T OhhSEOOD O9TT O
| .,; T |




KEK Report 92-19
February 1993

GRACE manual

Automatic Generation of Tree Amplitudes in Standard Models —

Version 1.0

T.Ishikawa', T.Kaneko?, K.Kato®, S.Kawabata',
Y .Shimizu! and H.Tanaka!

! National Laboratory for High FEnergy Physics(KEK),
Tsukuba, Ibaraki 305, Japan
*Faculty of general education, Meiji-gakuin University,
Totsuka, Yokohama 244, Japan
3Department of physics, Kogakuin University,
Tokyo 160, Japan
*Faculty of general education, Rikkyo University,

Tokyo 171, Japan




© National Laboratory for High Energy Physics, 1993
KEK Reports are available from:

Technical Information & Library

National Laboratory for High Energy Physics
1-1 Oho, Tsukuba-shi

Ibaraki-ken, 305

JAPAN
Phone:  0298-64-1171
Telex: 3652-534  (Domestic)
(0)3652-534  (International)
Fax: 0298-64-4604

Cable: KEKOHO



Acknowledgements

On the way to develop the program system GRACE we have received much encour-
agement and support from many people. We would like to thank our colleagues in
TRISTAN theory group, particularly Y. Kuribara, T. Munechisa, N. Nakazawa and J.
Fujimoto for discussions which were helpful for getting the system better. We are also
grateful to express our sincere gratitude to Professors H. Sugawara, S. Iwata and J. Ara-
fune for the encouragement. Discussions with colleagues in Nuclear Physics Institute
of Moscow State University and LAPP, Laboratoire d’Annecy-le-Vieux de Physiques
des Particules, with whomn we have been collaborating on the automatic calculation of
Feynman amplitudes during these years, were very fruitful and useful for this work.

We are indebted to companies Fujitsu limited, Intel Japan K.K., KASUMI Co. Ltd
and SECOM Co. Ltd. for their kind supports and understanding our work. A part
of the calculations was performed on FACOM M1800, AP1000, VP series, S series,
HITAC S820, M880, 3050, HP 9000 and Intel iPSC/860.

This work was supported in part by Ministry of Education, Science and Culture,
Japan under Grant-in-Aid for International Scientific Research Program No.03041087
and No.04044158.



http:indebt.ed

Contents

1 Introduction

1.1 Whatis the problem ? . . . . . . . ... ... L.
1.2 What we can do with GRACE 7 . . . . . . . . . ... .. ... ... ...
1.2.1 What GRACE provides us? . . . . . . . . ... .. ... .. ..
1.2.2 Structure of the system . . . . . . . . . . ... ...
1.2.3 How to do with kinematics 7. . . . . . . . ... ... ... ..
1.2.4 How to make preliminary check 7 . . . . . . . . ... ... ...
1.3 How to use thismanual . . . . . . . .. .. ... ...
2 Theoretical background
2.1 Definition of the cross section . . . . . . .. . ... ... ... ... ..
2.2 Metric and conventions . . . . . . . .. ...
2.3 Specification of models . . . . . ... ..
231 QED . . . .
2.3.2 Electroweak theory . . . . . . . . ... ..
233 QCD . . . ..
2.4 Method of amplitude calculation . . . . . . . . . . ... ... ... ..
2.4.1 Calculation of amplitudes . . . . . . . . ... ... .. ... ..
2.4.2 Formulas for amplitude calculations . . . . . .. .. .. ... ..
2.4.3 Colorfactor . . . . . . . ...
2.5 Feynman graph generation . . . . . . . .. ... ...
2.5.1 Notations . . . . . . . . ...
2.5.2 Algorithm to generate graphs . . . . . . . ... ... ... ..
2.6 Kinematics . . . . . .. L
2.7 Numerical integration . . . . . . . . . .. ...
2.7.1 Integration algorithm . . . . . . . .. . .. ... . ..., ...
2.7.2 Wild variable and BASES50 . . . . . . . . ... ... ... ..
2.7.3 BASES on a parallel computer . . . .. . .. .. ... .. ...
2.74 A weak point in BASES algorithm . . . . . ... ... ... ..
2.8 Event generation . . . . . ... ...

3 GRACE system
3.1 Graph generation . . . . . ... Lo

0~ O AW e




vi

CONTENTS

3.1.1 Definition of the physical process . . . ... ... ... .. . . 70
3.1.2 Drawn Feynman graph . . . . .. ... .. .. ... ... 74

3.2 Generated source code . . . . ... ... 77
3.2.1 Initialization of amplitude calculation . . . . . . . . . . . . . 79
3.2.2  Amplitude calculation . . . . .. ... 85

3.3 Specification of the kinematics routines . . . . . . . . .. ... ... .. 90
3.3.1 Subroutine KINIT . . . . . . . . . . .. .. .. ... ... ..., 90
3.3.2  Subroutine KINEM . . . . . . . .. .. ... ... ... ... 93

3.4 Test of generated source code . . . . ... 99
3.5 Numerical integration . . . . . . . . ... ... 104
3.5.1 Job parameters . . . . . .. ... L. 104
3.5.2 Program structure of BASES . . . . . . ... ... ... 106
3.5.3 Initialization subprogram USERIN . . . . . . . . . . . . .. ... 109
3.5.4 Function program of the integrand . . . . . . . . .. ... .. 114
3.5.5 Histogram package . . . . . . . . ... ... ... .. 120
3.5.6 Output from BASES . . . . . . . . .. ... 121

3.6 Event generation . . . .. ... ... 130
3.6.1 Input for SPRING . . . . . . . . . . . . ... ... ... 130
3.6.2 Program structure of SPRING . . . . . . . . . ... . ... .... 132
3.6.3 Subprograms to be prepared . . . . ... ... L. 134
3.6.4 Output from SPRING . . . . . . . . .. ... .. .. ... .... 137
How to use GRACE system 143
4.1 Runningon UNIX . . .. . ... . o Lo 143
4.1.1 Generate Feynman graph . . . . . . .. .. .. ... .. 144
4.1.2 Draw Feynman graph . . . . . . . .. .. ... ... 145
4.1.3 Generate source code . . . . . ... Lo 146
4.1.4 Makefile . . . . .. 147
4.1.5 Test of the gauge invariance . . . . . . ... ... ... .. .. 149
4.1.6 Integration . . . . . .. .. ..o 149
4.1.7 Event generation . . . . .. .. ... Lo 150

4.2 Running on FACOM . . . . . . . . . . . . . 151
4.2.1 Graph generation and source code generation . . . .. . .. .. 152
4.2.2 Generation of library . . . . . . . ... ... 153
4.2.3 Test of the generated sourcecode . . . . . . . ... .. ... .. 153
4.2.4 Numerical integration . . . . . . . ... .00 0000 155
4.2.5 ‘Event generation . . . . .. ... .00 156

4.3 Running on parallel computers. . . . . . .. ... Lo 158
4.3.1 Command summary for INTEL iPSC/860 . . . . . .. ... .. 158
4.3.2 Makefile : » : s « 25 s s 5@ 26 w835 88 : g9 8 882 BE 159
4.3.3 Test of the gauge invariance . . . . .. . .. . ... ... ... . 160
4.34 Integration . . . . . . . . ..o 161

4.3.5 Event generation . . . . .. ... ... 161



CONTENTS

5 GRACE for a Vector computer
5.1 Generated source code by GRACE . . . . . . . . . .. .. ...
5.1.1 Include file INCLL . . . . . . . . . . . ...
5.1.2 Subroutine AMPTBL . . . . . . . . . . . . .
5.2 BASES on a vector computer . . . . . . . ...
5.2.1 Structure of vector BASES . . . . . .. Lo
5.2.2 Subprograms to be prepared . . . . . . ...
53 Eventgenerafion « s : o & s mos s s om 55 5 om s wm i wor s omoa e wos 4w
5.3.1 Event generation algorithm on a vector computer . . . . . . ..
5.3.2 Subroutine to be prepared . . . . . .. .00
54 Ronning GRHITAC SB20/80 » « « & ¢ + 5+ s w3 55 s s 1350 65 5 205 5

6 Definition of the model
6.1 Feynman rules. . . . . . . . . ..
6.1.1 Particles . . . . .

6.1:2 Propagators . : = « . s ¢ s mop v omop s 83w 5 os w s i wos d w5 6w

6.1.3 Vector-vector-vector vertex . . . . . . . . . . ... ... ..

6.1.4 Vector-vector-vector-vector vertex . . . . . . . .. ...

6.1.5 Fermion-fermion-vector vertex . . . . . . . . . . . . ... ..
6.1.6 Scalar-scalar-vector vertex

6.1.7 Scalar-vector-vector vertex

6.1.8 Scalar-scalar-vector-vector vertex
6.1.9 Scalar-scalar-scalar vertex

6.1.10 Scalar-scalar-scalar-scalar vertex
6.1.11 Fermion-fermion-scalar vertex
6.2 File format of model definition
6.2.1 Definition of particles
6.2.2 Definition of vertices

7 Libraries for the amplitude calculation
7.1 Generated FORTRAN source code
7.2 Interface routines to CHANEL

7.2.1  External particle . . . . . ...
7.2.2  Numerator of propagator . . . . . . . . . . . .. ... ... ...
7.2.3 Denominator of propagator
7.2.4 Vertices . . . . . ...
7.2.5 Connecting amplitude . . . . .. . ..
7.2.6  Check consistency of generated code . . . . . . . ... ...
7.3 Program package CHANEL . . . . . . . . .. .. ... ... ... .....
7.3.1 Decomposition of propagator
7.3.2  Vertices

A Lists of subprograms and common blocks

vii

163
164
166
167
169
171
171
185
185
189
191

196
196
196
197
198
199
199
200
201
202
203
203
204
205
207
208

209
210
212
212
213
215
216
223
224
225
225
226
231

233



http:propagat.or
http:propagat.or
http:propagat.or
http:Scalar-scalar-vector-vect.or
http:Fermion-fermion-vcc.t.or
http:comput.er

viil CONTENTS

B Index of subroutines 235
C Notice 237

References 239



Chapter 1

Introduction

1.1 What is the problem 7

During the last two decades, it has been established that the gauge principle gov-
erns the interactions between elementary particles. In electroweak theory, leptons and
quarks are interacting through exchange of three kinds of gauge bosous, photon, Z°
and W#*. The assumed gauge group is SU(2), x U(1) and the original gauge symmetry
is broken by the non-zero vacuum expectation value of Higgs field. On the other hand
strong interaction between quarks is described by color SU(3) gauge group. All the
experimental facts seem to support these theories at present. Though it is still an
open question how these different kinds of forces are unified into more fundamental
theory, it is now of no doubt that these theories contain some truths and will remain
as effectively correct ones.

This success of gauge theories or standard models of elementary particles, implies
that we have definite Lagrangians and thus we can, in principle, predict any process
based on these Lagrangians in perturbation theory. When one wants to perform cal-
culation in this way, however, one meets a technical difficulty due to the complexity
of the interaction Lagrangian. This is particular to non-abelian gauge theory in which
we have three- and four-point self-couplings of gauge bosous as well as interactions of
unphysical particles such as Goldstone bosons or ghost particles in general covariant
gauge fixing. Hence even in the lowest order of periurbation, that is, in tree level,
one finds a number of diagrams for a given process when the number of final particles
increases. For example, we have only 3 diagrams for e"e™ — W*W~, but when one
photon is added, ete™ — W*W «, then 18 diagrams appear even after omitting the
tiny interaction between e* and scalar bosons( Higgs and Goldstone bosons ). Addi-
tion of one another photon, ete™ — WHW v+, yields 138 diagrams. Further if one
wants to make more realistic calculation around the threshold of W* pair production,
taking into account the decay of W=, say, W~ — ¢ 5, and W+ — ud, then one has
to consider 24 diagrams for e*e™ — ¢ p,ud and 202 for ete¢” — ¢ F.udy. In unitary
gauge, as only physical particles appear in the Lagrangian, the numbers of diagrams
are less than those mentioned above.
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One may think that it is enough to select several diagrams which dominate the cross
section. Even if one can find such dominant diagrams, one has to respect the gauge
invariance among this subset of diagrams. Usually number of diagrams in the gauge
invariant subset is not so small. For example, for the process ete™ — v, WTW~,
we have 60 diagrams in all. Among thein 30 diagrams form one gauge invariant set
and the rest does another one. Hence still we meet the same difficulty to handle with
many diagrams. In addition, there remains a possibility that the experimental cuts
imposed on the final particles renders the dominant diagrams to be less prominent and
all diagrams give somehow the same order of magnitude to the cross section. If this is
the case, one has to keep whole the diagrams in the calculation after all.

Through the numerous experiments done at e¢"e™ colliders, we have learned that
higher order corrections should be included when we want to compare theories with
experumnental data in detail. This implies that we have to calculate at least one-loop
corrections to a given process. As an example, consider the process ete™ — W' W™,
To regularize the infrared divergence due to soft photon emission, we have to include
loop diagrams for ete™ — W W™ beyond the tree level, which contain virtual pho-
ton exchange and remove the divergence when combined with real photon emission
process. The requirement of gauge invariance among one-loop diagrams demands, in
turn, inclusion of other one-loop diagrams with exchanges of Z° W¥ or other possi-
ble particles. Then it is clear that the total number of diagrams becomes very huge
and it is almost impossible even to enumerate all diagrams. In many cases it seems
out of ability of mankind. For simple W-pair production, in general covariant gauge,
the number is around 200 diagrams in the same approximation stated above, but for
e~ D.ud it amounts more than 3,700.

Facing to the difficulty described above, we cannot help to find some ways to get rid
of. As a solution we can choose the following one: As diagrams are constructed based
on a set of definite rules, Feynman rules, it is natural to develop a computer code which
can generate all the diagrams to any process, once initial and final particles are given.
It should be able not only to enumerate diagrams but also generate automatically
relevant amplitudes to be evaluated on computers, in other words, create a FORTRAN
source code ready for amplitude calculation. GRACE (Ref.[3]) is such a system that
realizes this idea and help us to reduce the most tedious part of works.

1.2 What we can do with GRACE ?

Before introducing what GRACE system can provide, let us remind the standard way
to calculate cross sections at the tree level. Usually it consists of the following several
different steps:

1) Specify the process.
2) Choose appropriate models.

3) Fix the order of perturbation( at the tree level, this is unique ).
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4) Enumerate all possible diagrams.
5) Write down amplitudes.
6) Prepare the kinematics for final particles.

7) Integrate the amplitude squared in the phase space of final particles, including
experimental cuts, if necessary.

8) Generate events so that the simulation of the process in a detector is available.
9) Check the results.

Among these steps the first three, 1), 2) and 3), are trivial matter. For the step 7)
one cau rely on well established programs which are designed to make integration of
multi-dimensional variables. This is of no problem, except for CIPU-time, once the
kinematics, step 6), is written so that the estimate of the integral is reliable within
required accuracy. The step 8) is related with the preceding step. The last step 9)
could be done to compare the results with other calculations or with approximated one.
Hence the most tedious steps are 4) and 5). GRACE is a system of program packages for
this purpose, namely, it carries out these most tedious steps on computers to save our
elaboration.

1.2.1 'What GRACE provides us?
The present version of GRACE generates:

» All the diagrams for a given process up to one-loop, when the order of perturba-
tion 1s fixed( covariant gauge ).

o FORTRAN source code which contains helicity amplitude of the process in the
tree level( covariant gauge ).

e Default values of all physical constants, except for the strong coupling constant.

e Interface routines to the program package CHANEL (Ref.[4]), which contains sub-
routines designed to evaluate the amplitude.

e No kinematics is generated.

e Interface routines to the multi-dimensional integration package BASES (Ref.[6]).
e Interface routines to the event generation package SPRING (Ref.[6]).

e Test program for gauge invariance check of the generated amplitude.

e Any diagram and its amplitude can be omitted in the calculation by setting the
appropriate flags off. In the integration step the unitary gauge is the default( see
section 3.2.1 ).
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What the user should do first is to tell GRACE the set of parameters which specifies
the process considered. It should include

1) names of initial particles,
2) names of final particles,
3) order of perturbation in QED, electroweak and/or QCD.

1 the given format explained later.

When a job is started with the data file containing these inputs, GRACE constructs
all possible diagrams and creates an output file to draw all Feynman diagrams for the
convenience of the user to look them by eyes. At the same time a set of FORTRAN
subprograms is generated. These include those which are needed to calculate the
amplitude with the help of CHANEL, to integrate over phase space by BASES and to
generate events by SPRING.

After all the programs are successfully generated, the next tasks, which the user
should do before integration, are

1) to prepare the kinematics,

2) to fill up some parameters in a few subroutines, such as the dimension of the
integral,

3) to check the gauge invariance of the amplitude.

1.2.2 Structure of the system

In this subsection we show how the whole system of GRACE is constructed and how each
step proceeds. The system consists of the following four subsystems, whose interrelation
is depicted in figure 1.1.

(1) Graph generation subsystem
When initial and final states of the elementary process are given as the input as
well as the orders of couplings, a complete set of Feynman graphs is generated
according to the theoretical model defined in a model definition file. For the time
being QED, Electroweak and QCD models in the tree and one-loop level are
supported. The information of generated graphs is stored in a file as an output.

Reading the graph information from the file, the graph drawer displays the Feyn-
man graphs on the screen under the X-Window system or prints them on a paper.

(2) Source generation subsystem
From the graph information produced by the first subsystem, a FORTRAN source
code is generated in a form of program components suited for the numerical
integration package BASES.
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(3)

The source code is constructed based on our helicity amplitude formalism, which
consists of many calling sequences of subprograms given in CHANEL and its iuter-
face routines.

In addition to these program components, the subsystem generates a main pro-
gram, by which the gauge invariance of the generated amplitudes can be tested.

- T

© Source generation
 subsystem

Source i
~\ generation /

Graph

Numerical
generation integration

Kinematics
(prepared by user)

Event
Generation

Fig. 1.1 Structure of GRACE system

Numerical integration subsystem

Combining the generated source code together with the kinematics routines and
the GRACE library, the numerical integration is performed by BASES to obtain
the total cross section. For this, however, one has to prepare the kinematics
routines, which are discussed in the next section. As the output of integration,
the numerical value of total cross section, the convergency behavior of integration,
one and two dimensional distributions of the cross section are given besides the
probability information in a file, which is used in the event generation. Looking
the convergency behavior carefully one can judge if the resultant value is reliable
or not.

Event generation subsystem
Using almost all the same subprograms in the integration, events with weight one
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are generated by the event generation program SPRING. To achieve a high gen-
eration efficiency, it uses the probability information produced by BASES. Con-
ceptually, SPRING samples a point in the integration volume according to the
probability. If the probability information is a complete one, the sampled point
Is exactly corresponding to a generating event. Since, however, it is impossible to
get a complete information numerically, the sampled point is tested whether it is
accepted or not. If it is accepted then its numerical values of integration variables
are passed to an user interface routine SPEVNT, where they are transformed into
the four vectors of the event.

1.2.3 How to do with kinematics 7

In order to get the numerical value of cross section, we make integration in the phase
space of final particles. As tlie integral is multi-dimensional, 4 for 3-body, 7 for 4-
body and 10 for 5-body process( if the cylindrical symmetry is assumed around the
initial beam axis ), we usually use adaptive Monte Carlo integration packages. ( In
our system BASES is assumed. ) We have to express all momenta ( or equivalently
invariants composed of them ) of final particles by independent integration variables.
Generally speaking, the integration routine feeds a set of random numbers in the space
of given dimension. Let us denote these random numbers as

X(I),I=1,--- NDIM,

and assume their values are normalized in, say, [0,1]. ( In BASES, the upper and
lower bounds for X(I) can be arbitrary numbers. ) Then we have to translate these
variables into four-momentum of final particle, say J-th particle, P(1,J), P(2,7J),
P(3,J), P(4,J) of total N particles ( in GRACE, P(4,J) is the energy ),

X(I) = P(X,J). K=1,---,4, J=1,---,N

This i1s known as kinematics for the given process. This mapping is not always unique
and in some cases a single value of X(I) may correspond to multi-value of particle
momenta.

GRACE, unfortunately, does not give the kinematics in an automatic way. The
reason is that the present popular integration packages, such as BASES or VEGAS, utilize
a special algorithm to search for the singularities of the integrand. The matrix element
squared, the integrand, becomes singular when the denominators of propagators of
internal particles become very small compared with the typical energy of the process
considered. This happens when a mass of an internal line is very small. As is well
known, if a singularity is running along the diagonal in a plane of two integration
variables, these programs cannot give reliable estimate of the integral, because they
fail to catch the singularity at all. In order to get good convergence of the integration
over many iterations, all the singularities must be parallel to the integration axes. This
means that these peaks located in the space of kinematical variables, are mapped onto
the line of constant value of some X(I). In order to do this, we have to choose very
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carefully the transformation between random numbers and kinematical variables. The
typical kinds of singularities we meet in real calculation are as follows;

e mass singularity

e infrared singularity

e t-channel photon exchange

s resonance formation( decay of heavy particles )

(Precise description of how to deal with these singularities will be found in section 2.6).

In some processes the number of independent variables is greater than that of
singularities, and one can easily find a kinematics which is suitable to make them
smooth. If this 1s not the case, however, one may not be able to find such good
kinematics to avoid diagonal singularity even after much efforts. Hence it is quite
difficult to give the general kinematics which is capable of dealing with all kinds of
singularities at once, or a single set of transformations.

The drawback adherent to the present integration packages mentioned above made
us to hesitate o generate a kinematics, because it must be applicable only to limited
processes. If GRACE could generate such kinematics, someone might apply it to a ¢ross
section which is so singular that the integration package fails to catch any singularity. It
returns an answer which looks like to converge well at the first sight, but is completely
wrong. Hence we decided not to generate kinematics automatic way, but leave it to
the user.

1.2.4 How to make preliminary check ?

Suppose we have a kinematics for the process to be considered. The first task we should
do is to check the generated amplitude and confirm that it is in fact correct one. We
have two methods for this check;

1) Gauge invariance check.

This is done by changing the gauge parameters numerically for v, Z° W% and
gluon and examining if the value of the total amplitude remains the same within
the double precision. The main program for this test is generated by the system.
‘When quadruple precision is supported on user’s computer, invariance check in
this precision level is also possible. One should, however, notice that in some
special cases the gauge invariance is trivially satisfied and this kind of check
cannot be helpful( simplest case is such that only the vector or axial couplings
to on-shell massless fermions appears in each diagram ).

2) Loreatz invariance check.
Since all the four-components of particle momenta are numerically given, it is
possible to look if the squared amplitude does not change by Lorentz transforma-
tion. For this one has to change the definition of frame inside of the kinematics
routine written by the user.
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These tests can prove correctness of both amplitudes and kinematics. If either of these
latter two has some errors, both invariance checks must fail. Note that, however, these
cannot be responsible for the correctness of the overall factor multiplied to the squared
amplitude( powers of 27, factor 2, Jacobian in the kinematics and so on ).

If everything is O.K., then you can proceed to make phase space integration.

1.3 How to use this manual

This manual is composed of three kinds of objects, theoretical background for calcu-
lating the cross section of elementary process, usage and technical details of the GRACE
system. Throughout this manual we take the tree level process e¥e™ — W W ™ as an
example, including the e*-scalar boson interactions. The real FORTRAN source code
for this process is attached in the relevant sections as well as the results of calculation,
which might be a great help for understanding the practical use of the system.

Structure of manual

The purpose of chapter 2 is to present the theoretical background of the system.

After notations, Lagrangians and renormalization prescriptions are specified, how am-
plitudes and color factors are calculated is described. The Feynman graph generation
is briefly discussed from the graph theoretical point of view for the completeness of
this manual.
Ounly the kinematics part is to be prepared by the user, where the structure of singu-
larities in the phase space should be taken into account. The possible singularities, to
which the user may face, are also discussed in this chapter. Finally the algorithms of
multi-dimensional integration package and event generation package are presented.

Chapter 3 is devoted to the function of GRACE system, where full description
about input and output of each sub-system is specified. Specification of subprograms
for kinematics is also given here. This part is independent of the computer system, on
which GRACE system is implemented.

In chapter 4 the usage of GRACE system on UNIX system and FACOM main frame
computer is described. GRACE system is also supported on some parallel computers.
Usage on the parallel system INTEL iPSC/860 is presented as an example.

A variant of GRACE system for vector computers is described in chapter 5. The
difference in the input and output specification of the vector version from the scalar
one is mentioned. As an example usage of the system on HITAC S820/80 is presented.

In chapter 6, detailed description of Feynman rules is given. These rules are given
to the system through a model definition file. The format of this file is also shown.

Chapter 7 is devoted to describe subroutines in CHANEL library and interface pro-
grams between CHANEL and generated code by GRACE.

The interrelation among the contents of chapters is shown in figure 1.2(c).

Traveling guide of this manual
Those serious users, who want to know how GRACE system is constructed and works
before use, are recommended to read whole manual form the first page to the last. This
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will be the best but tedious way to understand GRACE system.

If you find interest only in physics and use conventional computers, you can start
from chapter 4 and skip chapter 2 except for sections 2.1, 2.6 and chapters 5, 6 and
7 as shown in figure 1.2(a). When you intend to use a vector computer, you are

recommended to start from chapter 5 on reference to chapters 2 and 3 as in figure
1.2(b).

Limitations of the system
This system has several limitations which are summarized in appendix C. It is
recommended to read this appendix before using the system.

How to obtain GRACE system

GRACE full system works on UNIX workstations (at least HP and SUN) and main
frame computers (FACOM and HITAC). In addition to these computers, the numerical
subsystems of GRACE are applicable to VAX VMS system, parallel computers (INTEL
iPSC/860, FACOM AP1000 and NCUBE), and vector computers (HITAC S series, FACOM
VP series, NEC SX and CRAY). The system requires FORTRAN77 and PASCAL compilers for
nstallation. For drawing generated Feynman graphs, it requires X1ib or GKS graphic
library.

The system is available when requested through e-mail to grace@minami .kek. jp.
Other information or question is welcome to the same e-mail address.

- R

(o

(a) To use GRACE quickly on the scalar computer.

( Chap. 6 )

(b) To use GRACE on vector computer. (c) Interrelation among chapters.

Fig. 1.2 Interrelation of chapters
N e




Chapter 2

Theoretical background

In this chapter we describe general theoretical bases and ingredients used in the GRACE
system. It covers conventions, definition of cross section, models, helicity amplitude
formalism, calculation of color factor, method of graph generation, kinematics and
the method of numerical integration. As the system automatically generates helicity
amplitude for any tree process in the framework given below, one has to know the
outline of these theoretical backgrounds.

2.1 Definition of the cross section

The original unrenormalized Lagrangian density is divided into free and interaction
parts as

L(z) = Lreer(2) + Lino(z), (2.1)
where free part contains all the quadratic form of fields including gauge fixing term.
Since all the models we are considering are renormalizable, the Lagrangian can be
reexpressed in terms of the renormalized quantities. Thus we can write

L(z) = Lpree(x) + Line() + 6L (). (2.2)

Here the last term represents the counterterm Lagrangian( in the current version of
GRACE this part is of no use, because no loop amplitude can be generated ).

Denoting the substantial interaction as
Liny(2) = Lins(z) + 6L(x) (2.3)
we define the S-matrix,

8=T" exp[i/d4xﬁint(m)], (2.4)

where T™ is the usual chronological operator, introduced when L:,,-m contains derivative
of fields. Expanding the exponential, we have a perturbative series with respect to the
interaction Lagrangian

[e°<) 'LN e N
S=1+ N2::1 I /d4$1 "'/dqﬂiNT [L:int(xl)['int(x2) T ‘Cint,(IN)]‘ (2.5)

10
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The scattering matrix 7' is defined bv an operator relation
S=1+1T. (2.6)
By taking the matrix element between initial and final states |7) and |f) we have
Sy = by 4 i(2m)' 6" (Py — )T, (2.7)

where F; and P, are the total four momenta of initial and final states, respectively.
The cross section is defined as

1
(7 .
flux

[ ary@ms (P, = P) [T, (2.8)

spin

Here ‘flux’ is the flux of incident particles and dI'y 1s the volume element of phase space
of the final states. In our convention we define this element for any kind of particle as

Ny 3
d’q,
dI‘f - ' FEETE) (29)
i]:[l 2qpi(27)3
where ¢; = (gi0,9:), @ = 1,---, N, are the four-momenta of N, particles in the final
state. Then the initial lux i1s normalized as
flux = v.12p102P20, (2.10)

where p1o and pyg are energies of incoming two particles and v, 1s the relative velocity
of these two.
Thus the final form of the cross section for the process

Prtp2 =g+ @t gy, (2.11)
1s given by
N N -
7= - /ﬁ L 3(27T)464 p1tp2— ZIQi ZZITji|2. (2.12)
Vrel2P102P20 /2y 2gi0(27) = e

Here helicity states of final particles(h;) are summed and those of initial state(h,) are
averaged for the simplest case.
Though the FORTRAN output from GRACE automatically provides the quantity

Tfi :ZilTMZ, (2.13)

hy h,

as the default output, one can select any helicity state in both initial and final states
by changing the part of the program corresponding to these summations as explained
1 section 3.2.1.
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If the incident particles collide in the center-of-mass system, the flux factor is given by
flux =~ 2, (2.14)

neglecting their masses, where s = (p; +p)? is the square of total energy. When these
particles are partons with energy fractions z; and z, like in pp or pp colliders, it is
given by

flux ~ 2(z,2,)s, (2.15)

and the cross section Eq.(2.12) is that of sub-process.

2.2 Metric and conventions

I) Convention for Feynman rules.

The scattering amplitude T); is constructed according to the Feynman rules.
There are some different ways to decompose the factor iV in Eq.(2.5) and assign

to various parts of a diagram. The convention we use in GRACE is the following:

1) Let us denote a generic field as ¢. The propagator is defined by

Di(p) =i [ d'z e *=(0[T($(2)8' (0))[0). (2.16)
Thus for fermion we have
Bl = (2.17)
¢(p) = —p+m— 1€’ &
for scalar particle
1
Ap = 2.18
I(p) __p2+m2_7‘-57 ( )
and for gauge boson of mass M
G

—q%+ M? — e’

where G, (g) is a symmetric tensor which depends on the gauge condition
used. Its explicit form will appear in section 2.3.

2) The vertex is defined as the Fourier transform of the interaction Lagrangian,
/ &'z e F(2). (2.20)
For example, photon vertex of charged fermion f is given by

eQ 1 V- (2.21)


http:Eq.(2.12
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I1)

3) For a loop diagram with L loops we assign the following loop integration(
in n-dimeunsion )

L drk,
/lH@x)n_z" (2.22)

=1

By this convention we can save the number of 7 because after making Wick’s
rotation cach loop integration will produce an 7 to compensate that in the de-
nominator. Simple counting will show that ¥ in Eq.(2.53) can be divided into

three parts
N =g VL (2.23)

where the first 7 is regarded as that of i7", the second is absorbed into the definition
of propagators and the last into loop integrals.

Metric

The metric convention is as follows;
1) the space-time metric g, is defined by

Goo — 1, gij = _61'_7' fOl' L,] = 1, 2, 3, (224)

2) the components of a four-momentum is given by
p = (o, P), (2.25)
and the inner product of two arbitrary four-momenta, p and g, is
P ¢=Podo—P g (2.26)
3) the 4-dimensional Dirac matrix satisfies
VYo + VoVu = 29u,  pyv =0,---,3 (2.27)

and 1ys is defined by
Y5 = Y0123, (2.28)

as usual. The hermite conjugate of y-matrix obeys

YoV = Vor (2.29)

hence
Yo¥ve = = (2.30)

In GRACE system, CHANEL calculates Dirac matrices in a numerical way, but
specification of their explicit representations is not necessary.
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III) Normalization of wave function.

1)

2)

3)

Massive Dirac spinor
The Dirac spinor is normalized as

ﬂ([), S)’Y()U(p, SI) = 2p0555'>
ﬁ(p) S)’Y()'U(p, '5,) = 2[)0655', (231)
hence the projection operators are
_ T+y
ulp, ilp,s) = 2 m),
_ =
o 7p.s) = g m), (2.32)

2
where u(p,s) and v(p,s) are spinors of particle and anti-particle with mo-
mentum p and spin vector s. The latter satisfies

sf=-1, s-p=0. (2.33)
When one specifies a helicity state, the spin vector has the form
5. (@’P_On) R (2.34)
m’m |pl
with h = £1.

Massless Dirac spinor
As massless fermion, we know only left-handed neutrinos. Denoting its
spinors as u,(p) and v,(p), the projection operators are then
_ 1=
w,(p)u,(p) = —2‘157
L+

wpp) = ——7. (2.35)

Spin summation of massless gauge boson.
Polarization vector of photon or gluon efj\)(k), A =1,2, k? = 0, satisfies

k-éMk)=0, eM(k) M (k)=—bxx, (2.36)
spin summation is given by

2 k + k,n k.k
N (kYe (k) = — Sulty T KRy 2 Bplw 2.37
geu()eu() glil'+ k-n n(k'n)Q’ ( )
where n is an arbitrary constant vector. As CHANEL uses helicity formalism,
it defines an expression of eE‘A)(k) and the spin summation is consistent with
this formula as shown in section 2.4.
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4) Spin summation of massive gauge boson.
Denoting the polarization vector of W or Z° as €M(k), A = 1,2,3, ¥ =
M?, we have

k-eM(k) =0, eNk)- (k) = =bs, (2.38)
and the spin summation

k,k,
M2

3
3 RN (k) = g + (2.39)
A=

2.3 Specification of models

Now we turn to the details of the models prepared in the system. In the present version
of GRACE we have included only standard ones;

e QED

e Electroweak

e QCD
Although the first one is, of course, a part of the second, the system is designed so that
one can choose pure QED. The models are selected by giving the order of coupling of
each model. It should be noted that the orders of couplings for electroweak and QED
models are used exclusively, i.e. they should not be given at the same time. ( If one
generates amplitudes in electroweak theory, then one can choose only QED part by
using diagram selection flag. ) Since the current version of GRACE can provide only
tree amplitudes, the counterterm is not needed at present stage but we described the

whole renormalized Lagrangian in anticipating the forthcoming version which includes
1-loop diagrams.

2.3.1 QED
The unrenormalized Lagrangian density can be divided into
'CQED = Efree() + LintO' (240)
The free Lagrangian Ly,c.q Is
—(f),- 1 v
['freeo == Zw(() )(VY -0 - mfojw(()f) - ZF[I.UOF(;J T Lgaugea (241)
f

where f indicates the fermion f and 0 means unrenormalized quantity. Note that the
summation over f also implies the sum over color degree of freedom for quarks. The
interaction part is given by

Lino = Z GOQ/EE)”’YM/)(()”AS‘- (2-42)
f
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The electromagnetic charge of a fermion f is given by €@ with the positron charge
eg. Thus up-quark has Q,, = +2/3, down-quark Q. = —1/3, electron Q. = —1
and so on. The gauge fixing term, written in renormalized fields, is

’

L gange = —55(8 A)? covariant gauge
1 , ,
Losuge = ‘é&'(”»‘ A), axial gauge (2.43)

where « is a gauge parameter and m is an arbitrary constant vector. If n? = 0, then it
is called light-cone gauge.

Introducing renormalization constants Z, s, Zsy, Z3 and émy and replacing all the quan-
tities in this Lagrangian by renormalized ones,

Yo = Zog¥yp, A = Z3A,,
& = ehibiZs’, (2.44)
mypy = my+bmy,
we can rewrite the original Lagrangian by renormalized quantities and we have
Loep = Lyiree + Ling + 6L, (2.45)
with

Lfree = Za(f) (1@ - mf) ”l/’(f) - %F;WF#U + Lgauge
f
Lie = T QP yp0ar
f
6L, = 3 6Zo " (ip— my) ¥ Zz som g (2.46)
I
L5z F P 13 Q62 Ty an,
4 !

Here the counterterm Lagrangian contains
Zyy = 1462y
Zy = 14624 (2.47)
Ziy = 1+62yy.

Note that the gauge invariance or charge universality implies

Zlf = ng. (248)
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The renormalization conditions to fix these constant are well known, and will be found
any standard textbook of quantum field theory.

The propagators are as follows; for fermion it is given by Eq.(2.17), for photon,

G (a)
Bplg) = ———: 2.49
wla) = — a2 (2.49)
The numerator takes the following forms depending on the gauge condition:
Gulq) = —gu+(1- a)q“gu, covariant gauge (2.50)
q
Lnl/ v '3 e 44 .

Gul(q) = —guw+ Hlln 7 Gy, (n® + agz)%. axial gauge (2.51)

g-n (g-n)

2.3.2 Electroweak theory

The standard model of SU(2), x U(1) gauge theory, originally proposed by Glashaw-
Weinberg-Salam, is much more complicated than QED. Quarks and leptons are classi-
fied into left- and right-handed, which transform under the gauge group in a different

way;
l/ T
(0 () () on
e/ K7y T/L

U c t
(d)L’ <S>L> (b)L’ up, dR1 CR, SR, th bI?.'

Two kinds of gauge boson fields are introduced which transform as SU(2)-triplet and
-singlet,

triplet — A, (z), A%(z), A(2)
singlet —  B,(z).

The Higgs field is also a doublet
1 /1¢%(z)
d(z) = —= ( ) ; 2.52
Before giving the explicit form of the Lagrangian, we like to make a comment on the
parameters of the theory.

Constant parameters

The most fundamental constants in the Lagrangian are two coupling constants of SU(2)
and U(1) gauge interactions( g and ¢', respectively ) and the vacuum expectation value
of the neutral Higgs scalar,

9,9, (.
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In the classical level the heavy boson masses and the electric charge are given by

il 1 ;
My o= e+ U M= o)

99’

= e 2.53
7 (2.53)

respectively. Thus the alternative set of parameters is
€, A4W) MZ)

which are physically observable quantities. The weak mixing angle sin? 6y is defined
through the relation

M3,
W.
In our convention e, My, and M; are used as input parameters. However, as the
precise value of W* boson mass has not yet been measured, the muon decay width,
I, is more reliable than My at present. Using the above set of constants one can
express the width in a form ( up to any order of perturbation )

SiIl2 HVV =1- (254)

I, = Mw - f(o, M}, /M3), (2.55)

( with possible dependence on Higgs and t-quark masses, my and m, ). Solving this
equation and using the experimental value for I',, we can get My as a function of
other parameters,

MWZMZ']’L(O(,F“/Mz). (256)

In this sense the set of constants
€, P;u MZ>

can be used as the input parameters of the theory.

Lagrangian

We follow the formulation given in Ref.[1]. As the full Lagrangian has very complicated
structure, we divide it into two parts; the first has the same form as the classical
Lagrangian containing physical objects and the second is related to the gauge fixing,

LELW = ‘Ccl -+ Lga.uge- (257)
The first part is further decomposed into several terms,
La=Lgo+ Lro+ Luo+ Lo, (2.58)

where Lgg is the gauge boson part, Lgq the fermion kinetic part, Ly the Higgs scalar
part and Lo the fermion-Higgs interaction.
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1)

2)

The pure gauge boson part contains only SU(2) and U(1) gauge fields,
1 o
Lo = »-ZG,“WO o ZF“VOF“VO’ (2.59)
where
ZUU = 6}‘/42:0 - aUAZO + gOGabcAZOAfJO)
Fpu() = 6;‘Bu0 - auBuO)

are field strengths for gauge fields A(a = 1,2, 3) and B, respectively.

The kinetic part of fermions, both quark and leptons, including gauge interactions
1s given by,

Lro =2 bro(ip + G Todo + §oToBu)buo+ 3 Vi (if + 9o ToBua) Ui,
L

f=id
(2.60)
where 17y and ¥go represent SU(2) doublet and singlet fermion fields, respec-
tively, with
(1)
Yro = ( ’(3) : (2.61)
Yo

To specify a fermion we use the subscript (L) and the superscripts (I), (z) and
(f) which stand for left-handed fermion doublet and upper, lower and all kinds
of fermion, respectively. The coupling constant go corresponds to SU(2) and g
to U(1) gauge interactions and 7,’s are related to SU(2) Pauli matrices, T, =
7./2.(a = 1,2,3) and Ty = Q — T3 where Q is the charge operator.

The Higgs scalar part with gauge interaction is

. 2
Lgo = }(a“ — gy T, A%y — z'%B“O) @0! + pi @By — Ag(D)®p)* (2.62)

The fermion-Higgs interaction is
07 (i i (1) s a1
Lao= -3 P800 — 3 18000 (47,8500 + hec., (2.63)
i ;

where fo(i') and f(g” are Yukawa coupling constants. Two new combinations of
fields, \II(L’()J and \I/(LIU), for left-handed fermions are introduced so as to make the
mass matrix diagonal,

ol = ( 21 Uuw(LIo) )

Lo - 1

Y.

(1)
oy = ( Vio ,-), (2.64)
Lo S UR S

where U;; is the mixing matrix for quarks. In the current version of GRACE this
mixing 1s not supported, namely the unit matrix is assumed for U;;.
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The symmetries are broken by the vacuum expectation value of the Higgs scalar field

@0>
1 iXe
By =~ ( o ) | 2.65
°7 V2 \vo + o — ixao (2.65)

Here,
1) v is the bare vacuum expectation value,
2) ¢o is the physical Higgs scalar field,
3) Xa0 is the neutral Goldstone boson,

4) xg is the charged Gold