated by the following simple formula (dipole 
vert ical betat ron oscillations are assumed): 

(2.13) 

Here, (= dvz/dlnRo, lm(x) is the Bessel function and CPo = O"s/Ro. Since ReZII(n) is an 
even funct ion of n, and 

L 
00 

l?,.., = 1, (2.14) 
m,,=- oo 
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Figure 4: Stability diagram of the vertical dipole coherent oscillations for the case when 
the horizontal emi ttance defines the frequency spread of vertical oscillations ow. The 
negative sign of the nonlinearity prevents the minimum in the total tune shift and the 
corresponding dynamic aperture reduction. 

0.2 
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Figure 5: Stabili ty diagram of the horizontal dipole coherent oscillat ions for t he case when 
the horizontal emittance defines the frequency spread of horizontal oscillations Ow. 
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the sum of the decrements in Eq.(2.13) is equal to zero: 

(2.15) 

For short bunches (1(I'Po < 1) this sum rule separates the signs of the decrements of 
the betat ron (m6 = 0) and of the synchrobetatron (m. :j=. 0) modes. If the beta t ron 
oscillations are stable, the synchrobetatron oscillab ons occur unstable and vise versa. 
For a pure resistive impedance (ZII(n) = Z) the integra tion in Eq.(2.13) results in the 
following v ry known formula 3 

(2.16) 


However, the limitations due to this instability on the impedance or the ring chromaticity 
cannot be discussed without additional assumptions concerning t he stabilizing effects. As 
an example, we give an estimation of the threshold impedance in the KEK LER due to 
Landau damping, which is caused by the nonlinearity of t he beam- beam force, 

E F 
Z -:; .15~- ~ = 18 KOhm. (2.17) I (

e b a. 

Another stabili zing effect can result from t he interaction of a bunch with a system 
of matched plates which was mentioned above. Such a system can be ins talled in the 
ring for different purposes: for the ion cleaning, for the detection of coherent oscillat ions, 
etc. A piece of the vacuum chamber with such a plate presents the segment of a double­
connected waveguige. Provided t hat it is terminated by the characterist ic impedance Zo, 
the interaction with the fundamental TEM-wave of this waveguide damps the betatron 
coherent oscillations of a short bunch. T he reI vant damping decrement is defined by the 
equation [16] <I (I is the length of the plate) 

8 _ ehZo ITl 
as < I, I~ l. (2 .18) - Wo 2E [2 ) 

.L 

The fact that this decrement does not depend on the bunch length CT s is specific for the 
effect of fast damping [20J and indicates it as being an effective tool to damp coherent 
oscillations of short bunches . The practical usage of this effect to damp coherent oscilla­
t ions demands a long bunch-to bunch distance, careful matching of the plates until the 

3Both this equat ion and Eq .(2.13) are written for the so-called hollow-bunch distribution fu nction in 
the amplitudes of synchrotron oscillat ions, when all particles in the bunch have the same ampli tude of t he 
synchrotron oscillations. For more realistic , smooth distribution functions decrements can be est imated 
by the extrapolation of the collective spectra from the high frequen cy region Inl» (Im.IRo/(TJ) (see, for 
instance, in [10], or [19]). This results in the equation similar to Eq.(2.16), except maybe for additional 
factor l/(lm.1 + I) , which is not important here. 

4Note that , since the main contribution to the decrement yield the excitation of the TEM-mode by 
transverse current of the bunch, this effect cannot be described using traditional concept of the transverse 
coupling impedance. 
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harmonic numbers of at least n '" Ro/ [.1., working with a definite sign of the chromaticity 
to stabilize synchro betatron modes and sufficient space for the plates. As can be seen 
from Eq.(2 .18), it is more beneficial to locate such plates in places with a small value 
of the ,B-function. For instance, the interaction of a bunch which contains h = .5 rnA 
with a system of plates, which have Zo = 50 Ohm, 1.1. = 3 em and the total length 0.1 of 
the ring perimeter, gives 8::: 3.5 1O-3wo. For the B-factory in the T RISTAN MR tunnel 
this corresponds to T = 1/8 = 0.4 ms; for the Novosibirsk project it is 0.1 ms . We also 
remind that the use of damping systems instead of Landau damping does not blow-up 
the phase-space volume of the bunch. 

2.2 Longitudinal S ingle-Bunch Effects 

In most of the Band <I>-factory projects the limitations due to longi t udinal single-bunch 
effects are associated wit h the growth of the bunch lengt h with its intensity. The theory of 
thi s phenomenon is yet far from its complet ion (see, fo r example, in [24]), and part icular 
designs are typically based on the half-empirical ru les , or t he simulations. Generally, t he 
interaction of a bunch with the wideband environment results in two kinds of effects: 
in a distortion of the RF potential well , and in an inst ability of synchro tron coherent 
oscillat ions. It seems that the experimental results indicate that a flattening of the RF­
well and associated bunch lengthening is observed at a lower beam current . This gives at 
least some basis to consider these two mechanisms of bunch lengthening separately. 

If the bunch only slightly distorts the potential well and , therefore , the bunch lengthen­
ing is weak, it can be calculated using perturbation t heory (see, for instance, in Appendix 
B). The result is 5 

0'; _ ~ el b( Z / n )o IT R5 
(2.19) 2 - 1 + V 271" h . [2 ' 

0'.0 0' , e V S1 n c.p, .1. 

where h is the harmonic number of the RF system and (Z / n)o is the value of t he impedance 
below the cutoff frequency.. Taking into account that at relat ivistic energies V ex "'/, 

we can rewrite Eq. (2.l9) in t he form which was used to scale the bunch lengthening 
experimental data in early papers (see, for example, in [25]) 

0'; _ C Nb 
2 -1+ 4 ) (2.20) 

0' sO I 0'. 

where C is a factor which depends on the ring parameters. Eq. (2.1 9) can be used to 
estimate the limit<;ttion on the production h (Z/n )o, when the desirable bunch lengthening 
does not exceeds , say 20%. If we take again as an example the ring in the TRISTAN MR 
tunnel, this yields h (Z/n)o :::; 1.3 10-4 V, or with h = .5 rnA, (Z/n)o :::; 260 m Ohm. 

The calculations related to bunch lengthening due to potential-well distortion wi thin 
a wider region of the parameters are based on the ass umption that due to the balance 
between the excitation of the synchrotron oscillations due to quantum fluctuations of the 

5To simplify equations in this section we write Zn instead of Z,,(n) 
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synchrotron radiation and synchrotron radiation damping the bunch reaches the Boltz­
mann equilibrium distribution with the linear density 

U(rp))p(rp) = poexp ----y.- . (2.21)( 

Here, rp = sf flo - wot gives the longitudinal position of a particle inside the bunch, 
U( rp) is the potential energy of the particle, and T is the longitudinal temperature of the 
bunch. It is obvious that in using Eq. (2.21) we assume the collective stability of the bunch 
b eforehand. The substitution in Eq.(2.21) of the potential energy of the synchrotron 
oscillations after its modification by the bunch wake results in the so-called Haissinski 
equation [26] 

p('1') = Po exp ( - ::6 -1d<p'w( '1" - 'I' )p(<p')) (2.22) 

Here, Roero = eroo is the unperturbed bunch length and 

2 00 

Nb e Wo Jd ( 'Z f ) -incp
W ( ) rp -- h V . 2 n -2 nne . (2.23) 

e SIn rpsero 
-00 

Eq. (2.22) is a nonlinear Volter ra-type integral equation. For reasonable wakes 

2w = J00 

drpw 2 
( rp) < 00 (2.24 ) 

-00 

it always has a un ique solution, which can be found by at least using successive iterations 
[27](see also in Appendix C). In the case of strong bunch lengthening (W2)l/2 » 1, the 
interaction with dissipative surrounding results in a strong asymmetry of the linear density 
along the bunch . For t he case when the bunch interacts with a pure resistive impedance 

Zn = Zo, the Haissinski equation can be solved directly [28]. The resul t is 

= ~ exp( _x 2 /2)/( V2iero)p(x) In' x = rp/era. (2 .25)e coth(e') + erf(x/v 2) 

Here, the value 
t _ 2 t' _ eIbZan 
<" - er a<" - 7r 2 E . (2.26)

Vs era 

specifies the strength of the lengthening . Eq.(2.26) has simple asymptotes . In the region 
e « 1 the distortion of the bunch length is small, while p( x) is close to a Gaussian 
distribution 

p(x) ~ exp( _x 2 /2)/( y'2;era)[l - (erf(x / V2)J . 
On the contrary, in the region e» 1 the linear densi ty p( x) gets a specific triangle 

shape (see, for instance, in[24,30] and in Fig.6): 

0, x> 0 , 
p(x) = 1:1 g(x) (2.27)

{ x < 0, 
~ 1 +g(x)(1- 1/x2 )' 
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where 
g(x) = exp(-x

2 /2+2() (2 .28) 
y'2;l x l 

The width of p(x ) in this case is obviously 

-2/f -5: x -5: 0, 

and significantly exceeds the natural length of the bunch 0"30 

(2 .29) 


p(s )/Po 

- 4 -2 2 4 S/O"o 

Figure 6: Deformation of the shape of the bunch linear density with the bunch intensity. 
From left to right e: 5, 2.5, 1, 0.0 1. 

A st rong asymmetry of the linear density in Eq.(2.27) generally indicates that such 
states of the bunch can be reached only through a strong instability of synchrotron coher­
ent oscillat ions, which roughly stops in the region where the amplitudes tpcoh '" 0"4>(N )/2, 
while phases 1/J3 are concentrated around 1r . Moreover, in this region of parameters the 
wakes significantly decrease the frequencies of synchrotron oscillations, which simplify the 
conditions for the synchrot ron mode-coupling ins tabil ity of the bunch. 

The instabili ty of synchrotron coherent oscillat ions can result in additional heating of 
the beam. Start ing fro m paper [31] the bunch lengthening due to coherent instabili t ies of 
a bunch was called as the turbulent one. A closer inspection of this phenomenon indicated 
(see, for instance, in [10] and [32 ,33]) the importance of two effects for t he beam hea ting 
by its unstable coherent oscillations: the turbulent stabilizat ion of t he oscillations due to 
a non lin ar dependence of the increments of unstable modes on the amplitudes of coherent 
oscillations; and absorption of the energy of coherent oscillations by part icles, when the 
collective oscillations are stabilized by Landau damping, or some other damping effect. 
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Both the analytic and numerical predictions related to the turbulent bunch lengthen­
ing are still too speculative (see , for example in [34]), and are typically focused on the 
most convincing calculations of the stability thresholds fo r the linear synchrotron coherent 
oscillations. Below the threshold of the synchrotron mode-coup!ing instability t he calcula­
t ion of t he safe margins for t he longitudinal impedance uses typically Z/ncriterion, or its 
sui t able modificat ion. However, since for the most B-factories the SRD-decrements exceed 
t he frequency spread of synchrotron oscillat ions, the threshold currents, or impedances, 
are defined by the balance between the increment of the instability and l/T;R. For the 
data given in the Table, this typically results in roughly one order of magnitude higher 
thresholds than that given by t he Z/n-criterion. 

In the case of strong bunch lengthening the RF potential well distortion due to t he 
bunch wakes significant ly decreases the instabili ty t hresholds for the longitudinal coher­
ent oscillat ions [35]. For these reasons it seems that the region ~ A> 1 cannot be reached 
without some extraordinary efforts. It is clear, however, that the use of passive or active 
damping systems to increase the t hresholds of instabilit ies is desirable anyway. Except, 
maybe, for the possibility to use th e systems, in lu ding notch-filters , synchrotron oscilla­
tions usually do not provide strong enough modulat ion of the coherent energy loses. If 
the damping of transverse osciltations is strong enough, t he damping of the synchrotron 
coherent oscillations can be enhanced by the elements with the radial gradient of the 
coupling impedance [1 6]. The relevant addi tion to t he decrements of synchrotron modes 
can be es timated by the following expression 

8 _ elb ( 8Re(Z) ) 
C 1] (2.30)m. - E 8 ' 

(73 X 0 

where TJ is the value of the dispersion function at the position of the damping system, and 
the derivative is calculated on the closed orbi t. The damping effect takes place if 

/ 8Re(Z )) 0 (2.31 )TJ a >.( x 0 

This condition has a clear physical sense: t he sign of t he gradient of the impedance must 
increase the energy loses of synchrotron coherent oscillat ions with an increase in their 
amplitudes. As an example, the ins tabi lity with the growth rate T = 100 J1 S in the LER 
in the TRISTAN MR tunnel could be damped by a system with \7Z = 32 KOhm/ cm. 
Since the sum of decrements of coherent oscillations does not depend, in part icular, on 
the radial-longitudinal coupling [17], the interact ion with this system will simultaneously 
decrease the decrements of the dipole horizontal synchrobetatron coheren t oscill ations 8?!. 
to maintain the sum rule 

(2.32) 


The increase in the total sum of t he decrements is a general requirement to a design of 
all damping systems. With the use of wideband dampers this demands an increase in the 
contributions in decrements of the effect of fast damping. Note that the decrements, or 
increments, in Eq.(2.30) do not depend on the ring momentum compaction factor a. The 
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instabilities due to an interaction with the environment having a radial gradient of the 
longitudinal impedance can limit the performance of the rings with extraordinary small 
values of momentum compaction [36]. A non-symmetric position of the closed orbit in a 
vacuum chamber is typical for many B-factories. Such a gradient can also be caused by 
the closed-orbi t distortions. 

3 Multi-Bunch Effect s 

If the bunch wakes last longer than the bunch-to-bunch distance the interaction of bunches 
couples their coherent oscillations, which can cause a m ulti-bunch instability of the beam. 
It is clear in advance that the worst stability has a beam containing K, identical bunches. 
In this case, the symmetry of the stationary state relative to the rotation on the angle 
271' / K, results in the propagation along the beam of uncoupled multi-bunch modes with 
wave-vectors of 

- 271'a 0 1ka - , a = ,1, ... ,K, - • (3.1 ) 
K, 

This increase in the degrees of freedom of a multi- bunch beam makes its dynamical fea­
tures more similar to the case of a coasting beam and, therefore, even more unstable 
when K, increases. The main difficulty in this case is caused by the multiplication by the 
bunch-to bunch interaction of the multi-turn stability diagram of a single bunch. Let 8(v) 
be the multi-tu rn part of the decrement of a dipole mode of a single bunch. Due to the 
multi-turn interaction it is a periodic function of the tune v 

8(v + 1) = 8(v). (3.2) 

Somewhere between v = 0 and v = 1 the function o(v) usually changes sign, which 
defines the width of the stopband of the instability. As an example, we can take that this 
happens when v crosses the point v = 1/2, as in the case of a resistive wall instability, 
or an instability due to interaction of the beam with a low-Q cavity. If, now, the beam 
contains K, identical bunches, and interacts with the same system, the decrement of the 
a-th multi-bunch mode is defined by the same function, which, however, depends on v 
and a through the following combination: 

( 
+ a)V- Imw(v) = K,O -K,- . (3.3) 

If, for instance, the stability condition for a single bunch is 

o ~ v ~ 1/2, 

for K, bunches we must simultaneously satisfy K, stability conditions of the form 

o~ v + a ::s K,/2, a = 0,1, ... , K, - 1. (3.4 ) 

This means that, if some mode with a mode-number of a < K,/2 is stable, its reflect­
ing partner K,/2 - a would be unstable. Although the fact of instability seems to be 
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independent of v, the sum of the decrements of all multi-bunch modes 

does not depend on the bunch-to-bunch coupling. Moreover, it is exactly equal to the 
sum of the multi-turn parts of the decrements, calculated for particular bunches while 
neglecting their coupling. In this sense the correct choice of v can simplify the stabilization 
of unstable modes. 

The multi-bunch instabilities can usually be suppressed by a relevant decrease of the 
Q-values; by the varying the parameters of the bunches (typically the tunes) along the 
beam 6; and by using suitable feedback systems. The 1-st and the 3-d possibilities have 
been more carefully inspected to overcome the multi-bunch instability in B-factories (see, 
for instance, in [3], or [4]). 

In some sense, mu lti-bunch instabilities due to the interaction of the beam with some 
parasit ic cavities or modes can be considered to be less dangerous. Once the parasitic 
element is specified, definite efforts can be spent to decrease its impedance and to cure 
t he instability. It becomes less easy, however, for the case when the beam interacts with 
the fundament al mode of the accelerating RF-system. Recently [4], the instability of this 
kind has been reported as a serious limitation on the performance of B-factories with long 
rings. For short bunches (O's ~ ARF, where ARF is the wavelength of the accelerating 
field ), the maximum increment of coherent oscillations of the beam due to its interaction 
wi th the fund ament al mode of the RF-system, containing Nc accelerating cells, is defined 
by t he parameter: 

(3.5) 


Taking (Z/ Q) = 197 Ohm, the beam current] = 1 A and all other necessary param­
eters from the Table for the LER in the TRISTAN MR tunnel, we can estimate the 
corresponding growth rate of the dipole synchrotron modes as 

(3.6) 


Since this value is very close to Ws = 4.5 104 l/s, the instability is indeed fast . On the 
other hand, direct calculat ions of the dipole multi- bunch decrements (8 = - Imw) due to 
nonresonant interaction of the beam with the cavity result in (see, for example, in [4], or 
[10]) 

8m = mDexp (- II:~L) F(vk,mvs + a), (3.7) 

m = ±l, 

F( ) 7r { cos (27rCL ) - P (3.8)
x , y = -;, 1 _ 2p cOS(27rCL) + p2 ­

6 As was already mentioned, the stability of a single bunch is determined by the proper choice of the 
working point , and in this sense coherent oscillations of a single bunch can be done stable easily. Hence, 
we may conclude that a multi-bunch system can be stabilized by a suitable distribution of bunches along 
the orbit. 
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a±=X~Y, p=exp(- K~L) ' 

Here, I/k = Wk/WQ (Wk is the frequency of the cavi ty mode k), and QL is the loaded Q­
value of the cavity. From Eqs (3.7) and (3.8) one can see that integer ratios h/K are 
the roots of the decrements (increments) of all multi-b unch modes. Therefore, tuning of 
the cavity in exact resonance with the beam (I/k = h) eliminates t his instabili ty. In real 
operation, however, to compensate for the reactance due to beam loading and to minimize 
t he reflected power, the frequency of the fundamental mode of t he cavity must be shifted 
down the resonant frequency WRF to 

~W _ N 1(Z/ Q) 
(3.9)

WRF - c 2V sin <p&' 

where, V cos <pJ is the accelerating voltage. Due to this detuning, the phase advance of 
the wake of the fundamental mode on the bunch spacing gets a fractional part of 27r, 
which enhances both the increments of unstable modes and the decrements of the stable 
modes of the beam. One can see from Fig.7 that the minimum value of the growth time 
can reach the JiS region. Calculations of t he increments (decrements), assuming a defini te 
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Figure 7: Dependence of increments of the dipole synchrotron coherent oscillations on the 
beam current. From the top to the bottom a = 1023, 1022, 1021, 1020; K = 5120 . 

mul t ipolarity of the synchro t ron coherent oscilla t ions Tn, gives relia ble results only in the 
case when the values increments do not exceed the frequency of synchrotron oscillations 
W J • This condition limits the range of the detuning of WRF from the resonant value. For 
instance, the requirement that 

simultaneously demands that 
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The fact that the beam has collective degrees of freedom makes its properties similar to 
that of a. dielectric media [1 0J . In the case of the interaction with a cavity, this results 
in an increase of Wk on the frequency shift , given by Eq.(3.9) (see in Appendix D). This 
effect must be taken into account in the injection and in the cavity tuning scenario. 

As a general conclusion of this sect ion we may state that except for the case when 
modification of t he bunch-to-b nch coupli ng is used to cure multi-bunch instability, their 
damping demands an enhancement of the collective single-bunch stability. In spi te of the 
necessi ty t o damp only some unstable modes this can require t he use a dam ping system 
with bandwidths corresponding to distances shorter than the bunch spacing in the beam. 

Collective Beam.. Beam Effects 

Usually, the limitations due to a collective beam-beam ins tability aTe not so widely dis­
cussed like say, the limitations predicted by a weak-strong analysis of beam-beam ins a­
bility. This is probabJy due to the fact that an analysis of the strong-st rong interact ion 
and its first step - the collective stabili ty of colliding bunches - is not e y for ei t her 
analytic and numerical methods. Moreover , except for general expectations , t here are not 
m any direct experimental indications of the limitations due to a collective beam-beam in­
stability. However , the unders tand ing that the collective interaction of collid ing bunches 
can dramatically shrink the stabili ty diagram, if the rings have different perimeters [37 ,38], 
has completely canceled discussions of the B-factory schemes involving a short LER. 

Both analyt ic and numerical studies of the collective beam-beam interaction are em­
barr assed by two complementary effects. The 1st is the strong tune d ispers ion across the 
bunch due to t he nonlinearity of the beam-beam kick. T his results in the necessity to take 
into account in calcula tions the Landau damping, which strongly complicates the equa­
tions. The 2d difficulty comes from the incoherent beam -beam intera.ction of the bun hes. 
The calculation of the interference of coherent and incoherent beam- beam instabili ties is 
very complicated problem even for nu m ri cal ca lculations, and is ignored in all analy tic 
approaches. This m eans that pred ictions of such calculations should not invade in region 
of the incoherent beam-beam instability. 

In t he models, ignoring this interference and the Landau damping of modes, the sta­
bility of colliding bunches can be analyzed more or less easily. F irst, the rates of the 
time dependencies of the ampli tudes of coherent oscillations are defined by ~wo, where 
~ is the beam-beam parameter. T h is means tha t for the ini t iai m odes, say, the dipole 
and quadrupole can be ra ther fas t. If the tunes of oscillations are far enough from the 
resonant va.lues, for instance 

(4 .1 ) 

where m x , m z and n are integer numb ers, the oscillations of bunches are stable, wh ile their 
interaction results in a coherent frequency shift . The value of this shift wo6.JJ generally 
depends on the u nperturbed distribution fu nction and on the geometry of the mode. For 
example, fo r dipole oscillat ions it can be estimated by 6.JJ = 2~A with A ~ 1. This fact 
can be used to measure ~. However, the interpretation of such measurements requi res 
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exact knowledge of the unperturbed distribution function (to calculate A) as well as the 
taking into account the nonlinearity of coherent beam-beam oscillations [39]. 

In the vicinity of resonances coherent oscillations of colliding bunches can be unstable. 
The strength of this instability strongly depends on the tunes of oscillations as well as 
on the symmetry of bunches. The interaction of identical bunches separates the modes, 
describing relative oscillations of bunches (1r-modes), from modes, when bunches oscillate 
with t he same phase (o-modes). The increments and widths of stopbands of the instability 
can be estimated using the dispersion equation (the sign + corresponds to 7r-mode) 

26m 2 m 
(4.2)1 = ± 2 6 2 ' 

V - m 

(4 .3) 

Here, 6 m = mxvx +mzvz - n; ex and ~z are the partial beam- beam parameters: 

N e2 (3; 
(4.4)ez = E ( )'271" (J'z (J'x +(J'z 

(4.5) 

(J':t: and 0'z are the horizontal and vertical rms beam sizes and r = 0'z /0'x is the beam 
aspect ratio. According to Eq(4.2) the positions and the widths of stopbands in the plane 
(vx, vz ) are defined by the following inequalit ies 

lL).ml < 213ml, ( 4.6) 

L).m3m < 0, 7r - modes, ( 4.7) 

and 
6 m 2:m > 0, 0 - modes ( 4.8) 

Since the tunes in 6 m include the incoherent beam-beam tune shift, for one-dimensional 
oscillations the stopbands of 1r-modes occur below and for o-modes - above of Vo = 
(n/m) - C where Va is an unpertu rbed betatron tune. This means that the stopbands for 
o-modes can invade inside the stopband of the incoherent oscillations 

(n/m) - ~ ::; Vo ::; n/m. 

In this case, more reliable predictions concerning the behaviour of colliding bunches can 
give the numerical analysis. 

According to Eqs(4.3) and (4.6) the relative importance of various two-dimensional 
resonances depends on both the symmetry of the mode m x , m z and on the aspect ratio 
of the beam r. The instability of a mode with a multipole number of m is caused by a 
sum-type resonance of this mode and the -m mode. For flat bunches (r « 1) the widths 
of stopbands are mainly related to the excitation of vertical oscillations: 

(4.9) 
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The broadest are sum-type resonance Vx + Vx = 1, and the mam coupling resonance 
Vx = V z 

For round beams (ax = a z ) there is no stopband along the main coupling resonance, 
while the most powerful two-dimensional is the linear sum-type resonance. In this case 
with an increase in the beam current the working point moves along the line Vx = V z ; its 
vicinity may become more preferable for the position of the working point of the ring. 

The difference in transverse beam sizes, say a{l) » a(2), generally suppresses the 
coherent beam beam instabili ty [7]. For instance, for a water-bag distribution and one­
dimensional oscillations with a multipole number of m, the value ~ in Eq.(4.2) must be 
replaced by 

(4.10) 


This suppression of the collecti ve beam-beam instability for bunches with unequal trans­
verse sizes can be one of the reasons for their flip-flop instability. 

T he calculat ion of the Landau damping for the beam- beam instability can be done 
more or less easily for horizontal oscillations of identical, very flat bunches wh ich have 

a Gaussian d istribution in the amplitudes of horizontal oscillations VJ7]. If x = .jJ/c, 
where c is the horizontal emit tance of the bunch , and X(x) is the Fourier-amplitude of the 
7r-mode with a multipole number of m 7, then one can find that the function w = y'XX(x) 
satisfies the following differential equation [8]: 

2 

/I ( () m - 1/4) ()w + 2Vm x - x W X = O. (4.11 ) 
2 

Here, 

(4.12) 


Wov is an unknown frequency of the coherent mode, ~(x) = vx(x) - n/m = ~o + ~vAx), 

(4.13) 

Although Eq(4.11) is still difficult to solve directly, many important properties of the 
eigenfunctions w(x) and of the spectrum of eigenfrequencies v can be obtained using the 
fact that Eq(4.11) has the form of the Schrodinger equation in quantum mechanics, which 
is written for a part icle with zeroth energy, moving in an effective potential well 

(4.14) 


7If we use, for instance, Vlasov's approach, when the collective oscillations of bunches are described 
by the harmonics of the distribution function in phases of incoherent oscillations tf; 

f(I ,2) = fa + L f$,;. ,2)(J) exp(imtf; - iwt), 
m;tD 

then 
X(J) = f~)(J) - f~)(J) . 
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Since w(x) is concentrated between the stop-points of the mechanical problem when 
Ueff (Xl,2) = 0; and outside decreases like 

xl/2+m x ~ 0,
w(x) = { 1/2-m'

X , x ~ 00, 

the analysis of the stability problem can be reduced to an inspection of the variations of 
the potential curves with a variation of v. In particular, this indicates (see in Fig.8) that 
at least for initial modes of m = 1,2,3 Landau damping does not completely suppress the 
instability. This result was recently confirmed by numerical calculations in [9]. 
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F igure 8: Effective potential wells for (from bottom to top ) the dipole, quadrupole and 
sextupole modes; t::.o/e = - 1; v/ ~ = O.li . 

As far as Eq. ( 4.11) presents a particular case of the more general Sturm-Liouville 
equation, its spectrum can be estimated using the general rela t ionships . For insta nce, 
exact solut ions w(x ) = Wj(x) minimize the integral 

(4.15) 


This yields the normalizat ion condition for eigensolutions 

m00 ( 12 2 - 1/4 2)Jdx (wj ) + Wj = 2, (4.16)x2 
o 

and the dispersion equation of the problem 

(4.17) 

If eigenfunctions Wj are not known, both they and sp ctra can be found using minimization 
routines start ing from more or less sui table set of probe functions w(x). 
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Another issue, which can be especially important for B- and <I> -factories, is the influence 
of the bunch 1 ngths on the beam- beam instability. As was previously mentioned , in the 
region (3* '" a" t he strong modulation of the bet atron phase on the IP suppresses the 
beam-beam resonances of synchrono us particles [12] . Direct calculations [11] show that 
a similar suppression is valid for the coherent beam-beam instability when it is described 
by a renormalization of the beam-beam parameter: 

(4 .18) 


where for ident ical bunches with a round cross section 

00 

Ym (() = J~exp[- u2 + 2iqarctan ((u)], (4.19) 
-00 

and for vertical oscillations of identi cal bunches with a flat cross section 

Y;((() = J00 

~ exp[-u2 +2imz arctan((u)lV1 + (2U
2 

, ( 4.20) 
-00 

In some cases the calculation of the functions Ym and Y;( can be simplified by their 
rep resentation in terms of the confluent hypergeometric funct ion IV (a, b, z) [40] 

00 

Ilr (a,b,z ) = r ~a) Jdtt U
-

1 (1 + t)b-a- l e - zt . 

o 

Direct calculations (see in Appendix E) yield 

(4.21 ) 

and 
yf (r) = (2m) !( ~(_l)m- k (4 / (2 )k \lI (m _ 1/2 k 1/(2). (4.22) 

m <., 4m ~ (2k )!(m - k) 1 " '> 

One can see from Eqs(4. 19) and (4.20) that for round beams due to IYml < 1, the 
modulation of the betat ron phase along the IR always suppresses coherent resonances. 
For flat bunches due to a mismatching between t he modulation of the beam-beam kick 
and the beam cross sec tion we can write 

Hence, t he modulation can amplify the coherent beam-beam kick for very long bunches. 
However , Fig.9 shows that the region a$ ~ (3* is quite safe for the vert ica.l coherent 
oscillations of flat bunches. Schematically, this can be demonst rat ed by Fig. 10, where we 
plot ted £ /£0 assuming that ein Eq. (l. l) is limited by the resonance m = 4. One can see 
that £/.co signifi cantly exce cis 1 in the region 0.5 ~ as / (3. ~ 2. 
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Figure 9: Dependence of Ym for fl at bunches on the bunch length; f3" = 1 cm. 
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Figure 10: Dependence of the luminosity on the bunch length; limited by t he 4- th order 
resonance. 
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Since an incoherent tune shift does not depend on the phase advance of oscillations on 
the JR, the described suppression of coherent beam-beam resonances in the region (J's ~ (3* 
will enhance the Landau damping of the instability in round beams for both vertical and 
horizontal oscillations. For flat beams, due to the fact that (3; ~ (J's ~ (3; this will be 
valid for only vert ical oscillations; horizontal coherent beam-beam oscillations, however, 
will still be unstable. This fact gives one more dynamical advantage to round colliding 
bunches. 

5 Instabilities Due To Ions 

When the beam moves along a closed orbit the collisions of particles with atoms of the 
residual gas produce positively charged ions. Among others possibilities, the interaction 
with these ions can cause various instabili ties of coherent oscillations of t he beam. The 
specific features of these instabilities strongly depend on t he lifetime of the ion inside the 
beam and, in particular, on the possibility for ions to be trapped by t he beam. By this 
reason , we discuss below the issues related to the interaction with ions in electron and 
posit ron rings separately. 

5.1 Ions in an Electron Ring 

A train of electron bunches presents for ions a sequence of focusing lenses , separated 
by time intervals, in which ions are defocused d ue to their space charge. Provided that 
the betatron oscillat ions of the ions are stable, they can be trapped in the beam and 
can perturb the motion of elect rons. Generally, two effects are associated wi th the ion­
trapping. The first is a tune shift and spread due to ions, which can be estimated by (see, 
for inst ance, [41]) 

" v u = NirO , 
27r'E. 

~ E. =yE.xE. z , (5.1 ) 

where Ni is the number of the stored ions. For realistic parameters [41] the value of 
fl.v can reach .05. Due to th nonlinearity of t he Coulomb fore this effect increases the 
Landau damping of coherent oscillations of an electron beam and, in this sense, can be 
considered as being a pos iti ve one. On the other hand, since Landau damping di lutes 
the phase-space volume of t he beam (see, fo r example, in [10]) it generally can limit the 
performance of the ring. 

However, stronger limitations can be caused by the interaction of stored ions with 
coherent oscillations of t he beam. Although the description of instabilities due to this 
interaction is very speculative , some of its general properties can be predicted using the 
analogy of t hi s instability and the instability of colliding bunches. In particular , we may 
expect the unstable coherent oscillations below the resonances 

(5.2) 

where integers mz,i define the multi pole numbers of collective modes of the electron and 
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ion beams. The increments of this instability would be proportional to [7J 

60 ex: woJ6.V~i ex: Wo (5.3) 

and will slowly depend on the multipole numbers (mZl md . Here, A; is the atomic weight 
of the ion and rp = 1.5 10- 16 em is the classical radius of the proton. For the reasons 
described in the previous sect ion, we can expect that such an instabi li ty will be hardly 
suppressed by Landau damping. Since the configuration of electron and ion beams, which 
have different t ransverse sizes, is more stable [7J, we may also expect the fl ip-flop instabil ity 
of the beams. 

Ions will definitely not be accumulated inside t he beam if the bunch spacing is chosen 
to make t he betatron oscillations of the ions unstable. This criterion defines the critical 
ratio n = N b/ K. (see, for instance in [4 1,42]) when the ions are swept out of the beam due 
to their overfocusing: 

IT> IT> _ 2A;az ax (l + r ) 
I'\. > 1'\.0 - II . (5.4) 

rp 

Here, r = az/ax is the bunch aspect ratio. If we take, for example, Ai ~ 30 (CO) and 
7c ~ 2 10- em, Eq.(5.4) yields no =: 1.3 109 • This value significantly exceeds the corre­

sponding ratios for all of the presently discussed B-fadories and, without special efforts, 
ions definitely will be trapped in electron rings. Additional cleaning can be achieved by 
using ei ther clearing field electrodes, or missing the necessary amount of bunches from 
the train . As was mentioned, the matched clearing field electrodes can be used as a single 
bunch dampers of coherent oscillations. In most design reports simpler method with the 
missing of roughly 10% of bunches from the beam is used to prevent ion trapping. 

5.2 Ions in a Positron Ring 

Positively charged ions cannot be trapped in a positron beam. However, the ions, once 
produced by a bunch, cannot be removed from the orbit immediately. As long as the ion 
trace of the bunch carries information about its coherent oscillations, it can cause at least 
a multi-bunch instability of the beam. Since the instability of t his kind is not associated 
with the trapping of ions, it can be important for electron beams in cases when the motion 
of ions is unstable. In the estimations given below we use the results of a paper [43] where 
this problem was studied in many detail for proton bunches. 

Once ions are not stored in the beam, it is obvious that the strength of the instability 
significantly depends on the pressure of the residual gas in the r ing and on the loss fa tor 
of the ions from the beam. The first factor defines the ion production rate, while the 
second defines t he bunch- to-bunch memory. In the case of positron or proton beams, t he 
most important aspect is the deflecting of ions from the orbit by t he beam space-charge. 
If we assume that at low pressure t he residual gas mainly cons ists of hydrogen atoms, t he 
rate of the increase in the rad ius of the ion spot can be estimated by the dimensionless 
increment 

(5.5 ) 

26 




6 

T hen, the standard calculations of the mult i-turn part of the increments of coherent 
oscillations of a single bunch results in [43] 

(5.6) 

Here, nA ~ 4 1016P [Torr] is the density of t he residual gas, O' j is the ion production cross 
sect ion, m is the multi pole number of the coherent mode, and 

(5.7) 

For the sake of simplici ty we write the decrement of one-dimensional (verti cal) coherent 
oscillations. Eq.{5.6) indicates at least t wo important fea tures of the discussed instability. 
The first is that in the working plane Vx , Vz the position of the stopbands of this instability 
is inverse to that of the resistive wall instability. For instance, one dimensional oscillations 
are stable, when 

k - 1/2 ~ Im lvz ~ k, k = 1,2, ... (5.8) 

The second is that due to a st rong nonlinearity of t he Coulomb force the increments slowly 
depend on the multipole mode number m , and , apart from the di pole , some ini t ial higher 
multipole modes can contribute in the limitat ions. 

Now, combining Eqs (5.6) and (3.3) yields the decrements of multi-b unch modes: 

L _ ( ) A 81rNe
2 

(21rVi ) . (21r [mvz + al)
Um ,a - n AcO'i L1m exp - -- m sIn , (5.9) 

E c: /'i, /'i, 

a = 0, . .. , K - l. 

9 3For the LER with a vacuum of P = 10- Torr (n A ~ 4 107 cm- ), and the data, given 
in Table, Eq.(5.9) estimates the increment of t he dipole mode by 61 ~ 12 l/s for a 
bunch spacing of 3 m, and by 01 ~ 104 lis for a bunch spacing of .5 m. T he fi rst 
number is smaller than the decrements due to synchrotron radiation damping and hence, 
is quite acceptable. In t he second case the instability must be uppressed by a suitable 
combinat ion of feedback damping and a decrease of the pressure in the ring . We point 
out that due to slow dependence of increments in Eq. (5.9) on the mode number m , the 
feedback system must ensure the dampi ng except for the dipole also quadrupole and 
maybe sextupole modes. The relevant gap in the bunch t rain defi nitely mus t help against 
this instability. However, this possi bil ity must be studied more carefully, because t he 
breaking of the feedback between t he head-on and tail-on bunches still does not prevent 
a beam breakup instabili ty of the train . 
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A 	 Stability Diagrams of Betatron Coherent Oscil­
lations 

The stability diagram of coherent oscillat ions is defined by the dispersion equation, when 
the frequency of oscillations tends to the real axes (Irnw --> + 0). For a bunch interacting 
with surrounding electrodes, the dispersion equat ion for, say, vertical dipole betatron 
coherent oscillat ions reads 

1 = - Om JdJxdJ", Jz8fo/8Jz , 
w ­ w",(Jx, Jz) 

Imw > O. (A.l ) 

Here, !o(Jx, J", ) is the stationary distribution function of the beam. If we define the 
frequency distribution function 

g(w) = - / 
8/0

dJ!1; dJzJz8Jz o(w - wz(Jx,Jz)), (A.2 ) 

we can rewrite Eq.{A. 1) in a form similar to that of Eq.(2.10) 

1 = 	Om /00 dw g(w) , Tmw> O. (A.3 ) 
w- w -00 

The solution of Eq. (A.3) yields the unknown frequencies of the coll.ective modes w = wm . 

Another way to use Eq. (A.3) is to plot stability diagrams of coherent oscillations - i.e. 
curves in the plane of the complex variable Om, which separate the region containing stable 
solutions (Imwm < 0) from th region containing unstable solut ions . T he parametric plot 
of this curve is defined by Eq. (A.3), when w tends to the real axes from above (w --> W +iO) 
and when Eq. (A.3) yields Eq.(2.10) 

1 	 = J00 
dw g(w) (A.4)

Om(w) w -w+iO ' -00 
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T he calculation of t he particular stabili ty diagrams demands knowledge of the stationary 
distribution funct ion fo and the dependence of the frequency of incoherent oscillat ions on 
amplitudes Jx and Jz. If, for instance, 

and t he frequency spread of the vertical oscillations is defined by the cubic nonlinearity 
and , moreover, 

(A.5) 

Eqs(A.2) and (A.3) yield 

lJn~~w) = Fo(Y) = e- [Ei (y) - i 7l"O(y)] , (A.6) 

where 

y = w/ow 

Ei(x) is the exponential integral function 

Ei(x) = -7d/; t, 
- x 

and {I, x> 0 , B(x ) = 
0, x < 0 . 

Similar calculations result in the stability diagram for the hori zontal coherent osci llat ions : 

Ow 
(A. 7)nm(w ) = F1(y) = yFo( y) - 1. 

The case when the nonlineari ty of the beam-beam force defines the frequency spread 
of the beam is more difficul t due to a more complicated dependence of the tunes on t he 
amplitudes of incoherent oscillations. Apart from the possibili ty of numerical integration 
in Eq.(A .l)' the main features of t he stabi li ty diagram can be found using the simplified 
model, where 

W z = Wz o +Wo J/ (A .S)
1 + c 

Subs titution of this expression in Eq.(A. l) yields 

w - WzO 
y= 

wo~ 

where 

1 1 l-y ( l- y)[ .(I- Y) . ]
F bb = Y+ y2 - 0 exp --y- El -y-- + Z7l"O(y)O(l - y) . (A.9) 
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B W eak Bunch Lengthening 

We st art with the equations of the synchrotron oscillations of the particle , which are 
distorted by the b unch wake: 

(B.l) 

dcp ~w = _ Wo O: ~E (B.2)-= ~w,
dt E ' 

Here, cp is the deviation of t he part icle's phase from the synchronous value CP6, 

(B.3) 

is the frequency of unper turbed synchrotron oscillations, W(E) is t he average power of 
the syn chro tron radiat ion of the particle and X (t) is the random force describing the 
excitations of synchrot ron osci lla t ions due to quantum fluctuat ions of the synchrotron 
radiation. Below we use the following propert ies of X : 

< X (t) >= 0, < X( t )X (t') >=< X 2 > 8(t - t'). (B.4) 

Assu ming that the wake is a slow function of cp, and can, therefore, be expanded in a 
Taylor series, we can write in the linear approximation 

(B.5) 

Nbe2w 
2 2 { . O Joo }

W6 =W.o 1 -~ heV lsin<P6 1_00 dnZ (n)np(n ) . (B.6) 

The dri ven solution of t h is equat ion has the form 

OO dw X(w)e- iwt 

<p(t) = J-2 2 2',\ 2' (B.7) 
'Tr W - ~ w- w-00 3 

or 
t .-Jd \'( ) _,\( t_tdsmw.(t-t 1 )()- t 1 ./\. tl e . (B.8) <p t 

Ws o 

Its mean square has t he asymptote 

(B.9 ) 

Since for Gaussian dist r ibution functions we have < cp2 >= O'~, and defin ing 

< X 2 
2 1 > 

0'0 = -- (B. IO)
(w;)o 2'\ 
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as the unperturbed bunch length , we can wri te 

1 
(B.11 ) 

. Nbe Wo
2 

[ 1 - zheVI sin <,0, I JdnZ(n)np( n) j' 
For more detailed calculations we need some particular expressions for Z/n and pen ). 
Taking, for instance, 8 

'Z 2-z no 
(B.12) - = (Z/n)o 2 2' 

n n +no 

we can estimate the integral in Eq.(B.l1) for short bunches (noO'¢ ~ 1) as follows: 

Substituting this expression into Eq.(B.ll ) , we can write 

u~ = 1 (B.13) 
0'5 [ ~ e1b(Z/ n)o IT mj'

1 + v £.1r I ' I /2he V sm <,0$ 0', .1 

From Eq.(B.13) one may expect the bunch lengthening for the case that (Z / n)o < 0, i.e. 
when the bunch interacts with an inductive-type impedance; vice verse, bunch shortening 
may occur when the bunch interacts with a capacitive-type impedance. This result is not 
very surprising, since the inductive-type coupling decreases and capacitive, thus increases 
the rigidity of the potent ial well due to a driving RF. If the bunch lengthening is small, 
the expansion of Eq.(B.13) in a linear approximation yields Eq.(2.19). 

C On the Iteration of the Haissinski Equation 

Let us prove that the nonlinear Haissinski equation has a unique solution, if the bunch 
wake satisfies the condition in Eq.(2.24). We also can rewrite this condition as follows 

(C.l) 

8Note that , if p(rp) is an even function of!p, only reactive part of Z is important 
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First, we write Eq. (2.22) in the form 

p(x )/Po = exp( _ x 2/2 - u(x», x = cp/CTo, 

Uo = 0, 

00 

Ul (X) = j dXIW(Xl - x)e-ri /2, (C.2) 
r 

00 

Un+l (x) = jdXIW(XI-x)exp( - xU2-un(Xl))' 
:r: 

Due to condition (2.24), the function u(x) has the following properties. It is limited 

OQ 00 2() 
< JdXIW2(Xl - x) JdXl P ~1 

(C.3):r: :r: Po 
< Nw2 = u 2 
- max) 

(CA ) 

and can be normalized: 
00 00 

j dxu2(x)::; exp(2umax ) j dxu~(x) 
-00 -00 

(C.5) 

( J 
00 

dk lS exp 2umax ) 271" w(k) 1 2e -~ , 
-00 

dk 
w(x) = j00 

27l" eikxw(k). 
- 00 

This, in particular, means that the potential well distortion u(x) is distributed within the 
finite interval of x with a width of 

-)1/4Llx '" (w 2 • (C.6 ) 

If ILlx l ~ 1, this relation estimates the lengthening of the bunch as follows: 

(T~ '" Ro elb(Z!n)o IT . (C.7) 
he V sm r.p~ lJ.. 

Since the function lu(x)1 ::; Umax is limited, we can write 

(C.S) 
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T hen , the convergency of iterat ions in Eq.(C.2) can be proved using the standard calcu­
lat ions [27], which result in 

(C.g) 

This expression shows tha t the iterat ions in Eq.(C.2) converge and, thus, Eq.( 2.22) has a 
unique solution [27], provided that the condi tion in Eq.(2.24 ) is valid. On the other hand, 
this estimation indicates that , if the potential well distort ion is high (w 2 » 1), higher 
order correct ions in the iteration row 

(C.10) 

will decay after 

n» no rv ~. (C .l1 ) 

We also note that the discussed es t imation concerning the convergency of the iterations in 
Eq.(C.2) is based on a rat her rough evaluation the integra ls involved in these equations. 
Therefore, Eq.(2.24) specifies the condition when Eq. (2.22) has a solution beforehand . Its 
violation does not necessarily means that Eq.(2.22 ) has no solu t ions. 

D Dynamic Beam Loading 

In this section we calculate the modification of t he impedance of the fundamental mode 
of the cavity from the side of th fundamental coupler due to a collective reac t ion of the 
beam. For the sake of simplicity, we do the calculations fo r a single bunch . 

First, we write the longitudinal component of the vector-potent ial of the fundamental 
mode in the form 

(D.l ) 

and assume that the eigenfunctions Ak obey the equation 

(D.2) 

Here, Wk is the frequency of mode k. For the mode with the Q-value equal to Q = wd (2Ak) 
from Maxwell equations we find 

where the current j'kxt(t) = j'kxt exp( -iwRFt) describes an external excitation of the cavity. 
Below we use the expans ions: 

Ak(S) = L Akn exp(inB), S = RoB = ct + '1', 
n 
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and 
f(1, 'Ij;, t) = L fm(1, t) exp( im'lj;), 

m 

where / and 'Ij; are the action-phase variables of the synchrotron oscillations. For syn­
chrotron osci llations the variable / and the amplitude of oscillations 'Pc are related through 

/ _ Ell., 2 (D.4)- 2 'Pc ' woo: 

From the Vlasov equation, writ ten in action-phase variables (,0: > 1) 

o£; + imwsfm AknJm (n'Pc) exp(inwot), (D.5)= im 0:; eCqk (t)~ 
we express the amplitudes of the expansion 

fm = L: fm n exp( -iwRFt + inwot), (D.6 ) 
n 

through the the Fourier-harmonic of qk(WRF): 

m(0fo/ oJ)
fmn = - ecAknJm(n'Pc)qk(WRF). (D.7) 

WRF - nwo - mws 

Now, we rewrite Eq. (D .3) in t he form 
00 

qk (WRF )[W~ - 2iAkWRF - WkFl = 27r Ne 22:L Akn ; dlfmn Jm(n'Pc) + j~xt. (D.8) 
m n 0 

Subst it uti ng in this equation fmn from Eq.(D.7), we obtain 

qk(WRF)[W~ - 2i AkWRF - WkFl = j'kxt + qk (WRF) x 

2 ~~ 2m2wslAknl 2 ;00 o f o 2 (D.9 )
27rNec~~ ( )2 2 2 d'Pc'Pc >:l/Jm(n'Pc), 

m=l n WRP - nwo - m Ws 0 u 

Since WRF = hwo, the contribution of the resonant term n = h in the sum over n domi ­
na tes. Neglecting the contribu tions of the nonresonant terms a nd using the relat ionships 

A 12 = WOWk (Z)I (D.lO) kn II Q' 

o f o WoO: 0 fo 
(D. ll )

8/ Evs 0('PU2 ) 

we obtain for short bunches hCT¢ ~ :'. : 

2 e/(Z/Q ) ah2 2'\ 2] 'ex t (D 2) 
qk (WRF ) [Wk + Wk ToE II; - ZAkWRF - WRF = 11< . .1 

This equation shows that d ue to a collective reaction of the beam the frequencies of 
all modes of the cavity (including the fun damental one) become higher than Wk on the 
amount, defined by Eq.(3.9) . Without special efforts this frequency shift decreases both 
the accelerating voltage, induced by the fundamental coupler, and the voltage, which the 
beam induces during its stationary rotation along the orbit (the stationary beam loading). 
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E 	 Calculation of Colle ctive B eam-Beam Suppres­
sion Factors 

The factors Ym(O (with ( = (73/ (3 '" ), describ ing the suppress ion of the collective beam­
beam resonances, can be expressed in terms of the confluent hypergeometric fu nction 
W(a" , z ) [40]. This can sometimes simplify the estimation and plo tti ng of the funct ion 
Ym (0 . Let us start with calculations for the flat beam. Using 

. x 	 1 
sm(arctan(x)) = J ' cos(arctan(x )) = J ' 

1 + x2 	 21 + x

we can rewrite Eq.( 4.20) in the form 

(E.1 ) 

Then, 	using 

(E.2) 

and the substitution 

(E.3) 

we can rewrite Eq.(E.1) in the form 

y f( () = ~~ (2m )! (_ 1)m- k(2(m-kl w (E.4) 
m ..fo 6 (2k )!(2m - 2k )! m ,b 

where 
00 	 00 

w 	 = 1 ! duu2 (m- k) e - u2! dssm -3/2e-s(1+(2u2) (E.5) 
m ,k rrm - 1/ 2) 	 . 

\ 0 	 0 

Now, upon changing in t his equation the order of integration and by substituting u2 = t, 
we find tha t t he integral over u yields 

Substituting this expression into Eq.(E.5 ) gives 

w 	 . = f(m - k + 1/2) Joo dttm-3/ 2 (1 +ttm+k-l/ 2e- t /(2 (E.6 ) 
m,k 2(2m-lf (m _ 1/2) 

o 
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or [40] 
r(m - k + 1/2) 2 

Wm,k = 2(2m-l W(m - 1/2, k, 1/( ). (E.7) 

By also using 
r (m - k + 1/2) _ y'i/2 

2{2m - 2k)! - (m - k)14(m- k) t 

we obtain 

y/ (() = (2m)!( ~(_l)m-k (4/(l)k 'l1(m -1 / 2 k 1/(2) (E.8), 
m 4m ~ (2k)!(m - k)! " . 

Similar calculations for the round beam result in 

(2m)! m m-k (4/(2)k 2 

Ym(() = ~E(-1) (2k)!(m _ k)! w(m, k + 1/2,1/( ). (E.9) 
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Table 1: Some Parameters of the B-Factories Pro jects. 

BINP (Nov- sk) Corn 11 SLAC KEK 
Energy (GeV) 7/4 8/ 3.5 9/ 3.1 8/ 3.5 8/3.5 

Perimeter II (m) 765.0 765.0 2199 3018 1273 

Vertical emittance 
Cz (nm) 

.91 1.95 1.9/ 3.9 .19 .19 

Horizontal emittance 
Cx (nm) 

5.8/ 4.0 130 48 / 96 19 19 

6.p/p ( x104) 10 8.4/ 6.5 6.1 / 9.5 7.2/ 7.7 7.2/ 7.9 

!3v (cm) .9 1.5 3/1.5 1 1 

!3iI (em) 40 100 75 / 37 100 100 

<Is (em) .7 1 1 .5 .5 

~v .05 .03 .03 .05 .05 

~H .017 .03 .03 .05 .05 

Nb(x10-10) 11 / 19 6/ 13.7 4/6 1.4/3.3 1.4/3 .3 

Bunch spacing (m) 4.2 3 1.26 .6 .6 

Beam current (A) 1.2/ 2.1 .9/ 2 1.5/ 2.1 1.1/2.6 1.1/2.6 

Number of bunches 177 230 1658 4950 2090 
Vertical damping time 
r;R (ms) 

11/ 33 7.8/ 24 37/ 36 16/ 32 16/32 

Horizontal damping 
time T;R (ms) 

5.9/33 7.8/ 24 37/ 36 16/ 32 16/ 32 

Long. damping time 
TsSR (ms) 

10/ 17 3.9/ 12 19 /18 8.3 / 16 8.3 /1 6 

Vertical tune Vz 14.27/ 15.27 24. 18/ 35.18 39.19 25.19/ 26. 19 

Horizontal tune Vx 27.58/28.58 25.28/ 32.28 39 .15 25 .1 5/ 27.1 5 

Synchrotron tune Vs .025 .085 .05 .07 .047 

Momentum 
compaction (x 103 ) 

1.44 8.4/11 2.4/1.5 1 1.8/1.5 

RF frequency (MHz) 500 500 476 508 508 

RF voltage (MY) 15.4/ 8.61 35/12 18/ 19.5 48/22 35/15 

Harmonic number 1260 3492 5120 2160 
Number of cavities 12/4 20/1 0 56 (8) 56 (8) 
Lumin si ty 
( x 1034 cm- 2s- 1 ) 

1 .3 .3 1 1 
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