
KEK Report 92-19
February 1993
HID

::D
co
'0 o;::.
CD

I\)

I

-'
CD

G)
:D »
(') GRACE manual
m

» ~ - Automatic Generation of Tree Amplitudes in Standard Models -
z
c »
r

Version 1.0

MINAMI-TATEYA group

NATIONAL LASORATORY FOR
HIGH ENERGY PHYSICS

KEK Report 92-19
February 1993

GRACE manual

- Automatic Generation of Tree Amplitudes in Standard Models

Version 1.0

T.lshikawa1
, T.Kaneko2

, K.Kato3
, S.Kawabatal

,

Y.Shimizu l and H.Tanaka4

1 National Laboratory for High Energy Physics(KEK),

Tsukuba, Ibaraki 305, Japan

2 Faculty of general education, Meiji-gakuin University,

Totsuka, Yokobama 244, Japan

3Department of pbysics, Kogakuin University,

Tokyo 160, Japan

4 Faculty of general education, Rikkyo University,

Tokyo 171, Japan

© National Laboratory for High Energy Physics, 1993

KEK Reports are available from:

Technical Information & Library
National Laboratory for High Energy Physics
1-1 Oho, Tsukuba-shi
Ibaraki-ken, 305
JAPAN

Phone: 0298-64-1171
Telex: 3652-534 (Domestic)

(0)3652-534 (International)
Fax: 0298-64-4604
Cable: KEKOHO

Acknowledgements

OIl the way to develop the program system GRACE we have received ll1uch encour
agement and support from many people. VIe would like to tha.nk our colleagues in
TRISTAN theory group, particularly Y. Kurihara, T. Munehisa., N. Nakazawa and J
Fujimoto for discussions which were helpful for getting the system better. Vie are also
grateful to express our sincere gratitude to Professors H. Sugawara, S. Iwata and J. Ara
fune for the encouragement. Discussions with colleagues in Nuclear Physics Institute
of Moscow Stat.e Univcrsi ty and LAPP, Laboratoire d' Annecy-Ie- Vieux de Physiques
des Particules, with whom we have been collaborating on the automatic calculation of
Fcynman amplitudes during these years, were very fruitful and useful for this work .

We are indebt.ed to companies Fujitsu limited , Intel Japan KK., KASUMI Co. Ltd
and SECOM Co. Ltd. for their kind supports and understanding our work. A part
of the calculations was performed on FACOM M1800, APlOOO, VP series, S series,
HITAC S820, M880, 3050, HP 9000 and Intel iPSC/860.

This work was supported in part by Ministry of Educat.ion, Science and Culture,
Japan under Grant-in-Aid for International Scientific Research Program NO.03041087
and No.04044158.

http:indebt.ed

Contents

1 Introduction 1

1.1 What is the problem? 1

1.2 What we can do with GRACE? 2

1.2.1 What GRACE provides us? 3

1.2.2 Structure of the system . . 4

1.2.3 How to do with kinem atics? . 6

1.2.4 How to make preliminary check? 7

1.3 How to use this manual. 8

2 Theoretical background 10

2.1 Defini tion of the cross section 10

2.2 Metric and conventions 12

2.3 Specification of models . . 15

2.3.1 QED 15

2.3.2 Electroweak theory 17

2.3.3 QCD 28

2.4 Method of amplitude calculation . 31

2.4 .1 Calculation of amplitudes 31

2.4.2 Formulas for amplitude calculations 33

2.4.3 Color factor 38

2.5 Feynman graph genera tion 41

2.5.1 Notat.ions 41

2.5.2 Algorithm to generate graphs 44

2.6 Kinematics 48

2.7 Numerical integration 56

2.7.1 Integration algori t hm 56

2.7.2 Wild variable and BASES50 . 59

2.7.3 BASES on a parallel computer 60

2.7.4 A weak point in BASES algorithm 63

2.8 Event generat ion 64

3 GRACE system 67

3.1 Graph generation 70

v

VI CONTENTS

3.1.1 Definition of the physical process 70

3.1.2 Drawn Feynman graph 74

3.2 Generated source code 77

3.2.1 Initialization of amplitude calculation 79

3.2.2 Amplitude calculation 85

3.3 Specification of the kinematics routines 90

3.3.1 Subroutine KIN IT . 90

3.3.2 Subroutine KINEM . 93

3.4 Test of generated source code 99

3.5 Numerical integration. 104

3.5.1 Job parameters 104

3.5.2 P rogram structure of BASES 106

3.5.3 Initialization suoprogram USERIN 109

3.5.4 Function program of the integrand 114

3.5.5 Histogram package 120

3.5.6 Output from BASES 121

3.6 Event generation 130

3.6.1 Input for SPRING 130

3.6.2 Program structure of SPRING. 132

3.6.3 Subprograms to be prepared 134

3.6.4 Output from SPRING 137

4 How to use GR ACE system 143

4.1 Running on UI IX 143

4.1.1 Generate Feynman graph . 144

4.1.2 Draw Feynman graph . 145

4.1.3 Generate source code . 146

4.1.4 Makefile 147

4.1.5 Test of the gauge invariance 149

4.1.6 Integration 149

4.1.7 Event generation 150

4.2 Running on FACOM 151

4.2.1 Graph generation and source code generation 152

4.2.2 Generation of library 153

4.2.3 Test of the generated source code 153

4.2.4 Numerical integration. 155

4.2.5 Event generation 156

4.3 Running on parallel computers. 158

4.3.1 Command summary for INTEL iPSC/860 158

4.3.2 Makefile 159

4.3.3 Test of the gauge invariance 160

4.3.4 Integration 161

4.3.5 Event generation 161

CONTENTS

5 	 GRACE for a Vector computer
5.1 Generated source code by GRACE.

5.1.1 Include file INCLl .

5.1.2 Subroutine AMPTBL

5.2 BASES on a vector computer ..
5.2.1 Structure of vector BASES

5.2.2 Subprograms to be prepared
5.3 Event generation ..

5.3.1 Event geueration algorithm on a vect.or compu t.er
5.3.2 Subroutine t.o be prepared

5.4 Running on HITAC S820/80

6 	 D efinit ion of the m odel
6.1 Feynman rules. .

6.1.1 Particles
6.1.2 Propagators
6.1.3 Vector-vector-vector vertex.
6.1.4 Vector-vector-vector-vector vertex
6.1.5 Fermion-fermion-vcc.t.or vertex
6.1. 6 Scalar-scalar-vector vert.ex
6.1. 7 Scalar-veetor-vector vertex
6.1.8 Scalar-scalar-vector-vect.or vertex
6.1. 9 Scalar-scalar-sCi'Llar vertex .
6.1.10 Scalar-scalar-scalar-scalar vprt.ex
6.1.11 Fermion- fermioll-scalar vertc;x

6.2 File format of model defi nition
6.2.1 Definition of particles.
6.2.2 Definition of vertices .

7 	 Libraries fo r t h e a mplitude calculation
71 Generated FORTRAN source code
7.2 Interface routines t.o CHANEL

7.2 .1 External particle
7.2.2 Numerator of propagat.or ..
7.2.3 Denominator of propagat.or
7.2.4 Vertices .
7.2.5 Connecting amplit.ude
7.2.6 Check consistency of generated code

7.3 Program package CHANEL

7.3 .1 Decomposition of propagat.or
7.3.2 Vertices
7.3.3 Effective vertices .

A 	 Lists of subprograms and common blocks

VII

163
164
166
167
169
171
171
185
185
189
191

196
196
196
197
198
199
199
200
201
202
203
203
204
205
207
208

209
210
212
212
213
215
216
223
224
225
225
226
231

233

http:propagat.or
http:propagat.or
http:propagat.or
http:Scalar-scalar-vector-vect.or
http:Fermion-fermion-vcc.t.or
http:comput.er

Vlli CONTENTS

B Index of subroutines 235

C N otice 237

References 239

Chapter 1

Introduction

1.1 What is the problem?

During ~l e last two decaJes, it bas been est ablished that the gaug(~ principle gov
erus t.he interactions between elementary particles . In electroweak theory, I ptons and
quarks an' interacting through excha nge of 1.hrl"(, kiuds of gauge boso11s , photon, ZO
and W± . The assumed gauge group is 5U(2h x U(I) and t he original gauge sYWIlIet ry
is broken by th e non-zero vaCuum expect.ation value of Higgs field . On the other hand
strong interaction between quarks is described by color 5U (3) gauge group. All the
experimental facts seem to support these theories at presen t . Though it is still an
open question how these different kin of forces are unifi ed inl. more fu ndamental
theory, it is now of no doubt that these theories contain orne tru ths and will remain
as effectively correct ones.

T his success of gauge theories or standard models of elementary particles, implies
that we have definite Lagrangians and thus we can , in principle, predict any process
based on the e Lagrangians in perturbation theory. When one wants to perform cal
cula tion in this way, however , one meets a technical difficulty due to the complexi ty
of the interaction Lagrangian. T his is particular t o non-abelian gauge theory in wbjch
we have tbree- and four-point self-couplings of gauge bosons as well as interac t ions of
unphysical particles such as Goldstone bosons or ghost particle in gen ral covariant
gauge fixing. Hence even in the lowest order of perturbation, that is , in tree level,
one finds a number of diagrams for a given process when t he number f final particles
increa..c;es. For example, we have only 3 diagrams for e+e- -> W+W - , but when one
photon is added, e+e- -> W+W- ,,(, then 18 diagrams app a r even after omi tting the
tillY interaction between e± and scalar bosons(Higgs and G oldstoIlf' bosons). Addi
tion of one another photon, e+e- -> W +W- ,,(,,(, yields]38 diagrams. Further if one
wants to mak more realistic calculation aroun d the threshold of lV± pair production,
taking into account the decay of M! ±, say, lV - -> e- ve and W + -> ud, then OIl{' has
to consider 24 diagrams for e+e- -> e- veud and 202 for e+c- -> e- iie'ud:y. In unitary
gauge, as only physical particles appear in the Lagrangian, the numbers of diagrams
are Jess than those mentiuned above.

1

2 CHAPTER. 1. INTRODUCTION

One may think that it is enough to select several diagrams which dominate the cross
section. Even if one can find such dominant diagrams , one has to respect the gauge
invariance among this subset of diagrams. Usually number of diagrams in the gauge
invariaDt subset is not so small. For example, for the process e+e- -> lIevclllJ+W- ,
we have 60 diagrams in all. Among them 30 diagrams form one gauge invariant set
and the rest does another ODe. Hence still we meet the same difficulty to handle with
many diagrams. In addit.ion, there remains a possibilit.y that the experimental cuts
imposed Oil the final particles renders the domin ant diagrams to be less prominent and
all diagrams give somehow the same order of magnitude to the cross section. If this is
the case, one has to keep whole the diagrams in the calculatioD after all.

Through the numerous experiments done at e+ c- colliders, we have learned that
higher order corrections should be included whell we want to compare th eories with
experimental data in detail. This implies that we have to calculate at least one-loop
corrections to a given process. As an example, consider the process e+e- -> v1l1 H! -,.
To regularize the infrared divergence due to soft photon emission, we have to include
loop diagrams for e+e- -> W r W- beyolld the tree level, which contain virtual pbo
ton exchange and remove the d ivergence when combined with real photon emission
process. The requirement of gauge invariance among one-loop djagrams demands, in
turn, inclusion of other one-loop diagrams with exchanges of ZO, W ± or other possi
ble particles. Theil it is clear that the total number of diagrams becomes very huge
and it is almost impossible even to enumera te all diagrams. In many cases it seems
out of ability of mankind . For simple W-pair production , in general covariant gauge,
the number is around 200 diagrams in the same approximation stated above, but for
e-veud it amounts more than 3,700.

Facing to the difficul ty described above, we cannot help to find some ways to get rid
of. As a solution we can choose the following one: As diagrams are constructed based
on a set of definite rules, Feynman rules, it is natural to develop a computer code which
can generate all the diagrams to any process, once initial and fi nal particles are given.
It should be able not only to enumerate diagrams but also generate automatically
relevant amplitudes to be evaluated on computers, in other words, create a FORTRAN
source code ready for amplitude calculation. GRACE (Ref. [3]) is such a system that
realizes this idea and help us to reduce the most tedious part of works.

1.2 W hat we can do w ith GRACE?

Before introducing what GRACE system can provide, let us remind the standard way
to calculate cross sections at the tree level. Usually it consists of the following several
different steps:

1) Specify the process.

2) Choose appropriate models.

3) Fix the order of perturbation(at the tree level, this is unique).

312 WHAT WE CAN DO V"ITH GRACE?

4) 	 Enumerate all possible diagrams.

5) 	 Write dowll amplit.udes.

6) 	 Prepare the kiuematics for fin al particles.

7) 	 Integrate the amplitude sq uared in the pb ase space of final particles, including
experimental cuts, if necessary.

8) 	 Generate events so that the sim ulation of th e process in a detector is available.

9) 	Check thr results.

Amollg these steps the first three , I), 2) and 3) , are trivial matter. For the step 7)
one call rely on well established progra.ms which are designed to make integration of
multi-d imension al variables. This is of no problem, except for CP U-time, once the
kin ematics, step 6) , is writLen so that t he estima te of the integral is reliable within
required accura.cy. T he step 8) is related with the preceding step. The last step 9)
co uld be done to compare the results wi th other alculations or with approximated one.
Hence t. 11(' most tedious steps are 4) and 5). GRACE is a system of program packages for
th is purpose, namely, it carries out t hese most tedious steps on computers to save our
elaboration .

1.2. 1 What GRACE provides us?

T he present version of GRACE generates:

• 	 All the d iagrams for a given process up to one-loop, when the order of perturba
tion is fixed(covariant ga uge) .

• 	 FORTRAN source code which contains helicity amplitude of the process in the
tree level(covariant gauge).

• 	 Default values of all physical constants, except for tbe strong coupling constant.

• 	 Interface routines to the program package CHANEL (Ref.[4]), which contains sub
routines designed to evaluate the amplitude.

• 	 No kinematics is generated.

• 	 Interface routines to the multi-dimensional integration package BASES (Ref.[6]).

• 	 Interface routines to the event generation package SPRING (Ref. [6]).

• 	 Test program for gauge invariance check of the generated amplitude.

• 	 Any diagram and its amplitude can be omitted in the calculation by setting the
appropriate flags off. In the integration step the unitary gauge is the default(see
section 3.2.1) .

http:accura.cy
http:progra.ms

4 CHAPTER 1. INTRODUCTION

What the user should do first is to tell GRACE the set of parameters which specifies
the process considered. It should include

1) 	 names of initial particles,

2) 	 names of final particles,

3) 	 order of perturbation in QED, clectroweak and/or QCD.

in 	the given format explained later.
When a job is started with the data fi le containing these inputs, GRACE constructs

all possible diagrams and crea t.es an output file to draw all Feynman diagrams for the
convenience of the user to look them by eyes. At the same time a s t of FORTRA 1

subprograms is generat ed. These include those which are needed to calcula t.e the
amplitude with the help of CHANEL, to in tegrate over phase space by BASES and '0

generate events by SPRING .

After all the programs are su cessfully generated, the next tasks, which the user
should do before integrat ion , are

1) 	 to prepare the kinematics,

2) 	 to fill up some parameters in a few subroutines, such as the dimension of the
integral ,

3) 	to check t he gauge invariance of the amplitude.

1.2.2 Structure of the system

In this subsection we show how the whole system of GRACE is constructed and how each
step proceeds. The system consists of the following fo ur subsys tems, whose interrelation
is depicted in figure 1.1.

(1) 	 Graph generation subsystem
W hen initial and final states of the elementary process are given as t he input as
well as the orders of couplings, a complete set of Feynman graphs is generat ed
according to the t heoretical model defined in a model definit ion file. For the time
being QED, Electroweak and QCD model" in the tree and one-loop level are
supported. The information of generated graphs is tored in a file as an output.

Reading the graph information from the file, t he graph drawer displays the Feyn
man graphs on the screen under the X-Window system or prints them on a paper.

(2) 	Sou r ce generation subsystem
From the graph information prod uced by the first subsystem, a FORTRAN source
code is generated in a form of program components suited for t he numerical
integration package BASES.

http:creat.es

5 1.2. 	 WHAT WE CAN DO WITH GRACE 7

The source code is constructed based on our helicity amplitude formalism, which
consists of many calling sequences of subprograms given in CHANEL and its iuter
face rou ti nes.

In addition to these program components, the subsystem generates a main pro
gram, by which the gauge invariance of the generated amplitudes can be tested.

F ig. 1.1 Structure of GRACE system

(3) N umerical integration subsys tem
Combining the generated source code together with the kinematics routines and
the GRACE library, the numerical integration is performed by BASES to obtain
the total cross section. For this, however, one has to prepare t he kinematics
routines, which are discussed in the next section. As the output of integration,
the numerical value of total cross section, the convergency behavior of integration,
one and two dimensional distributions of the cross section are given besides the
probability information in a file, which is used in the event generation. Looking
the convergency behavior carefully one can judge if the resultant value is reliable
or not .

(4) 	 Event generation subsystem
Using almost all the same subprograms in the integration, events with weight one

6 CHAPTER 1. INTRODUCTION

are generated by the event generation program SPRING. To achieve a high gen
eration efficiency, it uses the probability information produced by BASES. Con
ceptnally, SPRING samples a point in the integration volume according to the
probability. If the probability information is a complet.e one, the sampled point
is exactly corresponding to a generating event. Since, however, it is impossible to
get a complete information numerically, the sampled point is tested whether it is
accepted or not. If it is accepted then its numerical values of integration variables
are passed to an user interface routine SPEVNT, where they are transformed into
the four vectors of the event.

1.2.3 How to do w ith kinematics?

In order to get the numerical value of cross section, we make integration in the phase
space of final particles. As the integral is multi-dimensional, 4 for 3-body, 7 for 4
body and 10 for 5-body process(if the cylindrical symmetry is assumed around the
initial beam axis), we usually use adaptive Monte Carlo integration packages. (In
our system BASES is assumed .) We have to express all momenta (or equivalently
invariants composed of them) of final particles by independent integration variables.
Generally speaking, the integration routine feeds a set of random numbers in the space
of given dimension. Let us denote these random numbers as

X(I),I = 1,···,NDIM,

and assume their values are normalized in, say, [0,1]. (In BASES, the upper and
lower bounds for X (I) can be arbi trary numbers.) Then we have to translate these
variables into four-momentum of final particle, say J-th particle, P C1 , J), P(2, J) ,
P(3,J), P(4,J) of total N pa rticles (in GRACE, P(4,J) is the energy),

X(I)=}P(K,J). K=1,···,4, J=l,"',N

This is known as kinematics for the given process. This mapping is not always unique
and in some cases a single value of XCI) may correspond to multi-value of particle
momenta.

GRACE, unfortunately, does not give the kinematics in an automatic way. The
reason is that the pTesent popular integration packages, such as BASES or VEGAS, utilize
a special algori thm to search for the singularities of the integrand. The matrix element
squared, the integrand, becomes singular when the denominators of propagators of
internal particles become very small compared with the typical energy of the process
considered. This happens when a mass of an internal line is very small. As is well
known, if a singularity is running along the diagonal in a plane of two integration
variables, these programs cannot give reliable estimate of the integral, because they
fail to catch the singularity at all. In order to get good convergence of the integration
over many iterations, all the singularities must be parallel to the integration axes. This
means that these peaks located in the space of kinematical variables, are mapped onto
the line of constant value of some XCI). In order to do this, we have to choose very

12 WHAT WE CAN DO "nTH GRACE ? 	 7

carefully the transformation between random numbers and kinematical variables . The
typical kinds of singularities we meet in real calculation are as follows;

• mass singularity

• infrared s ingularit.y

• t-channel photon exchange

• resonance formation(decay of heavy particles)

(Precise description of how to deal with these singularities will be found ill section 2.6).
III some processes the Dnmber of independent variables is greater thall that of

singularities , and one can easily find a kinematics which is suitable to make them
smooth. If this is not thE: case, however, one may not be able to find sllch good
kinematics to avoid diagona l singularity even after much efforts. Hence it is quite
di fficult to give the gE:lleral kinematics which is capable of dealing with all kiuds of
singulari ti s a t once , or a single set of transformations.

T he d rawback adherent to the present integration packages men tioned above made
us to hesi tate to generat.e a kinema tics, because it must be applicable only to limited
processes. If GRACE could generate such kinematics, someone might apply it to a. Cr()SS

S d ion which is so si ngu lar that the int.egration package fails to catch allY singularity. It
retuflls an answer which looks like to converge well a t the first sight, but is completely
wrong. Hence we d cided not to generate kinematics automatic way, but leave it to
t he user.

1.2.4 How to make p reliminary ch eck?

Suppose we ha ve a kinematics for the process to be considered. The first task we should
do is to check t he genera ted amplitude and confirm that it is in fact correct one. We
have two methods fo r this check;

1) 	 Gauge iovariance check.
This is done by changing the gauge parameters numerically for 'Y, ZO, W± and
gluon and examining if the value of the total amplitude remains the same within
the double precision . The main program for this test is generated by the system.
W hen quadruple precision is supported on user's computer, invariance check in
this precision level is also possible. One should, however, notice that in some
special cases the gauge invariance is trivially satisfied and this kind of check
cannot be helpful (simplest case is such that only the vector or axial couplings
to on-shell massless fermions appears in each diagram).

2) 	Lorentz invariance check.
Since all the four-components of particle momenta are numerically given , it is
possible to look if the squared amplitude does not change by Lorentz transforma
tion. For this one has to change the definition of frame inside of the kinematics
routine written by the user.

8 CHAPTER 1. INTRODUCTION

These tests can prove correctness of both amplitudes and kinema tics. If either of these
latter two has some errors, both invariance checks must fail. Note that, however, these
cannot be respollsible for the correctness of the overall factor m ulti plied to the squared
amplitude(powers of 27r, factor 2, Jacobian in the kinematics aI)d so on).
If everything is O .K. , thell you can proceed to make phase space integration.

1.3 H ow to use this manual

This manual is composed of three kinds of objects, theoretical backgroulld for calcu
lating the cross sect ion of elemeu tary process, usage and t.echn ical details of the GRACE
system. T hroughout this manual we take the tree level process e+c- --+ lrfl+W-, as a n
example, including the ~±-scalar bosoll int,eract ions. The real FOI1TR AN source cod('
for this process i .. · at.tached in the relevant sections as well as the results of cal ulation,
which might be a great help for und erstanding t he practical use of the system .

Structure of manual
Th purpose of chapter 2 is to present the theoretical background of the system.

After notat ions, Lagrangians and renormalization pres Tiptions arc specified , how am
plitudes and color factors are calculated is described. The Feynman graph generation
is briefly discussed from the graph theoretical point. of view for the completeu ss of
this manual.
Only the kinematics part is to be prepared by the user, where the structure of singu
larities in the phase space should be taken into acc unto The possible singularities, t.o
which the user may face, are also discussed in this chapter. Finally the algorithms of
multi-dimensional integrat ion package and even t generation package arc pre. ent.ed.

Chapter 3 is devoted to the function of GRACE system, where full description
about inpu t and output of each sub-system is specified . Specification of subprograms
for kinematics is also given here. Th i part is independent of the computer system, on
which GRACE system is implemented.

In chapter 4 the usage of GRACE system on UNI X system and FACOM main frame
computer is described. GRACE sys tem is also supported on some parallel computers.
Usage on the parallel system I NTEL i PSC/860 is presented as an example.

A variant of GRACE system for vector computers is described in chapter 5. The
difference in the inpu t and output spe ification of t he vector version from t.he scalar
one is mentioned. As an exampI usage of the system on HI TAC S820/80 is presented.

In chapter 6, detailed description of Feynman rules is given. These rules are given
to the system through a model definition file . The format of th is file is also shown.

Chapter 7 is devoted to describe subrout ines in CHANEL library and interface p ro
grams between CHANEL and generated code by GRACE.

The interrelation amollg the contents of chapLers is shown in figure 1.2(c).

Trave ling g uide of this manual
Those serious users, who want to know how GRACE system is constructed and works

before use, are recommended to read whole m anual form the first page to the last. T his

1.3. HOW TO USE THIS MANUAL 9

will be the best but tedious way to understand GRACE syst.pm.
If you find interest only in physics and use conventional computers, you can start

from chapter 4 and skip chapter 2 except for sections 2.1, 2.6 and chapters 5, 6 and
7 as shown in figure 1.2(a). \Vhcn you intend to use a vector computer, you are
recommended to start from chapter 5 on reference to chapters 2 and a" in figu re
1.2(b)

Limitations of the system
This system has several limitations which are summarized ill appendix C . It is

recommended to read th is appendix before using the system.

How to obtain GRACE system
GRACE full system works on UN IX workstations (at least HP and SUN) and main

frame ccm puters (FACOM a nd HITAC). In addition to these omputers, the numerical
subsystems of GRACE are applicable to VAX VMS system, parallel computers (INTEL
iPSC/860, FACOM AP1000 a nd NCUSE), a nd vec tor computers (HITAC S series, FACOM
VP series, NEC SX and CRAY) . T he syst.(, In requ ires FORTRAN77 and PASCAL compilers for
installation. For drawing generated Feynman gTaphs, it requires Xlib or GKS graphic
library.

The system is available wben reques ted through e-mail to grace<omi nami .kek . j p.
O tber information or question is welcome to tbe same e-mail address.

(a) To use GRACE quickly on the scalar computer.

(b) To use GRACE on vector computer. (c) Interrelation among chaplers.

Fig. 1.2 Interrelation of chapters

Chapter 2

Theoret ical b ackground

In this chapter we describe general theoretical bases and ingred ients used in the GRACE

system. It covers conventions, definition of cross section, models, helicity amplitude
formalism, calculation of color factor, method of graph generation, kinematics and
the method of numerical integration. As the system automatically generates helicity
amplitude for any tree process in the framework given below, one has to know the
ou tline of these theoretical backgrounds.

2.1 Definit io n of the cross sect ion

The original unrenormalized Lagrangian density is divided into free and interaction
parts as

(2.1)
where free part contains all the quadratic form of fields including gauge fixing term.
Since all the models we are considering are renormalizable, the Lagrangian can be
reexpressed in terms of the renormalized quantities. Thus we can write

(2.2)
Here the last term represents the counterterm Lagrangian(in the current version of
GRACE this part is of no use, because no loop amplitude can be generated).

Denoting the substantial interaction as

(2.3)

we define the S-matrix,

(2.4)

where T* is the usual chronological operator, introduced when Lint contains derivative
of fields. Expanding the exponential , we have a perturbative series with respect to the
interaction Lagrangian

00 ·N
4S = 1 + J;] ~! Jd xJ ... Jd4XNT* [Lint(xdLint(X2)··· Lint(XN)]. (2.5)

10

11 2.1. DEFINITION OF THE CROSS SECTION

The scattering matrix T is defined bv all operator relation

s = 1 + iT. (2.6)

By taking the matrix element betweeu illitial and final states Ii) and If) we have

(2 .7)

wh ere Pi a nd PJ are tb c total four momenta of initial alld final states, respectively.
The cross section is dcfilJ cd as

(2.8)

Here 'flux ' is the flux of incidcnt particles and dfJ is the volume element of phase space
of the final states. III our convention we define this elcment for any kind of particle as

(2.9)

where qi = (qio, q;) , i = 1, ' .. ,NJ are the four-momenta of NJ pa rticles in the final
state . T hen the initial flux is normalized as

(2.10)

where PIO and P20 are energies of incoming two particles and Vre! is the relative velocity
of these two.
Thus the final form of the cross section for the process

(2.11)

is given by

(2.12)

Here helicity states of final particles(hJ) are summed and those of initial state(hi) are
averaged for the simplest case.
Though the FORTRAN output from GRACE automatically provides the quantity

(2.13)

as the default output, one can select any helicity state in both initial and final states
by changing the part of the program corresponding to these summations as explained
in section 3.2.1.

12 CHAPTER 2_ THEORETICAL BACKGROUND

If the incident particles collide ill the center-of-mass system, the flux factor is given by

flux ~ 25, (2_14)

neglecting their masses, where s = (Pt + P2)2 is the square of t.otal energy_ 'When t hese
particles are partons with energy fractions Xj and X2, like in PP or pp colliders, it is
givell by

fl ux ~ 2(XjX2) S, (2. 15)

a nd the cross sectioll Eq.(2.12) is tha t of sub-process.

2.2 Metric and conventions

I) Convention for Feynman rules .

T he scattering amplitude T i l is COll::; ructed according to tLe Feyn man rules .
T here are some differen t ways to decompose the factor i N in Eq. (2.5) a nd assign
to various parts of a diagram. T he convention we use ill GRACE is the following:

1) Let us denote a generic field as cP· T he propa.gator is defined by

(2.16)

T hus for fermion we have

1
SF(P) = - -- (2.17) - 1> + m, - iE'

for scalar particle

1

6.F (p) = - --- (2 .18)
_p2 + m,2 - iE'

and for gauge boson of mass M

D () GJLv(q) (2.19) FJLl.' q = 2 + M 2 -,- q - ZE

where GJL., (q) is a symmetric tensor which depends on t he gauge condition
used. Its explicit form will appear in section 2.3.

2) T he vertex is defined as the Fourier transform of the in teraction Lagrangian,

Jd4 -ip-x.c- ()x e int X . (2.20)

For example, photon vertex of charged fermion f is given by

(2.21)

http:Eq.(2.12

13 2.2. 	 METRIC AND CONVENTIONS

3) 	 For a loop diagram with L loops we assign the following loop integration(
in n-dimension)

(2.22)

By this convention we can save the number of i because after making W ick's
rotation each loop integration will produce all i to compensate that in the de
nomin a tor. Sim ple count ing will show that iN in Eq.('2 .':» can be divided into
three parts

(2.23)

where t he first i is regarded as that of iT , the second is absorbed into the defilli tion
of propagators and the last into loop integrals.

II) 	Metric

T he met ric convention is as follows;

1) the space-time metric g,,1/ is defined by

for ·i,j=l , 2,3, (2.24)

2) the components of a fOUT-momentum is given by

P = (Po ,p), (2.25)

and t he inner product of two arbitrary four-momenta, P and q, is

P . q = Po go - P . q. (2.26)

3) the 4-dimensional Dirac matrix satisfies

J.L, v = 0, . .. ,3 (2.27)

and 	"15 is defined by

"15 = Z'YO'Yl "12"13, (2.28)

as usual. T he hermite conjugate of 'Y-matrix obeys

hence

(2.29)

(2.30)

In GRACE system, CHANEL calculates Dirac matrices in a numerical way, but
specification of their explicit representations is not necessary.

14 CHAPTER 2. THEORETICAL BACKGROUND

III) Normalization of wave function.

1) Massive Dirac spinor

The Dirac spinor is normalized as

u(p, 5ho'U(p, 5') = 2pooss"

V(p, shov(p, s')
 (2.31)

hence the projection operators are

u(p, s)u(p, s)

(2.32)v(p, s)v(p, s) =

where u(p, s) and v(p, s) are spinors of particle and anti-particle with mo
mentum p and spin vector s. T he latter satisfies

s2=-1, s·p=O. (2.33)

When one specifies a helicity state, the spin vector has the form

p
(2.34)n = TPl

with h = ±l.

2) Massless Dirac spinor
As massless fermion, we know only left-handed neutrinos. Denoting its
spinors as uv(p) and vv(p) , the projection operators are then

1 - 1'5
uv(p)Uv(p) = -2-P,

1 + 1'5..1..vI' (P)vv(P) = p (2.35)
2

3) Spin summation of massless gauge boson.
Polarization vector of photon or gluon c~~l (k), >. = 1,2, k2 = 0, satisfies

(2.36)

spin summation is given by

~ (~l (k) (~l (k) = _ + k,.,nv + kv n ,., _ 2 k,.,kv
cv (2.37)L.. c,., g,.,v k . n n (k . n)2 '

~=l

where n is an arbitrary constant vector. As CHANEL uses helicity formalism,
it defines an expression of c):l(k) and the spin summation is consistent with
this formula as shown in section 2.4.

2.3 SPECIFICATION OF MODELS 15

4) Spin summa tion of massive gauge boson.
Denoting th e polarization wctor of W± or ZO as t:~'\) (k), A = 1, 2, 3, k2 =
M2, we have

(2.38)

and the Spill summation

(2.39)

2.3 Specification of models

Now we turn to the details of the models prepared ill the system. In the present version
of GRACE we have included only s tandard ones;

• QED

• Electroweak

• QeD
Although the firs t one is, of course, a part of the second, the system is designed so that
one can choose pure QED. The models are selected by giving the order of coupling of
each modeL It should be noted that the orders of couplings for electroweak and QED
models are used exclusively, i.e. they should not be given at the same time. (If one
geIl era tes amplitudes in electroweak theory, then one can choose only QED part by
using d iagram select ion fl ag.) Since the current version of GRACE can provide only
tree amplitudes, the CQun terterm is not needed a t present stage but we described the
whole renormalized Lagrangian in anticipating the forthcoming version which includes
I-loop diagrams.

2.3. 1 QED

The unrenormalized Lagrangian density can be divided into

(2.40)

The fre Lagrangian 1: freeO is

r _ ",-(1)(. a) (I) 1 F F,IlV r
,L freeO - ~ 1/;0 ~'Y . - m fa 1/;0 - - IlVO 0 + Lgauge, (2.41)

f 4

where f indicates the fermion f and 0 means unrenormalized quantity. Note that the
summation over f also implies the sum over color degree of freedom for quarks. The
interaction part is given by

(2.42)

16 CHAPTER 2. THEORETICAL BACKGROUND

The electromagnetic charge of a fermion f is given by eoQJ with the positron charge
eo· Thus up-quark ha.s Qup = + 2/3, down-quark Q<io-wn = -1/3, electron Q, = -1,
and so on. The gauge fixing term, written in renormalized fields, is

- 2a
1
Y;l· A)

2
, covariant gauge

1 2
Lga.uge = --(n· A) , axial gauge (2.43)

20

where 0- is a gauge parampter and n is an arbitrary constant vector. If n 2 = 0, then it
is called light-cone gauge.

Int roducing renormalization constants Zu , Z 2J , Z3 and 6mJ and replacing all the quan
t ities in this Lagrangian by renormalized ones,

'I/)JO Z 2J'l/JJ' A lLo = Z3 A IL'

Z - I Z - l/2
CZIJ 2J 3 , (2.44)

we can rewrite the original Lagrangian by renormalized quantities and we have

(2 .45)

with

~~!) (.:/l) . I.(!) 1F FlLv LL '1/ ~'f' - m J '1/ - - ILV + gauge
f 4

2: eQJ1[;(f) 'YIL 'I/J (f) AIL

f

2: 6Z 2J1[;(f) (if] - mJ) 'l/P) - 2: Z 2J 6mJ1[;(I) 'I/J(f) (2.46)
J J

- ~6Z3FlLvFILV + 2: eQJ6Z1J1[;(I) 'YILV}!) AIL.
4 J

Here the counter term Lagrangian contains

(2.47)

Note that the gauge invariance or charge universality implies

(2.48)

17 2.3. SPECIFICATION OF MODELS

The renormalization conditions to fix these constant are well known, and will be found

any standard textbook of quantum field theory.

The propagators are as follows; for fermion it is given by Eq. (2.17), for photon,

G"v(q)D~v ()q
=

2' . (2.49)
-q ~f

The numerator takes the following forms depending on the gauge condition:

covariant gauge (2.50)G,w(q)

axial gauge (2.51)

2.3.2 Electroweak theory

The standard model of SU(2h x U(l) gauge theory, originally proposed by Glashaw
Weinberg-Salam, is much more complicated than QED. Quarks and leptons are classi
fied into left- and right-handed, which transform under the gauge group in a different
way;

en , J1.R, Tn,(~e)L' (~) L' (~) L'

Un, dR, en, Sn, tR, bn·(~) L' (~)L' (~)L'

Two kinds of gauge boson fields are introduced which transform as SU(2)-triplet and
-singlet,

triplet -4
1 2 3A,,(x), A,'(x), A,,(x)

singlet -4 B,,(x)

The Higgs field is also a doublet

(2.52)

Before giving the explicit form of the Lagrangiall , we like to make a comment on the

parameters of the theory

Constant parameters

The most fundamental constants in the Lagrangian are two coupling constants of SU(2)
and U(l) gauge interactions(g and g', respectively) and the vacuum expectation value
of the neutral Higgs scalar,

18 CHAPTER 2. THEORETICAL BACKGROUND

In the classical level the heavy boson masses and the electric charge are given by

Mi = l(l + g'2) (cj;0)2, Mt¥ = 192(cj;O)2,

gg'
e = (2.53)

respectively. Thus the alternative set of parameters is

e, A1w,Mz,

which are physically observable quantities. The weak mixing angle sin2 Ow is defined
through the relation

. 2 Ma,
Sill Ow = 1 - --2 . (2.54)

Mz
In our convention e, Mw and M z are used as input parameters. However, as the
precise value of M!± boson mass has not yet been measured, the muon decay width,
f JL, is more reliable than Mw at present. Using the above set of constants one can
express the width in a form (up to any order of perturbation)

fJL = Mw' f(ex, M~/Mi), (2.55)

(with possible dependence on Higgs and t-quark masses, mH and mt). Solving this
equation and using the experimental value for r JL, we can get Mw as a function of
other parameters,

(2.56)

In this sense the set of constants

can be used as the input parameters of the theory.

Lagrangian

We follow the formulation given in Ref.[l]. As the full Lagrangian has very complicated
structure, we divide it into two parts; the first has the same form as the classical
Lagrangian containing physical objects and the second is related to the gauge fixing,

(2.57)

The first part is further decomposed into several terms,

(2.58)

where Lco is the gauge boson part, L FO the fermion kinetic part, L HO the Higgs scalar
part and L MO the fermion-Higgs interaction.

2.3. SPECIFICATION OF MODELS 19

1) The pure gauge boson part contains only SU(2) and U(l) gauge fields,

Lco = -~G~voG~vo - ~FJ.lvoFJ.lvo ,
where

(2 .59)

FJ.lvO aJ.lBvo - avB'Io,

are field strengths for gauge fields A~o(a = 1,2,3) and BJ.lo , respectively.

2) 	 The kinetic part of fermions, both quark and leptons , including gauge interactions
is given by,

LFO = L ¢Lo(i/ft + goTaA~o + g'oToBJ.lo)Vho + L ¢;{d (i/ft + g'oToBJ.lo) 1/;~d,
£ 	 / = i,l

(2.60)
where 1/;Lo and 1/;Ro represent SU(2) doublet and singlet fermion fields, respec
tively, with

1/;(1))
1/;£0 = ti~ . 	 (2.61)(

1/;LO
To specify a fermion we use the subscript (L) and the superscripts (1), (i) and
(J) which stand for left-handed fermion doublet and upper, lower and all kinds
of fermion, respectively. The coupling constant go corresponds to SU(2) and g~
to U(1) gauge interactions and Ta's are related to SU(2) Pauli matrices, Ta
Ta/ 2.(a = 1,2, 3) and To = Q - T3 where Q is the charge operator.

3) The Higgs scalar part with gauge interaction is

g
LHO = I (aJ.l - igoTaA~o - i ; BJ.lO) <I>{ + J.L~<I>b<I>o - Ao(<I>b<I>o)2 (2.62)

4) T he fermion-Higgs interaction is

LMO = - L fJi)~~6<I>01/;~6 - L fJl)~tJ(iT2<I>~)1/;Kci + h .c., (2.63)
[

where fJi) and fJ!) are Yukawa coupling constants. Two new combinations of

fields, W~6 and wtJ, for left-handed fermions are introduced so as to make the
mass matrix diagonal,

(i)
W£0

o,,(J))w(I) - 'P£O (2.64)LO - (". U -1o ,,(i) ,
L, h 'P LO

where Ui [is the mixing matrix for quarks. In the current version of GRACE this
mixing is not supported, namely the unit matrix is assumed for UiI .

http:g'oToBJ.lo

20 CHAPTER 2. THEORETICAL BACKGROUND

The symmetries are broken by the vacuum expectation value of the Higgs scalar field
cl>o,

cl> - 1 1.· XO+)
(2.65)

a -.Ji (va + ¢o - iX30 .

Here,

1) va is the bare vacuum expectation value,

2) ¢o is the physical Higgs scalar field,

3) X:1O is the neutral Goldstone bosoH,

4) xli is the charged Goldstone boson, defined as

(2 .66)

We in trod lice th~ physical gauge boson fields by

(2.67)

Collecting all of these, we get unrenormalized Lagrangian expressed in terms of physical
particles . The bosonic part becomes

1 + + 2 1)2 1)2Lco --Iallwvo - avwllol - -(aIlZvO - avzllo - -(aIlAvo - avAllo
2 	 4 4

+ / 	 2go (go:-yg{Jb - ga69{J-y) [go {(ao:w{J"Q)W;oZbO + (ao:wio)Z-YOWb~
95 + gb2

+(ao:Z{Jo)W:OWbO }

+g~{(aaW;o)W;oAw + (ao:Wio)A-yoWb~ + (ao:A{JO)W-y"QW bO}]

2

- 2 go 12 [(go:{Jg-yb - go:-yg{Jb)W:oWio(g~Z-yOZ60 + g~2 A-yoAbO)]
go + go

+(2go:{Jg-y6 - go:-yg{Jb - go:bg{J-y)gog~W:oW{JoA-yoZbO

2

+(g<>/3g-y6 - 9O:-Y 9{J6)g; W:oW;oW-YOW60' 	 (2 .68)

21 2 . .3. SPECIFICATION OF MODELS

and the fermionic part is

LFO = Li?j;6J)~</J6J)+ eo LQJ?j;6J) 'YI,</J6J) AI"0

J J

+~ '""' ("!.(I)Ut . 1 - 1'~ "/(i)W+ + /.(i)U 1- ~!J"I,{I)W-).j2 L '1-'0 Iz 'I" 2 'Po 1"0 7fJ0 ,/ 'YI" 2 '1-'0 1"0
,,I

/ 2 + 12 12
V 90 go '"' - (f) [() go] I (f) (2.69)+ 	 2 L </Jo ,'" T3J 1 - 1'5 - 2QJ 2 12 7fJo ZI"O,

J 90 + 90

where 1/) is the Dirac spillor which we defiIle

1 - 1'5 1 + 'Y5
1/)0 = 1/iLo + 1/) RO = --1/)0 + --</Jo· 	 (2.70)

2 2
Further we have introduced the bare electric charge by

909~ eo = 	 (2.71)
J96 + 9~2'

and QJ is the charge of f-th fermion in the unit of positron charge eo. As the Higgs
scalar part becomes complicated , we divide it furth er into four parts,

LHO = L~6 + L~6 + L~6 + LvO' 	 (2.72)

The first part contains kinetic terms of scalar particles and bilinear terms ill fields,

d2) _ 1)2 1 2 +)_)
HO - +2 (oAJo + 2 (°I"X30) + (0I"XO (0I"XO

2 + - 1 2
+ MwoWl"oWI"O + 2MzoZI"oZI"0

-~90VO[W,;o(ol"xo) + W,:o(Ol"xt)]- ~J95 + 9b2 vOZI"0(0I"X30), (2.73)

where the bare mass terms of gauge bosoliS are introduced by

M 2 1 (2 12) 2
Z O "4 90 + 90 V o,

Mlvo = 	 (2.74)

T he cubic and quartic parts in fields contain interaction terms between Higgs and gauge
fi elds,

1'(3) _ 1 ~ 1 ~
LHO - 290W,;o(Xo 01" ¢o) + 290W;0(xt 01" ¢o)

i + (~) i (~+) 1 / 2 12 (~)+2"90WI"0 X30 01" Xo - 29oWI"-0 X30 01" Xo + 2V90 + 90 ZI"O X30 01" ¢o

(2.75)

22 CHAPTER 2. THEORETICAL BACKGROUND

(2.76)

The last part is the potential term for Higgs particles,

Lvo = vo(/-L6 - Aov6)¢o + (/-L~ - AoV6)XriXo

12 2212 22
+"2(/-LO - Aovoh 30 + 2(/-Lo - 3AovO)¢0

- 2vOAO(¢oX6Xo) - VOAO(¢OX30X30) - VOAO¢~

-AO(XriX(~)2 - AIJ(xtXoh~o - Ao(XriXo) ¢6

14 4 221 1
-4AOX30 - 4AO ¢0 - "2AOX30¢O (2.77)

The fermion mass part yields,

r '" -::i:(f) .I,(f)
"--MO = - ~ mfO'PO 'PO

f

-~ L ~~I)uM(f6i) - f61)) + (fai) + fcil)h5]'Ij;6 i)X6
i,1

-~ L~~i)UiI[(faI) - fail) + (fai)+ fa I)hs]'Ij;6l)Xo
i,I

f
(f)

_ '" _o_-!- -::i:(f).I,(f)7 yI2 'Po 'P 0 'PO

23 2.3. SPECIFICATION OF MODELS

(2.78)

Next we turn to the gauge fixing of the original Lagrangian. This contains unphysical
particles, Goldstone bosons and ghosts, that is, the gauge fixing term and the Faddeev
Poppov ghost parts,

Lgauge = LCF + L Fp · (2.79)

The gauge fixing term is written in the renormalized form as

(2.80)

The last part, Faddeev-Poppov ghost, is given by

LFP = -ctDBRS(OjJW,;o + O'woMwoXo) - CoDBRS(O"WjJ-to + O'woMwoxt)

-C~DBRS(OjJZjJo + O' ZO M ZO X30) - C~DBRS(ojJAjJo + f30M ZO X30), (2.81)

where every quantity is bare and the BRS transformations for the fields are defined by

.j 2 go (+ _ _ +) go + go 12
Z (2.82)-"2 Xoco +Xoco - 2 X30 CO'

go [(.) ± ±)] Z ±[(2 12) Z 2 1 A)]+-2 Vo + CPo Co ~ X30 Co ±.j Xo go - gu Co + gogoc ,
2 96 + 9'02

J 2 + .12
90 90 (Z Z90 + _ _ +)

DDRSX30 = 2 vo+¢o)co -T(Xoco -Xoco ·

Here the original ghost fields c~, c~ are replaced by

cZ 1 (3 '0)
o ,)g2 + 9 /2 . 90 c

(J - 90 co ,

c~ (2.83)

24 CHAPTER 2. THEORETICAL BACKGROUND

in the same way as the mlXmg between physical ZO and photon fields . Thus the
Faddeev-Poppov ghost part, divided into bilinear and cubic terms in fields, is given by

LFP = L~~ + L~~, (2.84)

where

f' (2) :OO+(!:l2 M2) - --(!:l2 M2) +
J-FP -co ul' + awo wo Co - Co u,' + awo wo Co

-Z(!:l2 + M2) Z -A!:l2 A -A((3 M2) Z-co ul' azo zn Co - Co u"cO - Co 0 wo co, (2.85)

and

2
. +[-awo Mwo(-gb +95) __ z M -- A

+zXo / Co Co - awo woeoco Co

2y g'5 + g'r}

(30 M -A - azo M -z-]+2 zogocoCo + -2- zogoco Co

. _.[+awoMwo (_g~2 + 95):oo+ Z _+ A
+zXo / Co Co + awoMwoeoco Co

2y g'5 + gb2

a zo(30M -A + -z +]- 2 zogoco Co -:2M zogocoCo

+ ia
wo [:00+ - + -- +] a wo '" [-+ - -- +]- 2- MWOgOX30 -co Co Co Co - -2- M wogo'flo Co Co + Co Co

azo M / 2 + 12", -z z (30 M / 2 + 12A, -A z--2- zov go 90 'fIOCO Co - 2 zoy go go 'fIOCO co ' (2.86)

According to our choice of basic parameters, we have to rewrite all the bare constants ,
go , gb and Vo, by bare parameters, eo, M zo and Mwo ·

M zo
go = eo ,

/M10 - M;to

M zo
go

1

eO- ' M wo

Vo

25 2.3. SPECIFICATION OF MODELS

(2.87)

FOU) ;;::2 Ij, v£.mjO Vo·

Here To is the tadpole contribution. After renormalization , it IlIllst vanish. By tllese
replacements we can get toe final form of the bare Lagrangian.

Renormalizat ion

'Ne bave to mention that several kinds of renormalization scoemes have been proposed
and used so far. Toe main difference among them lies ill the following fact. \Vhen one
renormalizes the wave fUllctions before the symmetry is broken, one puts

ZI~2 4 a
A:o w ~ ILJ

EiLO
Z I/2 BB iL'

1jJLo Z I / 21jJ
L t, (2.88)

1jJ(J)
RO

Z (I)1/21jJ(!)
R R ,

1jJ(i)
RO

z (i)1/21jJ(i)
R R,

with

(1jJ(!))
1jJL = ri) . (2.89)

'lh
Hence five constants Zw, ZB, ZL, Z~) and Z~) appear.

On the other hand, after the symmetry is broken, one has to introduce more renormal

ization constants corresponding to fieJds of physical particles, that is,

Z I / 2·W ±w:O IV iL'

(Z I/2 Z I / 2) AA A Z (2.90)Z I/2 1/2(~t) (~:) ,
iL 7.A Z zz

1jJ(1) Z(1)1 / 21jJ(l)
LO 10 10 ,

1jJ (i) Z(i)1 /2 1/. (i)
LO = L) 10 ,

1/.(I) Z(!)1/21jJ(I)
)RO R R , (2.91)

1jJ (i) Z(i)J/2 , (i)
RO R 7PR'

26 CHAPTER 2. THEORETICAL BACI(GRDUND

In GRACE syst em we use the second scheme as our convention.

The Lagrangian is renormalized by the following prescription:

1) Replace the bare constants by

M00 M0 +oM0,

Mio = Mi + oMi,

2 2 0 2m'/IO m'[j + m H , (2.92)

mfO mf + omf,

eo - Ye o

2) Rescale gauge fields(ZO, W±, 1') according to Eq. (2.90).

3) Rescale left- and right-handed fermiolls by Eq.(2.91) . In the presence of quark
mixing, ZL and ZR become matrices which connect bare and renormalized fermion
fields of the sam e charge:

1j) f) '" (ZI /2) (I')
R,LO L R ,L ff' 'l/JR,L'

f'

4) Rescale Higgs field by

(2.93)

(2.94)

5) 	 Renormalization of bare gauge parameters appearing in Eq.(2.81), aWO , aZO and
/30, are defined as follows;

aWO a ZI /2 Z-I /2/ /1 + oM2 /M2
W 	 W X Y w w'

a ZO (2.95)

Z I/2Z-1/2/ / CM2/M2/30 az AZ x3 yl+u Z z·

6) Rescaling of Goldstone fields X~, X30 is defined by

ZI /2 X±
X '

(2.96)X30

7) Rescaling of ghost fi elds are defined by
± Z- ±

Co 3 C ,

(2.97)

-± -± -z -Z -A -A
Co C, Co = C , Co = C

http:Eq.(2.81
http:Eq.(2.91
http:Eq.(2.90

27 2.3. SPECIFICATION OF MODELS

Summary

Now we can re-express the original Lagrangian L ELW by both renormalized fields and
constants. It is straightforward to divide it into free and interaction parts. The free
Lagrangian L free is obtained from the bilinear terms in fields in L ELW by letting all
rescaling factors to be unity, Zi = 1, and all mass counterterms to vanish, 8m7 = o.
Thus we have

w+ [gl'" (02 + M2) - (1 - _1_) 0 0]w-I' W I" II IIQ
Qw

+ ~Zi'[gllll(O; + M1) - (1- Q1) OI,OV]ZII
z

+~AI' [91J//0~- (1- ;J OI,OIl]AII

+ L ;Pf) (if) - mf)1/J(f) - ~ 4>(o~ + m~)4>
f

-X+(o; + QwMa,,)x- - ~X3(0; + Qz M1)x3

-C+(o~ + QwMa,,)c- - c-(o; + QwMa,,)c+ - CAO;CA

-CZ(o; + QzM1)cz (2.98)

and define the interaction part by

(2.99)

which contains all the counterterms as well as tree interactions. All the Feynman rules
generated from the renormalized Lagrangian are collected in chapter 6, except for the
counterterms. The latter and the renormalization conditions will be found in Ref.[ll.
They are too complicated to be reprod uced here.

The Feynman gauge is defined by

(2.100)

while the unitary gauge is chosen by lett.ing all these parameters (except for photon)
infinity,

Qw = Qz = 00 . (2.101)

In GRACE system one can set any values for these parameters when one checks the gauge
invariance. In the calculation of cross section, however, unitary gauge is automatically
chosen, because the total number of diagrams is less than that in general covariant
gauge. In the program, parameters with values greater than 100 are regarded to be
the unitary gauge (see section 2.4).

28 CHAPTER 2. THEORETICAL BACKGROUND

2.3.3 QeD

The QeD Lagrangian [2] written in terms of the unrenormalized fields aud coupling is
given by

lea e"lw '\'--:r(q) (' :1l)ol(q)
- - P.//O 0 + L 'yJo 1,y - rnqO 'Po

4 q

,\, :!.(q) I,Aaol,(q)A" L L+go L 't'o ~(2 '1"0 1,0 + gauge + ghost, (2.102)
q

where e~l/o is the field strength of gJllon defillcd hy

(2.103)

The color matrix is denot.ed as Aa/2, (a = 1," . , 8, for SU(3)) which sclti.'ifies

(2.104)

The constants which appear in the amplit.ude squared are

8

L facdfl!cd = CADab,
c ,d=]

(2.105)

where I stands for the unit matrix for the color index. Numerical values of these
constants for SU(3) are

4 1
C r Tn = - . 	 (2.106)= 	3' 2

The last t.erm L!JlwsL ill Eq.(2.102) is for t.h(' ghost p;,d.ielc. Th(~ r(' <l.]'(' t.wo gauges wid(~ly
used. These are the same as in QED but. have the followillg feat.ures :

1. 	 Covariant gauge:
Ghost particles should be int.roduced. These part.icles arc need ed wl,eIlcvcr glllOlJ
loop is formed, even in the fillal st.aL(' of th c' squared amplit.ude. Gcl1lge pnranwt.cr
Cl' appears in Eq.(2.50) for the covariant gi1UP;C' is denot.ed t.o Cl'c ·

2. 	 Axial gauge:

No unphysical ghost particle is llef. ded.

The gauge fixing term Lgauge is exactly the same as in QED (see Eq.(2.43)). GRACE

allows to choose either of these gauges. See section 3.2.1.

http:Eq.(2.43
http:denot.ed
http:Eq.(2.50
http:pnranwt.cr
http:denot.ed

29 2.3. SPECIFICATION OF MODELS

The renormalization can be done in the same way as in QED. The rescaling factors for
unrenormalized quantities are introduced by

A~o zl/2 Aa
3 IL'

00(q) =
V' 0

Z1 /2 0/,(q) 2q 'I-' ,

Yo = Zgg (2.107)

'mqO Zmg'm q,

Quark and gluon renormalizatioll COllstants are delloted as Z2q and Z3 1resectively and
that for the strong coupling is Zg . Quark mass is rellormalized in the multiplicative
way. 'We substitute these relations into LQcD to eliminate bare qualltities alld after
that we separate counterterms from the rest ,

L QC D = -~F;~F:v + L1jj(q)(i f/J - mq)'ljJ(q) + 9 L1jj(q) 'Ylt A;?/)q)A~
q q

(2108)

= LJree + OLe + Lint)

Here L free is the bilinear form of fields including gauge fixing and ghost terms. The
tensor F;v is introduced to express the linear part of gluon field,

F:v = 8ILA~ - 8v A:. (2.109)

The counterterm Lagrangian oLe is given by

1
oLe = - -oZ3Fa Fa4 ILV ILV

+ L OZ2q1jj(q\if/J - 'ffiq)'ljJ(q) - L O'ffiq-;j;(q)'ljJ(q) + 9 L OZfq-;j;(q)'Y ; .tj;(q) A:
1L

q q q

-gOZdabe(8ILA~)A~A~ - ~lOZqfabefadeA~A~A~A~
+{counterterm for ghost fields}. (2.110)

Constants in the counterterms are defined by

Z2q 1 + OZ2q,

Z3 1 + OZ3,

1/2
ZgZ2q Z 3 1 + OZfq, (2.111)

Z Z3/2
9 3 1 + oZ(,

Z
9
2Z2

3 1 + oZq,

omq (Z2qZmq - l)mq.

30 CHAPTER 2. THEORETICAL BACKGROUND

Rcnormalizatioll COllstants of interactioll vertices, Zf, Z/ and Zq, correspond to quark
quark-gluon(qqG), triple-gluon(GGG) and qua.druple-gluon(GGGG) coupling,
respectively. Feynman rules are given in chapter 6. Count.erterms will be found in

Ref.[2]' which we do not writ.e down bere. In massless QCD as the coupling constant

g can be renormalized at an arbi trary mass scale IL,

(2.112)

the runlling coupling constant g(Ji.) is determined from the ;3-function defined by

J1, dq(/J.) = ;3(g(J1,)). (2 .113)
dJ1,

This ;3-function is expaJlded up to the second order as

g3 g5 7

;3(g) = - (47f)2;30 - (47f)4;31 + O(g). (2.114)

Then the lowest order running coupling constant as(Q2) == l(Q2)/47f is given by

(0) 2 47f
as (Q) = ;30.ln(Q2/AbcD)' (2.115)

where the parameter AQCD is defined by

1 + a~0)(J1,2) .;30 .In (AbcD)
47f J1,2

= 0, (2.116)

with

(2.117)

where NF is the number of flavors . Including the next order term in ;3(g), we find the
coupling constant in the next-to-Ieading-logarithmic approximation

1 ;31 a~) (Q2) ;30 Q2
a~1)(Q2) + 47f;3o In (47f;3o/;3) + a~)(Q2) = 47f In(A2)' (2.118)

which can be approximated by the following expansion formula

()(Q2) ~ (O)(Q2) [1 _Ii Inln(Q2/A2)] (2.119)as - as ;3'6 In(Q2/A2) .

where
;31 = 34C~ - (20CA + 12C F)T R N F . (2.120)

3
In GRACE system, contrary to the case of QED or electroweak t heory, the strong running
coupling constant as is not generated. The reason is because it cannot be uniquely
defined but depends on a momentum characteristic to the process and thus may differ
from one process to another. The user should define it in the subroutine KINEM and
include it in the variable YACOB which is multiplied to the amplitude squared. In this
way one can introduce the coupling constant of any variable, such as as(s) or as(p})
and so on, most suitable one to the problem.

2.4 . METHOD OF AMPLITUDE CALCULATION 31

2.4 Method of amplitude calculation

The procedure of the numerical calculation of Feynman amplitudes is divided into the
following steps: Amplitudes are decomposed to vertex amplitudes by splitting internal
lines into wave fun ct ions of fermions and polarization vectors of vector oosons. Using
the decompositions of the internal lines we can write any Feynman amplitudes in terms
of vertex amplitudes. Then the vertex amplitudes are numerically calculated. Finally
the internal lines are reproduced numerically by summing over spin states for the
fermions and polarization states for the vec tor bosons, respectively.

This method eua bles us to construct compact programs for calculation of Peynmall
amplitude in any tree Feynman diagrams for the elec troweak theory. Taking into
account the color factors, we can also use this method for QCD(see section 2.4.3).
Corresponding program package CHANEL is presented in sect ion 7.3.

2.4.1 Calculation of amplitudes

Let us consider a scattering amplitude corresponding to the Feynman graph shown in
iigurp 2.1 as an example.

+ e

e

---~ :
Fig. 2.1 A Feynman graph for the process e+e- --> W+W-l'

In this graph Pl, P2, ql q2 and k are momenta of e+, p-, W+, W - and "1, and hI
and h2 are belk ities of e+ and e-, and cr(ql), C2(q2) and c3(k) are polarization vectors
of W +, VV - and "1, respectively.

T he scattering amplitude for this graph is given by

T fi = V(Pl' hd c~w Clf/(qd 5 F(-PI + ql) c~\,v U(P2' h2)

X DF 1-',,(q2 + k) c'X~VI(q2 + k, -q2, - k) C2p(q2) c3a-(k), (2.121)

32 CHAPTER 2. THEORETICAL BACKGROUND

where c~w and cWw, express electron-Wand photon-W couplings, respectively, and
they are given by:

eMz >7 1 -'5 c~w = (2.122)
/ 2 2 I 2V 2(Mz- Mw)

and
(2 .123)

The key observation used in CHANEL is that. propagators can be expressed by bi
linear form of wave functions:

'" . W . Ua(h(i) p(i)) UQ(h(i) p(i))
SF(P) = La,' a ,' , ' , (2. 124)p2 _ m2

and

(2.125)

where WQ ,j and Wi are c-numbers , weight factors for the decomposition of propagator,
and U Q represents either spinor u or anti-spinor v depending on the value of index a.

Momenta p(i) are calculated from off-shell fermion momentum p.
By substituting these expressions, we obtain

XV(Pl' hI) c~w fI>7(qd UQ(h(i), (-PI + qdi
))

Q
X u (h(i), (-PI + qd(i)) ~w f~)(q2 + k) U(P2' h2)

XC~~,(q2 + k, -q2, -k) f~)(q2 + k) f2(q2)p f3(k)a (2.126)

1 1- ,------:-----:--------:- L W Q L WIi
D (-PI +qI,O)D(q2+ k,Mw) Q,i ' I

where

V(PI' hd c~w fl>7(qI) UQ(h(i), (-PI + qIt\ (2.127)

UCX(h(i), (-PI + ql)(i)) ~W f~)(q2 + k) U(P2, h2),

and

(2.128)

Calculation of the vertex parts v}~2, Ve'~:~ and V~~, are prepared as subroutines
in the program library CHANEL. Numerical value of the amplitude is easily obtained by
them.

33 2.4. METHOD OF AMPLITUDE CALCULATION

2.4.2 Formulas for amplitude calculations

In this section, we present the basic formulas for the amplitude calculations. We
shall s tart to derive vertex amplitude for the fermion-fermion-vector boson (FFV)
vertex. Here we define bclicity eigensta tes of massless fermion (not antifermion) with
momentum p as

(2. 129)

where ,\ = ± denote hclicity sta tes for fermion and ko is a reference momentum to be
specified. The basic spinor X>.(ko) is defined such that the helicity state X>. (ko) satisfies
usual relation to chirality projection operator:

(2 .130)

where w± is defined as
W ;t, = (1 ± "(5) / 2. (2.131)

Here the positive-helicity s ta te is fixed by the relation

(2.132)

where k l is chosen ill such a way as k~ = - 1 and kj ·ko = 0, which guarantee that X+(ko)
sat isfi es Eq.(2.130). D ue to these conditions, the wave function defined in Eq.(2.129)
also satisfies the relation

(2.133)

Since the helici ty state of ant i fermion has opposite sign to that of fermion in the same
chirali ty state, we define the wave function for massless fermion and that for antifermion
with helicity h as

(2.134)

where p = + for fermion and p = - for antifermion, respectively. Using Eqs.(2.129) to
(2. 131), we can write vertex am plit udes for massless ferm ions in terms of components
of momenta and polarizat ion vector of the vector boson E,

(2.135)

with
(2.136)

where

R1 = {(ko . pi) (E . p) - (ko . E) (P' . p) + (ko . p) (pi . E)} hI(p' . ko) (p . ko)

and
(2.137)

In Eq.(2.136), A± denote coupling constants for left (-) and right handed (+) chirality
of vertices.

34 CHAPTER 2. THEORETICAL BACKGROUND

In actual computations, it is convenient to specify ko such that the forms of Rl and
R2 become compact. For instance, choosing ko = (1,1,0,0), we can write Eq.(2 .137)
as

(2.138)

where pO =po _px and r = p/,.ffJ5. Here f. and rare f. = (EY,EZ
) and r = (rY,rZ),

respectively.
Next we extend these expressions to tbe case of massive fermioIl s. We define a wave

function of massive fermion as

UP(h,p, m) = c(p + pm)X_ph(k)1 J2(p. k), (2.139)

wbere an light-like vector k is fixed so that the UP is an eigenstate of helicity h.
Moreover the omplex phase c is chosen such that UP becomes xPdefined in Eq.(2.129)
at the limi t where the fermion mass goes to zero. Notice that redefinition of the overall
pbase of UP does not affect final results since amplitudes are squared in cross sections.
In order to satisfy above conditions we cboose two light-like vectors which build up p

as
P=Pl+P2,

with

and
2m

P2 = 2(pO + Ipl) (n - np), (2.1 40)

where n = (1, 0, 0,0) and np = (O,p''/lpl,pY Il pl,pz Ilpl) . Under this decomposition of
the momentum p and choosing k = P2 ,we can verify tbat UP satisfies the relation

UP(h, p,m)UP(h,p,m) = (1 + h,5!)(P + pm)/2, (2.1 41)

where
Ipi pO

s=-n+-n. (2.142)m m p

Notice that s obtained in Eq. (2.142) is a helici ty axis of fermion.

Furthermore, Eq.(2.139) is written by the two wave functions for massless fermions X±:

(2.143)

where

(2.144)

35 2.4. METHOD OF AMPLITUDE CALCULATION

and
(2.14S)

For ko = (1,1,0,0) and ki = (0,0,1,0), the phasc factor for the wave functioll of mas
sive fermion in Eq.(2.144) is reduced to

(2146)

The general form prescllt.cd ill Eq.(2.143) is convenient to construct the vertcx ampli
tudes of fermioll-fermioll-vector boson vertex for massive fermions. Here we writ.e a
general form of vertex amplitude as

JIV]P'p(I A 4)I'h'h)' m.,m.,p ,p,q, -, . 1 (jP' (hi, pi, m/)f).(q)rUP(h, J!, m)

j~~:"Ph). (m', m,p/,p, q, A_, A+), (2.147)

where r is defined in Eq.(2.136). Using Eq.(2 .143), we can decompose the vertex
amplitudes fo r massive fenniolls in terms of linear combinations of those for fermion
fermion-vector (FFV) boson vertices for massless fermions obtained in Eq.(2. 135):

j lV] (' I 4 4) _ (I).1 () ()±,±,)' m,m,p,J!, q,. - , . + - A±X± PI n q X±PI

+A'l::P'pc· =t= (PI) c=t= (p)X=t=(P;)f). (q)x=t= (P2),

- A±Pc±(p)x±(p~)i). (q) X±(P2) (2.148)

- A=t=P' c· =t= (P')X=t= (pi2)i oX (q)x=t=(pr) ,

where momenta p and pi are decomposed by Eq.(2.140).
Vertex am plitude for fermion-fermion-scalar boson (FFS) vertex is also written by

a similar form ;

j [SJp'P(I A A)Ih'h m ,rn,p ,p, -, + (jP' (h',p', m')rUP(h,p, m)

j~f~',ph(m', m,pl,p, A_, A+). (2.149)

We can decom pose the ver tex ampli tudes for massive fermions in terms of linear com
binations of F F S vertices for massless fermions;

J [S] (' I A A) - (P') ()± ,=t= m ,m,p ,p, - , + - A =t= X± I X=t= PI

+A±p'pc·=t=(p')c±(P)X=t=(P;)x±(P2), (2.150)

J [SJ (I I A)±,± m, m,p ,p, _) A+ - A",pc=t= (P) X±(p~)X=t=(P2)

- A±p'c·=t=(p')X=t=(p' 2)x±(Pl)'

The expressions of the vertex amplitude for massless fermion-scalar boson vertex are
written as

(2.151)

http:prescllt.cd

36 CHAPTER 2. THEORETICAL BACKGROUND

with
(2.152)

where

(ko 	. pl)(kl . p) - (ko . p)(kl . pI)

J(pl . ko)(p . ko)

E: J.l.!lP(1k,[; krp ppl(1
(2 .153)

J(pl . ko)(p . ko)

Choosing ko = (1,1,0,0) and kl = (0,0,1 , 0) , we can write Eq.(2.153) as

0 PIz P z ~/O (2.154)P [r;plO - P pO '

with pO = pO _ px.

Notice that combinat ions of helicity states for the F FS vertex are different from
those of F FV vertex.

The vertex amplitude for three vector boson vertex is given by

GVVV[((ql - q2)· {~3(q3))({~1 (ql) . (~2(q2))

+((q2 - q3) . {~l (ql)) ({~ 2 (q2)· (~3(q3))

+((q3 - qd· (~2 (q2))({~3(q3) . (~l (ql))], (2.155)

where Gvvv is the coupling constant of the self-interactions.
Four point vertex of vector bosons is given by the following simple form:

GVVVV[({~l(ql) · (~3(q3))({~2(q2)· (~.(q4))

+({~l (qd . {~. (q4))({~2 (q2) . (~3(q3))

-2({~1(qd· (~2(q2))({~J(q3)· {~4(q4))1· (2.156)

Finally scalar and vector boson vertices are written in the following forms: For
scalar-scalar-vector boson (SSV) vertex,

(2 .157)

and for VVS and VVSS vertices,

(2.158)

37 2.4. METHOD OF AMPLITUDE CALCULATION

The coupling constants should be assigned in a consistent way III order to give
correct relative signs among amplitudes.

Using above expressions for vertices, we can numerically calculate the vertex am
plitudes included in the amplitude of any tree graph in electroweak theories.

Next we write a numerator of internal fermion line rJ + rn in terms of wave functions
of oil-shell fermion fields. Here we decompose the momentum q in terms of a light-like

2vector lJ and a time-like vector 12 with the square of the four vector rn Using the
relation of Eq.(2.141) ,we can write

h=±
(2.159)

where sign(l?) denotes the sign of the time component of vector Ii , alld i, is defined by

I, = sign(l?)l;. 	 (2.160)

Here P2 is chosen as P2 = sign (I~).
Numerator of propagator for massive vector bOSOIl in covariant gauge is written as

(2.161)

where M and 0' denote the mass of vector boson and the gauge parameter, respectively.
GJJ.v(q) is also decomposed by polarization vectors as

GJJ.V(q) = L E)..JJ.(qh.v(q)'Tj)..(q). 	 (2.162)
)..

The expressions of polarization vectors E~ depend on the gauge choice. For instance,
we choose as a rectangular polarization basis,

1 (0 x z y z 2)E~=J (q) = -1-1 ,q q ,q q ,-qT ,
qT q

1 (y x)E~=2(q) 	 - 0, -q ,q ,0 ,
qT

qO (I q 12 x Y Z)
E~=3 (q) = Qlql qo,q ,q ,q , (2.163)

qJJ.
E~=4(q) =

Q'

with Q = yfq2T and q} = (qx)2 + (qy)2 . The polarization vectors with>. = 1,2 cor
respond to the transverse components and>' = 3 denotes the longitudinal one. The
polarization vector with>. = 4 should be added if massive vector bosons become virtual
states.

38 CHAPTER 2. THEORETICAL BACKGROUND

Using a rectangular polarization basis presented in Eq.(2.163), G/w(q) can be re
produced by choosing the weight factor 'TI;. as follows:

'TIJ 'TI2 = + 1

(2.164)

. 2 0:(M2 - q2)
7]4 = slgn(q) 2 M2'

q - 0:

where sign(q2) means + 1 for q2 > 0 and -1 for q2 < 0, respectively.
The unitary gauge is chosen for 0: 2: 100 with M > 0, since the unitary gauge

corresponds to 0: ~ 00, which is not appropriate for numerical calculations.
By varying the gauge parameters , we can check the gauge iuvariance of calculated

amplitudes when they contain vector boson propagators.
Using Eqs.(2.159) and (2.162), we can write any Feynman amplitudes in terms of

vertex amplitudes.
According to above expressions, we can numerically calculate any Feynman ampli

tudes for the electroweak theory in t ree leveL Although the program package for the
numerical calculations are presented in section 7.3, we shall briefly explain the relation
between the program package and the obtai ned expressions.

The program package CHANEL consists of subroutines to calculate vertex amplitudes
(FFV, FFVO , FFS , FFSO, VVV, VVVV, VVS, VVSS and SSV). CHANEL also contains the
subroutines to obtain the polarization vectors and the weight factors of the vector boson
(POLA), phase fa ctors of the wave function of fermion (PHASEQ) and the subroutines to
decompose the momentum of fermion (SPLT and SPLTQ).

2 .4.3 Colo r factor

The one of basic principle of the GRACE system is to calculate the amplitude rather
than its squared form . Though the color is a freedom of particles like helici ty, we treat
the color in a different way. If we consider the color fac tor in the ampli tude level,
we must sum and/or average for all color states aft r squaring the amplitudes in the
initial and final states as we do for helicity states. While it is interesting to calculate
t he amplitude for some fixed helicity states, it is practically meaningless to do for some
fixed color states. Further, the color factor is independent of momenta. Therefore, it
is simpler to treat t he color as a fac tor multiplied t o each squared matrix element than
to handle it in amplitudes. Hence we include the color factor when we calculate the
square of the sum of amplitudes for the process in such a way:

k

I: Gij MiM}, (2.165)
i,j=l

where k is the number of amplitude, Mi is the i-th amplitude in which the color
factors are removed (we do not use T as ampli tude here), and Gij is the color fac
tor for the matrix element MiMJ. In this subsection we present the algorithm to

39 2.4. METHOD OF AMPLITUDE CALCULATION

calculate Gij . We consider the group SU(Nc) for tbe color degree of freedom and ex
plicit implemen t.ation is done for .Nc = 3. T he fundamental representation is given by
Ta (= Aa/2 ill sectioll 2.3.3) and it sat isfies

(2.166)

where fabe is the st ructure constants of SU(Nc). The following relations hold(see
section 23.3. Ta = Aa/2):

TnTo G . I = N~ - 1 . I,
F 2Nc

T bab = ~oab (2.167)
R 2'

GA Oad = N c Oad ,

(repe t.ed indices are summed) .
The color charge is carried only by quarks, gluoIls and ghost particles for gluons. We
fo llow t.he notation and con ention of Ref. [2]. In the calculation of color factor, particles
without color charge are neglec ted . Delloting the QeD coupling cons tant as g, we have
three t pes of vertices:

(1) quark-gluon vertex yTa
(2) three-gluon vertex -igfabc
(3) fou r-gluon vertex -l(Jabefcde+ cyclic permuta t ion) .

Here we only show the color factor (see Eq.(2.109)) and the ghost-gluon vertex is
the same as t he t hree-gluon vertex as far as the color factor is concerned.

Firs t we replace t he four-gluon ver tex by the sum of three diagrams (of s, t, u-types
) with three t.hree-gluon vertices:

~
.,, + .,)-------(+ x

(2 .168) ~

(-ig)fabx(-ig)fcdy (-ig)fd.ax(-ig)fbcy (-ig)fcax (-ig) fdby

Here the dashed line represents a gluon color propagator, OXY' which has neither Lorentz
struct ure nor momentum dependence.

In the second step, we replace the three-gluoll vertex by the sum of two quark loops:

http:ig)fd.ax

40 CHAPTER 2. THEORETICAL BACKGROUND

b

+-A AC

gTr(TUT bTC) gTr (T bTUTC)

Here, the identity
- igjubc = - gTr[TU, Tb]TC (2.169)

is used.
Aft.er the last step, the diagram becomes QED type. We apply the Fierz tra nsfor

mation for color,
(2.170)

on each gluon propagator to express it as two pairs of quark lines.

1 1
2N

+
2 ~\(-

Finally we are left with graphs which consists of only quarks . In summary, the color
factor of a diagram for a matrix element wi th n4 four-gluon vertices, n3 t hree-gluon
vertices, and ng gluon propagator is equivalent to 3n42n32ng+n4 graphs which consist
of only quark lines. The color factor of each graph is 3n . C where n is the number of
quark loops and C is the prod uct of factors at each decomposition given in Eqs.(2.168),
(2.169), and (2.170).

Further, we need average for color states if some of colored particles belong to the
initial state. For a quark in the initial state, we divide by Nc and for a gluon by N1- 1.

2.5. FEYNMAN GRAPH GENERATION 	 41

2.5 Feynman graph generation

Graph generation subsystem is designed by the following guiding principles:

1) 	 The current version of GRACE system supports amplitude calculation only for the
tree level. Since, however, it will be extended to inclusion of oue-loop corrections
in near future, the current graph generation subsystem is desirable to be able to
generate one-loop as well as tree graphs.

2) 	 In the numerical calculation of differential cross section, momenta and SpillS of
external particles arc fixed to specific values. Thus even if they are identical par
ticles, they are considered to be distinguishable. This means that those graphs,
which are equivalent each other under the exchange of identical external particles,
should be enumerat.ed as different graphs; they are considered to be topologically
different objects. t:I1der this condition, more graphs are generated than the case
where the identical particles are not distinguished. The generated source code
for numerical calculation is longer than the latter case, but it will be much easier
to deal with.

3) 	 Tadpole diagrams are not generated by the current version. Since whether tad
poles is needed or not depends on the prescription of renormalization , it may be
required to consider in the future development of automatic system for one-loop
calculations.

4) 	 Vacuum-to-vacuum graphs are not considered. We consider only those graphs
which have at least two ext.ernal particles and one vertex.

In this section, we first define some technical terms and discuss some properties of
graphs from the graph theoretical point of view. Then the method of graph generation
is described.

2 .5. 1 N otations

Several technical terms have been used in graph theory Ref. [7] but some of them have
different meaning between physicists and graph t heorists. For these terms we follow
physicist's terminology.

In order to help for understanding the terminology, we take a simple graph as shown
in figure 2.2, where the points 1, 2, ... 8 are "nodes". The "node" is either external
particle or vertex .

The connected pair of two nodes, e.g. (1,3), (4,5), etc., is called an "edge". An edge
represents either a propagator between two vertices or a line connecting between an
external particle and a vertex. Two nodes, connected by an edge, are called "adjacent
nodes" of the edge, e.g. nodes 1 and 3 are adjacent nodes of edge (1,3). If some distinct
edges have a common end node, they are "adjacent edges" of the node, e.g. edges (1,3),
(3,6) and (3,4) are adjacent edges of node 3.

http:enumerat.ed

42 CHAPTER 2. THEORETICAL BACKGROUND

(a) (b)

3 6
3

25 72

6

4 7
8

Fig. 2.2 Examples of tree graphs

The "degree" of a node is the number of adjacent edges to the node, e.g. degree of
node 3 is three. The degree of an external particle is one, e.g. that of node 2 is one.
We also use the word "the number of legs" as the same meaning as the degree.

When two nodes are connected through a series of edges, this object is called a
"patb", e.g. (1,3,4,5,8) is a path connecting nodes 1 and 8. The "lengtb of a path"
is the number of edges on the path. The "distance" between two nodes is the length
of the shortest path joining them. If there is no such a path, distance is said to be
infinite.

A graph is "connected" if every pair of edges are connected by a path. If a graph
is not connected, it is decomposed to several "connected components".
The following relation is easily proved for a graph:

Theorem 1 If a graph has N nodes, I edges, L loops and C connected components,
then

N-I+L C. (2.171)

Proof
Let us first consider a connected graph with no loop (L = 0, C = 1). The identity is

proved by mathematical induction on the number of nodes N.

When there are two nodes and one edge, the identity holds.

Assuming the identity holds for N node, the number of edge is I = N - 1. Then we

consider the case of N + 1 nodes.

If the (N + l)-th node is an external particle, then it should be connected to one of

vertices (not the other external particles) . This results in increase of number of edges

I by one. The identity holds for this case.

If the (N + l)-th node is a vertex, it should sit on one of existing edge. This vertex

divides one edge into two edges. Again the identity holds for this case.

43 2.5. FEYNMAN GRAPH GENERATION

Since these two cases cover all possibilities, the identity holds for N + 1 nodes case.
Next we prove it by mathematical induction Oil the number of edges I with fixed

number of nodes. Adding all edge to a cOllnected graph, this results in iIlcrease of
number of loops L by onc. Then the identity is also proved in this case.

Since the identity holds for all connected components C = 1, the identity for a
disconnect.ed graph, composed of several connected components, is proved by summing
t.he identity for each connected component.

Let us consider a grapb with E externa.l particles and V vertices, then the number
of Ilodes is given by

N = E+V. (2.172)

The total number of legs is always equal to twice /lumber of edges. Because each edge
connects between two nodes aud uses one leg of each connected node. Since an external
particle has only one leg, then among the numbers of legs deg(v) of vertex v, external
particles E , and edges I the following equation holds:

21 = Ldeg(v) + E. (2.173)
v

From Eqs. (2 .171), (2 .172) and (2.173), the following equation is easily proved.

E + 2L - 2 = 2)deg(v) - 2). (2.174)
v

We cite the following theorem on a "tree" graph without proof, which is a connected
graph with no loop.

T heorem 2 The following statements are equivalent for a graph G .'

(1) G is a tree graph .

(2) E very two nodes of G are joined by a unique path.

The "root" of a tree is a node distinguished from the other nodes. Any external
part icle can be selected arbitrarily as the root. The graph (a) in figure 2.2 is topo
logically equivalen t to the graph (b) , where node 1 is selected as the root. From this
theorem , there is an un ique path from the root r to any node v. T he distance between
r and v is determined by t he lengt h of the path. T his distance is called as the "d pth"
of the node v, which is expressed by dep(v) , e. g. dep(node8) = 4. T he "[ather' of node
v is the node which is anjacent to v and at the depth dep(v) - I, e.g. father of node
8 is node 5. T he root has no father. When a node w is the father of a node v, v is a
"son" of w. A "leaf' is a node with no son, e.g. nodes 2.6.7 and 8 are leaves.

A "blob" is a one-particle-irreducible (lPI) part including loops. Decomposing a
graph into blobs, we can regard it 8...') a tree graph after replacing blobs by vertices. We
call such a tree graph "skelton graph" . In our method the skelton graphs are generated
at first, and then the inside structure of each blob is constructed.

http:disconnect.ed

44 CHAPTER 2. THEORETICAL BA CKGROUND

2.5.2 Algorithm to generate graphs

The method of Feynman graph gelleration consists of the followillg steps:

1) Generation of nodes.

2) Connection of nodes to construct skeleton graphs.

3) Generation of loop structure.

4) Particle assignment.

We describe our method in this order in the following.

Generation of nodes

We consider skeleton graph and ignore the inside structures of blobs .
In the usual field theory, three and fo ur point vertices satisfies the following relation
between t he number of legs deg(v) for tree vertex v and the order of coupling constant
O(v):

deg(v) = O(v) + 2. (2.175)

Eliminating deg (v) in Eq.(2.174) , we obtain

E-2 = EO(v)- 2L. (2.176)
v

W hen this graph is regarded as the inside structure of blob vertex w, E and L " O(v)
should read as the number of legs deg(w) and the order of coupling constant O(w) of
the blob vertex, respectively. Hence we obtain a generalized relation both for the tree
and blob vertices w:

deg(w) = O(w) - 2L(w) + 2, (2.177)

where L(w) is the number of loops defi ned inside of the vertex w.
Now let us consider skeleton graphs. Since skeleton graph is defined as a t ree graph ,

in which loops are confined in th e blob vertices, we obtain basic relations necessary to
genera te vert ices:

L L L(v), (2.178)
v

E- 2 I)deg(v) - 2), (2 .1 79)
v

O (v) deg(v) - 2 + 2L(v), (2.180)

where L is the total number of loops confined in blobs.

The algorithm to generate vertices for a given number of external particles E and
a total order of coupling constants 0 is the following:

45 2.5. 	 FEYNMAN GRAPH GENERA.TION

A lgorithm 1 Generation of nodes.

1. 	 Detennzne the number of loops in the final graph by the eq'uation

0- E+2
L 	 = (2.181)

2

2 	 If L = 0 then skip to step 3. Otherwzse express L as a sum of positive zntegers,
z. e. L = L71i) 12 ~ li+! ~ 1 where 11 varies from 1 to L. Since there are many
possibilitzes of this partdwnmg, the followmg steps are repeated for all possible
partition.s. The n umber 1u' is consuiered as the number of loops L (w) in blob w.
Th e number of blobs is equnl to n.

3. 	 Determzne deg(v) for each veTtex by dwid'l'T1.g the number E - 2 into all vertices
according to Eg. (2.179). We first drtermzne the value of deg(w) for each blob
(L(w) # 0), then the number - 2 - Lw:blobs (deg(w) - 2) is allotted to tree
vertices vs, whose values of dcg(v) are limited to either 3 or 4.

4· 	 The order of coupling constants of each vertex is det ermined from dey(v) and
L(v) by Eq. {2. 180).

T here are many sets of vertices which are generated by this a lgorithm. The program
enumerates all possibilities.

Generation of skeleton graphs

The generated nodes are connected to construct skelto n graph by the following algo
rithm. We ake an external particle as the root of the graph.

A lgorithm 2 Connection between nodes.

1. 	 Verti ces are classified by the n umbers oj legs and loops.

2. 	 R epeat the following steps f rom 2-1 to 2-3 until all external particle are connected
to vertices.

2-1. The vertices in each class ar'e numbered.

2-2. Connect an external particle to a vertex. Since thos e configurations, where
an external particle is connected to different vertices in the same class, are
mutually indistinguishable, the vertex with the sm allest num ber is selected
not to produce the duplicated graphs.

2-3. 	 The connected vertex is removed from the class and is regarded as a new
class whzch has only this vertex as an element.

3. 	 Repeat the following steps from .'1-1 to 3-5.

3-1. 	 The remazning vertzces m each class are numbered.

46 CHAPTER 2. THEORETICAL BACKGROUND

3-2. 	Find a vertex v with just only one free leg, which is not yet connected to
another vertex.

3-3. 	If there is no such a vertex then go to 4.

3-4· 	 Conncct v to another vertex. The partner of the conncdion is selected from
each class in the same manner as step 2-2.

3-5. 	 Th e classes of vertices are updated in the same way as step 2-3.

4. 	 If the graph is a tree graph, it is accepted as a new graph. Otherwise this config
uration is discar-ded.

Vertices are classified throughout this algorithm, in such a way that topologically
equivalent verti ces belong to the same cL ss. Since all vertices are isolated at the
beginning, classification at step 1 is a simple one.

All external particles are connected to ,,~r t ices in step 2. Since vertices in a class are
not distinguishable, those configurations are not topologically equivalent each other,
which are constructed by connecting an external particle with different vertices of a
class. So we select only one vertex from each class of vertices. To make the selec
tion systematic, vertices are numbered at st.ep 2-1 and the vertex with the smallest
number in its class is selected. There are still a number of ways of selecting a vertex
corresponding to the number of classes. They are enumerated recursively.

The connected vertex becomes distinguishable, as it is adjacent to a distinguished
external particle. It creates a new class being removed from the old class. Repeating
steps from 2-1 to 2-3, some external p articles may be connected to the same vertex.

At the beginning of the step 3, let us assume that the obtained configuration C
is possible to be a tree graph G by continuing the connecting process. In the graph
G, a vertex v with the largest depth from the root is connected to at least deg(v) - 1
external particles , since its all sons are external particles. If the father of v is an external
particle, the tree graph G has only one vertex v and the configuration C is the same
graph as the final form of the graph G . Otherwise, the vertex v in the configuration C
has only one free leg. Such a vertex is searched at step 3-2. Let us consider a subgraph
composed of this vertex and its adjacent external particles. When such a subgraph is
regarded as single node, it can be considered as a kind of an external particle, since it is
distinguished from other node and has only one free leg. So the same way of connecting
process as step 2 is applied. In this process there appears no equivalent configuration.

This process terminates either when a tree graph is obtained or a configuration is
generated without possibility to be a tree graph. They are checked in step 4.

Generation of loop structure

This step constructs the loop structure inside of blob vertex. A blob vertex b has several
legs, which are connected to other nodes nl, n2, ... , nk in the preceding subsection . They
are distinguished from each other.

47 2.5. FEYNMAN GRAPH GENERATION

Since we consider only one-loop graphs, the loop structure is limited to a circle with
several legs 011 it. What we must do is to put necessary number of trcc verti c(>s OIl tup
circle and connect their legs t.o the adjacent nodes of the blob.

A circle is illvariant under rotation and reflection. V./e put. trcp vertices VI, V'2, ...71",

along the circle. Each of them is ei ther 3- or 4-poillt vertices. When all of thcm
are the same type, these sym metries survive. However different tvpes of vertices are
mixed, the symmetries are broken. V./e break these sym metries so as to avoid to
generate topologically equivalent graphs. Rotational sym metry of the circle is brokell
by connec:tiIlg an adjacent node TIl alld a vertex VI on the hloh. Aftcr this, we put
other tree vertices 'U2, ... , Vm on the circlp in all possible ways.

Next we perm utate adjacent nodes Til, 712, ... , Ti.k in all possible ways with fixing
nl, and connect them to VI, ...) 'Urn in this order. If V i is 4-point vertex and Ti.p , '«'I

are connected to Vi, we avoid permutations which exchange up and Tl.q . If thc circle
struc ure is invariant under reflection symmetry, wc avoid to generate permutations
which are obta ined by exchanging Vi and V m - i+2 for all t.

When theH~ are only two vertices on the circle, reflection symmetry cannot be
broken. It can be a source of d uplicated graph generation in the particle assignment
process mentioned later. However, it is simple and straightforward to solve thc problem.

Particle assignment

T his st€'p is stra ightforward. Par ticles are assigned to propagators in the consistent
way to the given Feynman rules and external particles. There are several combination
of particles assigna ble to the propagators. In order to make the algorithm effective,
we keep a list of candidates of particles for each edge. This kind of list contains only
possible combinations, which is checked whether consistent adjacent vertices can be
constructed or not. The program searches for an edge wi th minimum leIlgth in its list,
and assigns particle to the edge.

Here we obtain the resultant Feynman graphs . All the possibilities is enumerated
by back tracking method and by recursiv calling of sub-programs.

48 CHAPTER. 2. THEORETICAL BACKGROUND

2.6 K ine m atics

As noted ill the lu t roductioll (section 1.2.3), kinematics is not generated by GRACE but
is left t.o the user. T he reasoll is as follows; due to the lack of generality of the algorithm
(see section 2.7.4) used in the current Monte Carlo int.egration package, the choice of
integration variables to get a reliable result is generally highly dependent on the struc
ture of singularities in the amplitude. These arc mass-singularity, infrared divergence,
t-channel photon exchange and resonance formation which decays into lighter particles.
At present, it is quite difficult to prepare the most general kinematics suitable enough
for any process , which contains one or some of above sillgularities. T herefore the user
has to write the kinematics so as t.o change the singular integrand into more smooth
one. For the details of the integration algorithm by BASES, we refer to the next section
2.7.

GRACE generates templates of all the subroutines necessary for phase space integra
tion by BASES. These are

1) USERIN initializes BASES .

2) KINIT initializes the kinematics.

3) KINEM calculates four-momenta of fi nal particles from integration variables.

Among these the user is requested to complete USERIN and KINIT by giving some
parameters and KINEM by writing kinematics. Others are generated in a complete form
(see sect ion 3.3, 3.5 and 4.1) and can be used without any modification unless the
user wants to change the default values of parameters included .

BASES is an adaptive Monte Carlo integration package for multi-dimensional vari
ables (see section 2.7 for t he detail). The maximally allowed d imension of integration
is 50, but only up to 15 variables are allowed for singular variables. T he id a for this
asymmetric treatment of variables is as follows. In actual problems it would be suf
ficient if on can make integration up to 6-body primary process, which corresponds
to 13 integration variables(assuming the symmetry around t he beam axis). After
the production of primary particles, such as heavy bosons, one wants to decay these
particles. T hen one needs other integral variables, which are not singular, to describe
these decay processes. Hence 50 variables are grouped into singular and non-singular
variables and the user should assign each variable to either of these two categories.

T he total dimension of integration, of course, depends on the process considered.
It is defined by the FORTRAN variable NorM in the su broutine USERIN. Declara t ion of
singular and non-singular variables, the upper and lower bounds for each integration
variables should be defined in the same subroutine. BASES calls USERIN at the beginning
of the integra tion, and the latter calls KINIT. In this subroutine constant parameters
for kinematical variables, such as energy of the system, conditions of experimental cuts
and so on, are prepared. The main part of the kinematics should be written in the
subroutine KINEM .

49 2.6. KINEMATICS

Let us consider a process,

PI + P2 -+ qj + ... + qn' (2.182)

The cross section is given by (see section 2.1)

3
1 JTI d q;)4 .)ITI2 (2.183) a = -fl. ()3 (27T 6(pI + P2 - ql ... - qN .
ux i 2qiO 27T

We ca n say that the kinemat.ics is a se t of transformations of variables: In t he fi U b
rou tine KINEM all the four-momenta and Lorentz invariants should be ex pressed by the
array of in tegral variables X(random lJumbers) fed by BASES . In t he generat.ed pro
gram the energy of a particle is assigned to the 4-th component of t he array P which
expresses the fonr-momentum. ~ ;' irst three component.s are spacial momentum. T he
invariants arc assigned to an array PP . Random numbers of dimension NOIM generated
by BASES a re changed into components of momenta or inva riants comp osed of them
for the final state:

x ====> P or PP (2.184)

T hus t he cross section is rewritten as the integral over X

a = JII dXjF(Xl " .. , XIIDI1I) , (2 . 18~)
.1

and the integrand is constructed from necessary and suffir.i ent number of t ransforma
tions of the forms

(2.186)

taking into account the constrain t by the origina l b-fullct ion . (Nel'd.lcss to say, the
lefl -hand sides of the:;e equation:; Call be determined ill a successive way; they do not
need to be explicitly expressed in t erms of only x" a t th same t ime.)

The most s vere singularity of the ampli tude comes ou t when massless particles
appears. Hence photon or gluon are responsible for this in the actual case. In the
following we give several typical examples to show how to relate X to kinematical
ariables to smear ut sin gula ri ties by taking e+ e- reactions.

Infrared divergence

Suppose we have a n iu tegral over a real photon (or gluon) energy k,

(2.187)

http:generat.ed

50 CHA PTER 2. THEORETICAL BACKGROUND

where f(k) is any function regular at k = 0, but f(O) i- O. This form of integral
appears in t he phase space in tegral as

J d3k
2k(271Y

2
ITI

Jdk
... '" k

2 2
(k ITI) "', (2.188)

because k 21TI2 is finite as k --) 0 when a photon(gluon) is emitted. By making the
change of variable

k = kmin (
kmax)
-k,

m m

x
' (2.189)

we find that the original integral becomes

kmax
1= In-

k
-,

mzTl.

(l
. 10 dx f(k(x)).

0
(2.]90)

The singular behavior around k '" 0 is absorbed into the definition of new variable x.
Thus this variable ca.n be assigned to one of x.

Mass singularity

As a typical exampl of this kind of singularity, let us consider a real photon emission
from e+e- colliding beams as shown in figure 2.3. The singularity appears from the
propagator of electron(p sitron) after emitting the photon. This has the form

1
(2.1 91)

(p_ - k)2 - m 2'

where p _ is t he momentum of e- and k is that of photon . T he electron mass is denoted
as m. T he denominator can be modified as

2(p_ - k)2 - m = - 2p_ . k = - 2kp (p(;: p) + (1 - cose)) . (2.192)

~ ~
. .

Fig. 2.3 Initial radiation diagrams .

51 2.G. KINEMATICS

Here p_ = (E, 0, 0, p) and cose is the angle between photon and electron. As cose -> 1
the denominator becomes very small because of m 2 j[P(E + p)]. In the same way the
denominator of the positron propagator can be written as

(p+ - k)2 - m
2

= -2p+ . k = -2kp (p(;: p) + (1 + cose)) , (2.193)

with p+ = (E, 0, 0, -p). Now we consider the integral of the product of these propaga
tors over photon angle e.

l J(cos e)
J = dcose ----------- (2.194)J-I 4(p_ . k)(p+ . k)

/1 dz
_ 1_ J(z) .

4(kpF -I [m2 j(p(E + p)) + (1 - z)][m2 j(p(E + p)) + (1 + z)]

The integrand contains two very sharp peaks at cos e= ±l. A change of variable which
can absorb these singularities is given by

(-1
z == cos e= a . -- (2. 195)

(+ l'

where
2m

a 1+ p(E+p)'

Ti
2x-1

, (2. 196)

2p(E + p)
Ti = 1+ 2'

m

The in tegral I is expressed by new variable x as

1 1 11
1=-()2 ' -InTi dx J(cose(x)). (2.197)
4 kp a 0

In this way one can deal with both of mass singularities emerging from the initial
electron and posit ron beams at once. Note that a single variable x is enough to manage
two singularities, t han ks to the fact that initial e± beams are coming in t he opposite
direction. The singular terms appear in the square of amplitude like

1
and (2.198)

p _ ·k

(Of course there are similar terms with p+.) The singularity of the firs t form is
stronger than the second , but t he mass squared m 2 in the numerator, suppresses the
contribution, and the transformation given above is enough to handle with it.

Throughout this manual we take the process e+e- -> W +W-,), as the example to
explain the details of the functions of various parts of t he program. In section 3.3 we
show the list of the kinematics for this process. We recommend the user to look this
list to understand how the infrared and mass singularities are t reated in the actual
calculation.

52 CHAPTER 2, THEORETICAL BACKGROUND

t-channel singularity

Consider two peripheral diagrams of two photon process in QED(figure 2.4,), De
noting the squared photon momentum as t (there is of course another tf, but things
go in the same way), one has the original integral

dt
1= j tma%

- f(t).
tmin t

It is enough to change the variable according to

tmax 11 ()
1= In - '· dx f t(x) ,
t min 0

when f(t) is explicitly written in terms of

1,
1 cos ()

t

sin ()
- t - ' (2.199)

where () is the angle of the scattered particle from the inciden t one after emitting the
virtual photon. All of these terms are not so much singular. When one wants to include
zO exchange as well as photon, however, the integration by x gives bad convergence,
T his is because the peak due to photon exchange is so singular, t he ZO propagator
canDot be well est imated. In this case one has to transform the variable taking both
propagators into account. T his implies that one has to transform

const.

t(t - M1)
into one integral variable, instead of transforming only 1ft.

e f
+ e e

+ +e e ee

Fig. 2,4 Peripheral two photon d iagrams.

53 2.6. KINEMATICS

Warning of numerical instability caused by t-channel photon

We have to warn the user that in some cases the generated amplitude containing virtual
i-channel photon may be numerically not accurate. This happens when the mass of
the system created by virtual photon and the other light particle can be very small as
shown in figure 2.4. Examples are

e+e- ---4 e+e - fj, (2.200)

e+e- ---4 e+e-" (2.201)

with f being a particle lighter than several eV at Js ~ 1000 GeV. In table 2.1 we
show test runs for several mass cases of f = /.1- at Js = 1000 GeV. The origin of this
instability is the strong cancellation which Occurs among amplitudes. To avoid this
cancellation we have to use the current conservation at the photon vertex, but in the
present version of GRACE this kind of protection against cancellation is not yet made.
We have checked for the case f = /.1 - that we can get correct answer in the quadruple
precision as shown in the table. The column indicated by REDUCE shows the results
of com pletely independent calcula tion in double precision with careful treatment of
cancellation.

mf(GeV) double precision quadruple precision REDUCE
0.10566

1.0
5.0

10.0

6.6538 ± 0.5541 x W'
2.9527 ± 0.0350 x 103

8.7012 ± 0.0185 x 101

1.7372 ± 0.0034 xl01

4.2900 ± 0.0236 x 105

3.4108 ± 0.0094 x 103

9.0786 ± 0.0227 x 101

1.7657 ± 0.0042 xl01

4.266] ± 0.0180 x 105

3.3926 ± 0.0153 x 103

9.0356 ± 0.0278 x 101
1.7632 ± 0.0054 x 101

Table 2.1 Cross sections(pb) for the diagrams of Fig.2.4 calculated in different precisions.

Resonance formation

W hen a particle is produced as a resonance, which decays into other parti les, t he
amplitude contains the propagator

(2.202)

where M and r are mass and decay width of the particle, respectively and q is its
momentum. If this resonance is sharp, one should t ake q2 as one of integral variable,
and further make the following transformation:

r1

lq~ax 2 f (q2) b 2

1= 2 dq (2 _ M 2)2 + f2 M2 = r M J dx f(q (x)),
qmon q o

54 CHAPTER 2. THEORETICAL l3ACKGROUND

where

(/;"in - 111'2
a t.an- J 	 (2.203)

fM

q;nax - M2
b t.rW - J - 0., 	 (2.204)

fM
q2 !vf'2 + fM t.an(o. + In;).

In GRACE, decay widths of heavy [mrt.ides arc ant.omatically included in some of
their propagat.ors. The finit.e width always violat.es t.he gauge invariance of am plitude.
Nevert.heless w(~ Illodify t.he propa.p;a1.ors a.cconling to tlJ(' rules

1. 	 .'i-channel propagators cont.ain non -zero finite widt.h.

2. 	 t-chan nel propagat.ors do Ilot cont.ain wicl t.1l.

Here we dis tinguish s- and t.-chaIlJJ(d J"(~S()ll<lllCe whether the prnt.ide is produced i"wd

decays directly into lighter particles or not. This different treatment is coming from the
observatiolls(which were found em piri"ally rather than theoretically at the momen t):

1. 	 Without decay width in s-dliulllel, t.he cross section diverges at the pole.

2. 	 Finite width in i-channel propagat.or makes t.be cross section violent.ly divergent
at sufficiently high energies.

The first is an obvious fact but the second cat.a.strophe is unexpect.edly large. Thus t.he
width is introduced only in the s-channel propagat.ors. One must. keep in milld t.hat
the gauge invariance is violated by t.he incl usion of finit.e wid th. This is particularly
important t.o remind when one makes t.he gauge invariance check of the generated
amplitude. The violation in this che"k is usu ally in comparable order of O(f/ Js).

These a.re typical examples of how to make siIlgnlarities harmless by challging the
int.egral variables. We have t.o make some comment.s furt.her.

Comments

It is not always possible to assign one illtegral variable t.o one singularity. III other
words, if the number of singularities exceeds that of independent variables, one has
necessarily diagonal singularity. Two photon process including all possible diagrams,
e+e- --+ e+e - I1+I1-(or e+e-), or radiative Bhabha scattering, e+e- --+ e+e-" are well
known examples. If this happens, one possible way to get. rid of the difficulty is to divide
the whole phase space into two or more regions, and use different set of transformations
of independent variables in each sub-phase space. An example of such kinematics will
be found in Ref. [8] for the radiative Bhabha scattering. Another may be to discard
the part of phase space in which singularities show up and dominate the cross section.
This may be not satisfactory, but in massless QeD we have no other way than this.

http:violent.ly
http:propagat.or
http:violat.es

55 2.6. KINEMATICS

With keeping the above arguments in mind , one should try t.o write the most appro
priat.e kinematics for the process to be considered. It is necessary to analyze carefully
the structure of singularities and to find the way to avoid diagonal sillgularities. It
might happen that one user succeeded to get good integration for a process, but the
other one failed because of an inappropriate kinematics used. One can find the full
listing of the kinematics for the radiative process e+e- -+ W+W-, in section 3.3. This
may be helpful to learn how to write kinematics.

Inclusion of structure fu nction

III some cases one has to convolute a function witb the cross sectioll of sub-process.
Typical example is inclusion of structure functioll of nucleon, radiator flluction for
initial state radiation from c+e- beams or luminosity function for equivalent photou
approximation. All of these cases can be written symbolically as

eT(S) = JdxF(x, s)eTo(x, s), (2.205)

where eTo is the cross section of sub-process and F(x, s) represents the function to be
convoluted. Since th e former is generally given by a multi-dimensional integral over
the phase space, x I , ... ,XNDII1, we can extend the space to include x a nd make NDIM+ 1
dimensional integration by BASES at Ollce.

S6 CHAPTER 2. THEORETICAL BACKGROUND

2.7 Numerical integration

2.7.1 Integration algorithm

The integration program package BASES uses the importance sawpling method . To
illustrate this method simpl~', we consider the following one-dimensional int.egral;

J = [f(x)dx. (2.206)

By modifying t.his as

f(:I')
J =

j

-)p(.r.)dx and !o1 p(.r.) dx = 1, (2.207)!oo p(:1'

the integral can be interpreted as the expectation value of the function f(x)lp(x) with
the probabilzty densit.y function p(x) . The estimate of in tegral is given by

(2.208)

where (is a random nUIIlber with the probability densi ty function p((). T he variance
of the estimate is

~ ~[r1
f (x)2 dx _ [2]. (2.209)

N io p(x)

If the pr babili ty densit.y function were given by

p(x) = If (x)1/ 11 If(y) ldy, (2.210)

the variance could be minimized (zero for a posit ive definite f(x)). ince, however ,
it is impossible to fi nd such a probability density funct ion, t he fu nction p(x) i' taken
in prac t ice to satisfy If (x) IIp(x) ~ cogstant. In ot her words, t h probabili ty densi ty
function p(x) is chosen to be large (many sample points are thrown) where If(x)1 is
large.

We consider a grid, composed of Ng intervals with variable widths (small-regions),
over t he integrat ion region [0, 1] and sample a small-region with an equal probabili ty
l i Ng. An equation

(2.211)

holds, where f'::J.xi and p(Xj) are width of the i-th small-region and th . probability
density function at a point. Xj in it, respectively. Therefore the probability density
function is given by

Ng

and :L>(Xi)f'::J.xi = 1. (2.212)
i=l

http:L>(Xi)f'::J.xi
http:f'::J.xi

57 2.7. 	 NUMERlCAL INTEGRATION

1.n BASES, the probability density function is adjusted so as to satisfy the condition

(2.213)

In the multi-dimensional case these small-regions construct a hypercube, e.g. a
rectangle in the two dimensional case and a rectangular solid in three dimensions.
Since the number of small-regions per variable Ng is se t to be arou nd 50 ill BASES,

there are N:di~ hypercubes , where N di m is the number of dimensions. This is a very
large number. ur event generation program SPRING needs a probability informatioll
for all hypercubes, according t.o which a hypercube is sampled. It requires a huge
storage space and moreover calculation of the probabili ties for all hyp ercubes needs a
lo t of computiug time. This is the rf'a.'ion why we consider a medium size of regions
(sub-regions), by w hieh we construct t.he hypercubes for the ev nt generation. umber
of sub- regions Ns is dru;nnined so that the number of hypercubes N:'d,m should not
exceed a given memory ~i ze and Ns could divide N g . In the 10 dimensional case, as a n
example, there ar> 2 sub-regions and 50 small- regions for each variable, and Ncuu(" =
210 (= 	1024) hypercu bes in t.otal.

As shown in figure 2.5, execution of the progra m BASES consists of the grid op
timization step a nd integration step. In the former step , the grids are adj usted as
follows;

(1) 	 At the first iteration, all grids have an uniform interval.

(2) 	 T he int.egral is est ima ted by sam pling a set of points for an iterat ion according t
the algorithm mentioned above. During each iteration of estimation, a histogram
of {J(x) jp(x)F is made.

(3) 	After each iteration, Dew intervals of t he grid are determined so t hat each in terval
should have an equal area SjNg , where S is total area of the histogram.

(4) T hese 	procedures (2) and (3) are repea ted until the accuracy of thc estimate
reaches a given value or becomes stable, or Dumber of iterations exceeds a given
number.

In the latter step, probabilities for all hypercubes arc calculated a.'3 well as estimate
of integral with the fixed grids, opt imized in the former step. This step consists of many
iterations of estimating integral ann if) t erminated when the accuracy of the estimate
is less than the required one or number of iterations becomes equal to a given number.

In SPRING, a hypercube is sampled according to its probability, prepared by BASES,

and a point in the hypercube is sampled and tested . If the grid is enough optimized,
eVCD such a simple mC'thod can give a good fficiency of event generation.

Before using BASES/SPRING, main program MAINBS aDd two subprograms USERIN

fUNC are to be prepared. In the function program FUNC, a numerical value of the inte
grand i calculated at the sampk poin t generated by BASES. For numerical calculation

58 CHAPTER 2. THEORETICAL BACKGROUND

of a function, some input parameters, like beam energy, masses of particles etc., are
necessary. They are given in USERIN, which is called only once at the beginning of the
job. Number of intrgratioll variables and their lower and upper limits are also given in
this su bprograrn.

Fig. 2.5 Program flow of BASES

2.7. NUMERICAL INTEGRA TION

2.7.2 Wild variable and BASES50

Recently very high energy c+c- colliders, JLC(KEK), NLC(SLAC), CLIC(CERN) and
VLEPP(CIS) , are studied as future plans. At the energy scale of these machines, the
number of final state particles ill some elementary processes is too mallY to apply the
original BASES/SPRING directly, because it allows a limited number of dimellsions (
at maximum 10). Extension of the !lumber of dimensiolls is easy for the iIItegration
(BASES), but is not so easy for the event generatioll (SPRING).

If we consider the 25 dimensional case, as an example, it is easy to see tllat a
straightforward extension of the dimension number in BASES/SPRING is very diffi cult.
Even though we have two su b-regio!ls for each variable axis, there are Ncuuc = N : d. ,m =
225 hypercubes. Calculation of such a huge number " cube of probabilities requires much
computing time a!ld their storage is also Loo large. It seems to be unrealistic.

In order to overcome this situatioIl, a concept of the wild variables is introd uced.
Considering a singular function with many variables, !lumber of tllO!-ie variables, which
give the function some singular behaviors, is , in almost all cases, limited. We call
this kind of variables the wi ld variables. If we divide a su bspace, spanlJed by these
wild va riables, into hypercu bes, number of such hypercubes becomes not too large.
T hus we apply the BASES algorithm only to th is su bspace of the wild variables and
t reat the o ther var iabl s as addjtional integration variables. This i · a basic idea of the
BASES50/ SPRING50 algorithm.

In order to show the difference between the algorithm of BASES and BASES50 , we
consider t he following two dimensional integral;

lr e f(x, y)
1= 10 f(:t, y)dxdy = 10 p(x)q(y)p(x)q(y)dxd y, (2.214)

where

11 p(x)dx = 1 and 11 q(y)dy = l. (2.215)

By the BASES algorit hm, th estimate of this integral is given by

I ~ Nf < _1_ Nfl f (xi, y{) ,
(2.216)

j ==1 Ntrw.l t = 1 p(xi)q(yf)

where (xi,yf) indicate the i-th sample point in the j-th hypercube, p(x{) and q('Yi)
are the probability densi ties for the importance sampling and N trial is the number of
sampling points per hypercube.

On the other hand , if we t ake the BASES50 algorithm and consider a variable x as
t he wild variable, t.he est imate is givell by

I ~ Nt , _1_ Nfl f(~~, Yi) , (2.217)
k=l Ntrial i=1 p (Xi)q(Yi)

where Yi is sampled in the full range of the variable y, while < is sampled in the k-th
subregion.

60 CHAPTER 2. THEORETICAL BACKGROUND

As shown illustratively in figure 2.6 numbers of hypercubes are N; and Ns for the
former case (a) and the latter case (b), respectively, where Ns is number of sub-regions
per variable.

/ j-th hypercube y
J

y } k-th hypercube

:. / I !

...
-",

(a) (b)

F ig. 2.6 (a) Hypercubes by BASES algorithm and (b) those in BASES50
algori thm, where the var ia ble x is assum ed to be wild one.

x

Although the latter has less number of sampling points for each iteration than t he
form r , it does not affect seriously to the est imate of int gral by t aking more itera tions.

Suppose that Ndim and NWi1d are numbers of integrat ion variables and wild varia bles
(NWi1d ~ N dim), respect ively, t he n umber of hypercubes Ncube for each case is given
by

Nc:ube (BASES)

(BASES50) .

In BASES50, the maximum numbers of integration variables and wild ones are equal
to 50 and 15, respectively. I t is noticed that as concerns the numerical integration we
can obtain the estimate of integral even though the number of those variables, which
make the integrand singular, is more than the maximum number of wild variables 15,
but for the event generation effi iency m ay be Low.
Since BASES50/SPRING50 is the newest version and is recommended to use, we call
BASES50 (SPRING50) simply as BASES (SPRI NG) throughout this manual.

2.7.3 BASES on a parallel computer

According as increasing the beam energy achieved by accelerat.ors , increases the number
of fin al state part icles in the elementary processes to be considered in the experiments.
Since it. makes generall an e>.."pression of th e differential cross section very long, t.he
numerical integration reqllires much computing time. The r asou is t hat t he iutegrand
has a huge number of arithmet ic operations and is calculated a t many arnpling points
in t.he phas e space.

61 2.7. NUMERICAL INTEGRATION

There are two possibilities to make execution time short. One is to use a paral
lel computer , which consists of many processors with close coupling among them.
Distributing the sampling points to N nodc processors uniformly, the overall execution
time can be shorten by a factor N node except for some fraction of an overhead. Since
an efficient distribu tion of sampling points gives an uniform load on each processor,
finding a good distribution way is very important for getting a good performance on a
parallel computer. Although we can easily imagine several ways, we take, for the time
being, the simplest way.

In a parallel version of BASES, the distribution is carried out by the unit of hyper
cube, not of sampling point due to the simplicity of algorithm. If number of hypercubes
Ncuuc is a multiple of that of processors N node , we can obtain the best performance in
principle . In the case, Ncube < N n ode , we lose the power of N node - N cube processors.
T herefore it is recommended to control the number of hypercubes Nellue , which depends
on numbers of the wild variables Nw ild and of sampling points Neall , which arc given as
input parameters of the integration (see section 3.5.3). The number Nwild is normally
fixed for an elementary process but the number N eall can be arbitrarily chosen.
The program flow of the parallel version is conceptually depicted in figure 2.7(c), while
figure 2.7(a) shows that for the scalar version (single CPU version). The numerical
integration on a parallel computer proceeds as follows:

1) 	 At the beginning of integration, the subprogram USERIN is called , where several
parameters for integration and integrand are set.

2) 	 At the beginning of the grid optimizing step the grids are set to be uniform, while
in the integration step they are fixed as determined by the grid optimization step.

3) 	 For calculating estimate of the integral , the hypercubes are distributed to each
processor. If the number of hypercubes Ncube is not a multiple of that of processors
N node , some processors have one more hypercube than the others. Since these
differences are negligible small as long as Ncube is much larger than N node , it does
not seriously affect to the performance.

4) 	 In each processor, the numerical integration is carried out for those hypercubes
distributed by the step (3). During this procedure a histogram of the function
{J(x) / p(x) } 2 is made in the grid optimization step.

5) 	 After the integration in each processor is terminated, the estimate of each hy
percube is transferred from each processor to the central processor, where the
current and also cumulative results of the integral are calculated.

6) 	If the cumulative results of integration fulfill the convergency condition , either
the grid optimization step becomes the integration step and go to step (4) or the
integration step is terminated and go to the end .

7) 	 In the grid optimization step, a histogram information of the function {J(x)/p(X)}2
in each processor is also transferred to the central processor, where a new grid is
determined by using the histogram content, and then go to step (4).

62 CHAPTER 2. THEORETICAL BACKGROUND

b)

Calculate integrand
for all points in a group

CALL VBFNCf

Fig. 2 .7 The conceptual program flows of BASES fOt" (a) the scalar version,
(b) the vector veI"Sion and (c) the parallel version .

Fitting of the execution time TNnod< with Nnode processors to an empirical formula

QT., =0+-- (2.218)
Ilnod e N

node

is quite good. The quantity 0 ma~' give the overhead of integration , which consists of

63 2.7. NUMERICAL INTEGRATION

calculating the cumulative results, data transfer from each processor to the central one
and adjusting the widths of grids. From this formula we can see that if the quantity
o is negligible small comparing to the quantity Q/Nnodc the more processors make the
execution time the shorter. But if 0 is comparable to Q / Nnode increasillg number of
processors is not effective.

Another possibility to make the execution time short is to use a vector computer.
The conceptual program flow of the vector version is shown in figure 2.7(b), where
hypercubes are grouped into N v groups similar to the parallel version. The amplitude
calculation for each group is performed by a single CALL of the subroutine VBFNCT with
the vectorized code, while it is performed on different node in the parallel verSlOli.
More detailed description of the vector version is appeared in chapter 5.

2.7.4 A weak point in BASES algorithm

There is a crucial restriction on use of BASES. As an exam ple, consider the following
two-dimensional illtegral with a parameter of E:

I = t dx t dy 2YE -> 7r (c -> 0). (2.219)ia ia (x+y-1)2+E2

This integrand has a singularity along the line x + y - 1 = 0 as shown in figure 2.8 (a).

(a)

y

o x

Fig. 2.8 (a) Singularity on the x - y plane, (b) Singularity on the X - Y plane.

It runs exactly along a diagonal line of the phase space. During the grid optimization
step, histogram of {J(x)/p(x)P is made for each integration variable to determine new
intervals of grid for the next iteration. Since, however, any singular behavior may not
be seen in the histogram for this case, the new grid is not to be different appreciably
from the old one. This means that grid cannot be suited for the behavior of this
function. As a result the integration algorithm is identical to the crude Monte Carlo
method. If the width of singularity is not narrow, there may be some probability to
hit the singularity and hence the estimate of integral may be reliable. Since, however,

64 CHAPTER 2. THEORETICAL BACKGROUND

those singularity with a very narrow width can be rarely hit, an unexpectedly small
value of the estimate may be obtained.

We call, of wurse, obtain a reasonable result when we throw a huge number of
sampling points per iteration and use a lot of computing time. Since the integration
requires so much computing time even for such a simple function, BASES is practically
useless for a real process with this kind of singularity.

Changing the integration variables from x, y to the new variables X(= :r - y),
y'(= x + y) as shown in figure 2.8 (b), where the singularity' runs parallel to the X
axis, BASES can give a good answer for each value of f. .

T heses two examples show that the choice of an appropriate set of integration
variables is very important to obtain a reliable answer. W ith an unsuitable combination
of variables, the estimate results in a smaller value than the good answer and its error
is unfortunat.ely not significantly large. But the accuracy for each iteration fluctuates,
iteration by iteration, and, in some case, it jumps up suddenly to a large value compared
to the other iterations. This is the only indication for taking an unsuitable variable
set. Be careful'

2 .8 Eve nt generation

T here are many ideas to generate random numbers with an arbitrary dist ribut ion;
direct method, rejection method, composition method , c mposition-rejection method
and so on. Since, however, there is no method for general purpose, we have to select
or find an appropriate method , case by case. The program package BASES/SPRING

makes it possible to generate random numbers with an arbitrary multi-dimensional
dist ribution (50 a t maximum) effiCiently without such a considera tion.

The algorithm of SPRING is quite simple. By the integration algorithm of BASES ,

the widths of the grid a re adjusted so tha t each interval of the grid contributes equally
to estimate of the integral. In the multi-dimensional case, this is approximately true,
but not exact. As shown in figure 2.9, the program flow of the event generation by
SPRING is as follows:

1) 	 Integrate the differential cross section over the phase space by BASES. During the
integration the maximum value of function f(x)/p(x) as well as the probability
for each hypercube is calculated.

2) 	 Sample a hypercube (say i-th hypercube) with its proba.bility.

65 2.8. EVENT GENERATION

Probabiliry infonnation

No Max.(;~:i~) :~e m~imwn val lie
I ill Ihe I-Ih hypercube

TI :an unifonn random num ber

Output file of
four vectors of events

No

Fig. 2 .9 The program flow of SPRI NG

Calculate Ihe value

of integrand at the point

f(Q

Accept the point

as an event and

calculate four vectors

3) 	 For each wild variable, sample a small-region in the i-th hypercube and sample
a point in the small-regiOll. For each non-wild variable, sample a small-region
from the full range of the variable and sample a point in the small-region. For
this sampling one random number is enough for one variable.

66 CHAPTER 2. THEORETICAL BACKGROUND

4) If the sampled poil! t (satisfies the coudi tion

f(() f(xi) .
- (-) IMax .(-(-)) < TJ (= a ulliform random number),
p (P Xi

then this point is accepted as a generating point, subroutine SPEVNT is called and
go to 2). In SPEVNT, users are to save four vectors of the accepted event on a file.

5) If not, forget this point and go to 2).

Even by such a simple algorithm events with the distribution of the differential cross
section are easily generated, as long as the differential cross section can be integrated
by BASES. If the grid is not enough optimized, the generation loop (from steps 2)
to 4)) may come into an infinite loop. To avoid getting into this infinite loop, the
maximum number of trials for generating an event is to be given in a main program
as a parameter. It should be noted that the subprograms USERIN and FUNC are to be
identical to those for BASES except for the case where the integrand is a many-valued
function of the integration variables.

Chapter 3

G RACE system

As mentioned in section 1.2.2, GRACE system consists of the following four subsys
tems:

• Graph generation subsystem

• Source generation subsystem

• Numerical integration subsystem

• Event generation subsystem.

In this chapter the specifications of these subsystems are described. Before coming into
the details, it may be useful to summarize them briefly here.

Graph generation system

Input:

1) 	 Definition of physical process
Specification method of the physical process is described in subsection
3.1.1.

2) The model definition file
Since specification of model is rather complicated, we postpone its de
scription to chapter 6. We provide a default standard model following
Ref. [1], [2] and we recommend to use this model for the first use of this
system.

Output

1) Graph information file aUTDS

2) Drawn figures
Generated graphs are drawn on a graphic device by using the file aUTOS.

They are described in section 3.1.2.

67

68 CHAPTER 3. GRACE SYSTEM

Source generation subsystem

Input:

1) The model definition file

2) Graph information file aUTDS

which is generated by the graph generation su bsyst.em.

Output:

1) Gene r ated FORTRAN source code
There are three kinds of FORTRAN source codes generated by GRACE.

The first is a set of subprograms for amplit.ude calculation, whose de
scription is briefl y given in section 3.2. These subprograms use the
CHANEL routines through the interface subprograms. Specification of
the interface subroutines and CHANEL routines will be described in sec
tions 7.2 and 7.3 respectively.
The second is a set of subprograms for the integration program BASES,

which will be explained in section 3.5. The third is a set of su bprograms
for the event generation program SPRING and is described in section
3.6. In section 3.3 the program specifications of kinem atics rou tines are
gIven.

2) 	 O u t put of the tes tin g progr a m
The format of ou tpu t of the generated test program is given ill section
3.4.

Numerical int egration subsystem

Input:

1) Subroutines for the kinematics
\;Ve leave writing the kinemat.ics part. to users, sillcr it is difficult t.o
generat.e this part all t.OIll itt.i cally as mell t.iolled ill sectioll 3.4. The de
scription of related s llbprograms is giv('m in sectioll 3.3.

2) Subrout ines for t he amplitude calcu lation
These su bprograms ar(' generated by the sourer. generation Sl1 usystNfl
described in section 3.2.

3) Subprograms for the integration by BASES

Before integration by BASES, users should prepare subprograms USERIN

and FUNC. Specifications of these subprograms are described in sec·.tion
3.5 , as well as the illput pararnt't.ers for the integration.

Output

1) Print out
The format of ou tpu t of BASES IS given in section 3.5. There ma.y be
statistical error in th(~ MOllte Carlo integration and systematic error in
user's kinematic subroutines. So it. is very important to see whether the
result is reliable or not.

http:subsyst.em

69

2) 	 Probability information file
As the result of integration, the probability information, contents of
lJistograrns etc. arc saved in this file, which is used for event generation.

Event generation subsystem

Input:

1) Subroutine for the k inematics

2) Subroutines for the a mplitu de calculation

3) Subprograms for the program package SPRING
Subprograms SPINIT, SPEVNT and SPTERM are requi red to prepare. In
section 3.6 their specifications are given besides the input parameters.

4) Probability informatio n fil e
which is generated by BASES.

Output

1) 	 Print out
T he print out format is given in subsection 3.6.4. This is very useful
to see whether the generated events reproduce really the distribution of
differential cross section.

2) 	 Output file for the genera ted events
Generated events are passed to detector simulator or simula tor of par
ticle decay. Section 3.6 descri bes how to deal generated events for this
purpose.

T he generated FORTRAN code uses default values of mass parameters, coupling
constants and other parameters, whose values a re set in the subprogram SETMAS. If one
wants , one can change these values by modifying this subroutine.

Although many physical processes have been calculated for testing the GRACE sys
t em , it is still possibl that a !lew error may occur in a new reaction. It is important
to check the r sult in a systematic way. Possible origin of error will be

(1) Unsui ted kinematical va riables to the integrand,

(2) Bugs iu the kinematics,

(3) Large numerical ca llcellation,

(4) Bugs in the GRACE.

Numerical callcellation is the most difficul t problem to control. Even if the program
is logically correct , it is possibl to produce completely wrong result. Some of numerical
cancellation can be avoided by improving kinen aties, but others require modification
of generated code.

A nyway one has to check tb result illtellsively. Usual checking met bod is as follows:

70 CHAPTER 3. GRACE SYSTEM

(1) Check gauge invariance of the result,

(2) Check Lorentz frame invariance of the result,

(3) Check numerical stability of the result,

(4) Changing the number of sampling points in tbe numerical integration,

(5) Comparison with other result.s.

Before the numerical integration, one should confirm that the generated FORTRAN
source code is correct one. GRACE system generates a test program, which provides
a gauge invariance test by comparing the resultant values on a pbase space point for
different values of gauge parameters. One can check some kind of numerical cancellation
or inconsistency in the generated code. This is the easiest way of checking. However,
since this program checks only at one point, one may miss errors in the different region
of the phase space.

Since the amplitude is calculated by a numerical way in a special Lorentz frame, one
can test the program by changing reference frame. This method also checks numerical
cancellation partially, as the four components of momenta are changed.

Direct checking method of numerical cancellation is to change precision of the cal
culation. If your compiler has an option to change precision of floating point number,
it will easy and powerful method.

The correctness of the kinematics subroutines and statistical reliability will be
checked by careful reading of output of BASES and changing parameters of BASES.

If kinematics subroutines fails to catch steep peeks of the differential cross section, the
final value may be completely wrong.

3.1 G raph generation

3.1.1 Definition of the physical process

In order to defin a physical process we give the order of coupling constants and names
of external particles as t he input.

We show an example, which specifies the process e+e- -> W +W -/" in figure 3.1.

* 5 120 E+ E- => W+ W- A TREE
WORDER. 3

INITIAL EL 1

INITIAL £LB 1
FI NAL WE 1
FINAL WBB 1
FINAL AB 1
END

F ig . 3.1 Input file for defining physical process

71 3.1. GRAPH GENERATION

The format of input is as follows:

1) C omment line
The first lille is a comment line, but it should never be omitted. It is copied to
ou tpu t files to indicate the process.

2) 	 The order of coupling constants

The second line in the example indicates the order of coupling constants.

WORDER 3

implies that the order of electroweak in teraction (order of perturbation) is 3.
\ i\!hen one want to restrict the process to pure QED,

EORDER

should be assigned. It is noted that WORDER and EORDER are not a.llowed to set
at th same time. For QCD one should give the order of QCD coupling by

CORDER.

Combinat ion of WORDER and CORDER or that of EORDER and CORDER are allowed.
In that case the order of each interaction should be defined in d ifferent line .

3) 	 External part icles
To define the external particles, in the first column one has to give wh t her the
curren t part icle is in the INITIAL or FINAL state. Then name of this par t icle
fol.lows. If it is anti-particle, B should be added to the end of the name. For the
W-boson, WB defines W+, so that W- is wri tten as WBB. In the last column the
number of identical particles is given by an integer.

Table 3.1 shows a list of particle names defined ill the model defi ni tion file , whose
format is described in chapter 6.

In UNIX system, many files named like "dnnnn" a re given under the direct ory
$GRACEDIR/data/ as examples of the input fi le, whose list is in t he file "I ndex" (see
also section 4.1). The contents of file "Index" is given in Table 3.2, where the last
t hree numbers of each line are the orders of pert urbation, WORDER, EORDER and CORDER.
If t here is the target process in this list , the firs t number dnnnn indicate the file name
which contains the input parameters for tha t process like figure 3.1. For example, if
one wants to calculate e+e- --; W+W -1', one can use the file d5120. W hen one cannot
fi nd the process to be studied, it would be ea:sy to make input file by copying a similar
process's file.
The file particle. table under the same directory contains all the information on the
model used in the graph generation and source generation subsystems.

72 CHAPTER 3 . GRACE SYSTEM

/Jame of particle
WB H ' +
ZB ZO
AB ~

XB x+

X3 X3

PH <P (Higgs OOSOIl)

NE ~

NM v~

NT v .

EL e

MU J1.

TA T

UQ u-quark

CQ c-quark

TQ top-quark

DQ d-qua rk

SQ s-quark

BQ b-quark

CP c+ (ghost for W)

CM C (ghost fo r W)

CZ c Z (ghost for Z)

CA c A (ghost for photon)

GL gluon

CG c G
(g host for gluon)

Table 3 .1 Names o f particles in t he d efault model defi n ition fi le

d3010 A =) E+ E- TREE 0 1 0
d3020 A => U UB TREE 1 0 0
d 3030 w- => E- NUB TREE 1 0 0
d3040 \rI+ => U DB TREE 1 0 0
d3050 Z => E+ E- TREE 1 0 0
d3060 Z => W+ \rI- TREE 1 0 0
d3070 Z => Z Z TREE 1 0 0
d3080 G =) U UB TREE 0 0 1
d4010 E- E- => E- E- TREE 2 0 0
d4020 E+ E- => E+ E- TREE 2 0 0
d4030 E+ E- => KU+ KU - TREE 2 0 0
d4040 E+ E- =) U UB TREE 2 0 0
d4050 E+ E- => A A TREE 2 0 0
d4060 E+ E- => \rI+ w- TREE 2 0 0
d4070 E- NEB => D UB TREE 2 0 0
d4080 U DB =) U DB TREE 0 0 2
d4110 w+ w- => w+ w- TREE 2 0 0

Table 3 .2 T he list of processes in the file I ndex

continued to the next page

73 .3.1 . GRAPH GENERATION

d4090 V VB =) G G TREE 0 0 2
d4100 V VB =) A Z TREE 2 0 0
d4140 A A =) Z Z TREE 2 0 0
d41S0 G G =) V VB TREE 0 0 2
d4120 \.1+ w =) Z Z TREE 2 0 0
d4130 Z Z =) Z Z TREE 2 0 0
d4160 G G =) G G TREE 0 0 2
d4170 E+ E =) NE NEB TREE 2 0 0
d4180 A A =) w+ \.1 TREE 2 0 0
dS010 E+ E =) E+ E A TREE 3 0 0
dS020 E+ E =) E NEB \.1+ TREE 3 0 0
dS030 E+ E =) MU+ MU A TREE 3 0 0
dS040 V VB =) C CB G TREE 0 0 3
dSOSO w+ w =) w+ w- A TREE 3 0 0
dS060 Z Z =) Z Z A TREE 3 0 0
dS070 V A =) V G G TREE 0 1 2
dS080 G A =) V VB G TREE 0 1 2
dS090 A A =) V VB G TREE 0 2 1
dSl00 V G =) V G G TREE 0 0 3
dSll0 E+ E =) E+ E Z TREE 3 0 0
dS120 E+ E =) w+ w- A TREE 3 0 0
dS130 E+ E =) NE NEB A TREE 3 0 0
dS140 E+ E =) w+ w- Z TREE 3 0 0
dS1S0 G G =) V VB G TREE 0 0 3
dS160 E+ E =) Z Z A TREE 3 0 0
dS170 E+ E =) NE NEB PH TREE 3 0 0
d5180 NE MU =) E NM A TREE 3 0 0
d6010 E+ E =) E+ E A A TREE 4 0 0
d6020 E+ E =) E+ E MU + MU TREE 4 0 0
d6030 E+ E =) HU+ MU MU+ MU TREE 4 0 0
d6040 V VB =) C CB G G TREE 0 0 4
d60S0 w+ \01 =) 101+ w- w+ w- TREE 4 0 0
d6060 Z Z =) Z Z Z Z TREE 4 0 0
d6070 Z Z =) w+ w- z Z TREE 4 0 0
d6080 E+ E =) V VB G G TREE 0 2 2
d6090 E+ E =) V VB V VB TREE 0 2 2
d6100 E+ E =) U VB D DB TREE 0 2 2
d6110 A A =) D DB G G TREE 0 2 2
d6120 E+ E =) 101+ w- Z Z TREE 4 0 0
d6130 E+ E =) 11U+ MU A A TREE 4 0 0
d6140 A A =) E+ E E+ E TREE 4 0 0
d61S0 E+ E =) W+ w- NE NEB TREE 4 0 0
d6160 E+ E =) w+ 101 E+ E TREE 4 0 0
d6170 E+ E =) PH PH NE NEB TREE 4 0 0
d6180 E+ E =) E+ E MU+ MU TREE 0 2 0
d70l0 E+ E =) D DB G G G TREE 0 2 3

Table 3.2 The list of processes in the file Index

74 CHAPTER. 3. GRACE SYSTEM

3.1.2 D rawn Feynman graph

III the graph generation , a file aUTDS is (Tcat.cd under the current directory, where the
graph informatioll is stored. By t.ypillg ("ollllllalld "draw", Feyumall graphs are drawn
on the screen when the X- \Vindow SystClll is supported. The drawing method is very
primitive. There are two kinds of vert cries, those on a fermioll line and the others.
Vertecies of first kind are placed ou the ferlllion lines, where the positions of fermion
lines alld vertecies are arranged so t.hat fl'l"lllion lines could 1l0t cross each other. The
other vertices are placed at fixed po,;itioll'; ill accordance with the llumber of vertices.
The conventioll of drawing graph is <I'; fo llows:

1) xternal particle lines carry (hc l<lbels of particle name, such as EL I or WE F.
Here I and F mean initial and fillal particle, respectively.

2) 	 The arrow attached to the int.cfllalliuc does not indicate fermion number but the
direction of the flow of the qualltlllll number (charge) - 2 * (baryon number).

The quality of drawn figures are 1l0t so good. It will be improved in future after a
detailed analysis of graph struct ure. Figure 3.2 shows drawn graphs for the process
e+e- -4 W +lM- ,.

GRPH

EL

GRPH

EL

ELSI
2

1 TYPE GR PH

~ we F EL
, 3,,

1
--~ ij'--'H> W8SF ,, 4

,
~S F

5

4 TYPE 2

~ WB F
, " 3

,7

' S
B' 0 W88F", j..)L:: - 4
... ~ ... \

, ,
'S F () 5

GRPH

EL

EL8I
2

2 	 TYPE

~ WS F
' 3

,1
---Zij'--'H> W88F

' , 4

,

~S F
5

5 TYPE 2

~ WS F
" ;t 3

\8&' 0 WS8F",:z.)L::- 4 e .. \

'8 F
() 5

GRPH

EL

GRPH

EL

ELBI
2

3 TYPE 2

~ W8 F
, " 3

,7

~,8 WS8F
'"p~)L::-~ 4 e .. \

'() B F
5

5 TYPE 2

o W8 F

,..(" 3

~B
",F~ \L::-~ WS8~

"'e'" \ ,,
' A8 F
() 5

Fig. 3.2 An eXllmplE' of drawn Feynman grapbs
cantin ued to the next page

3.1 GRAPH GENERATION 	 75

GRAPH 7 TYPE 2 GRAP H 8 TYPE 2
 GRAPH 9 TYPE 2

EL o WB F EL o WB F EL
" 3

,,
, AB F
o 5

" 3

,7

~B
,A ' 0 WBBF

" ,X IJJ ~ i:: - 4
.. ~ ... \

, AB FELBI , AB F ELBI EL BI o 5
2 o 5
 2
 2

GRAPH 10 TYPE 3

EL () WB F

, 3
,,

ELBI , AB F
2 o 5

GRAPH 13 TYPE 3

EL

ELBI
2

GRAPH 16 TYPE 3

EL

o WB F EL
, 3

, AB F
~ 5

o WB F

,,

,,

, 3

, AB F
~ 5

ELBI

2

o WB F EL
, 3

GRAPH 1 1 TYPE 3
 GRAPH 12 TYPE 3

EL () WB F EL
, 3

, ,
, AB F o 5

,

ELBI ELBI
2
 2

, AB F
o 5

GRAPH 1 4 TYPE 3
 GRAPH 15 TYPE 3

o WB F
, 3

,

~'()WBBF
'- -ph!, , 4

"'e \

, AB F
~ 5

GRAPH 17 TYPE 4
 GRAPH 1B TYPE 4

EL

o WB F
" 3

EL

-_/,:B , ,7' WBBF
~--(-() 	 4

-- - ---() AB 	 F

5
ELBI

2

Fig. 3.2 An example of drawn Feynrnan graphs
continued to the next page

7G CHAPTER 3. GRACE SYSTEM

GRAPH 19 TYPE 4 GRAPH 20 TYPE 5 GRAPH 21 TYPE 5

EL

; ,'

EL EL EL

oW8 F o W8 F o W8 F
" 3 " 3 , " 3

' , PH ;i , ,7'-'f
'~'__.(_ () W88F ~~'__.(_() WBBF'ft~'- -.(- () WB8F

4 , , 4" , 4 , ,, ,, ,, ,

- --- ()AB F '(> A8 F ' (> AB F
5 5 5EL8I EL8I

2 2

GRAPH 22 TYPE 5 GRAPH 23 TYPE 6 GRAPH 24 TYPE 6

EL EL EL

ELBI ELBI
2 2

GRAPH 25 TYPE 7 GRAPH 25 TYPE 7 GRAPH 27 TYPE B

EL

() WB F
_0 WB F

- -' 3
,'- 3

---¥"'() WBBF~:~_ () WBSF
L 4
__________ () A8 ~

"~ AS F

"', 4

5
ELSI

2

GRAPH 2B TYPE 9

Fig. 3.2 An example of drawn Feynman graphs

3.2. GENERATED SOURCE CODE 77

3.2 G enerated source code

T here are three kinds of program components. The first is for the amplitude caicll
lation , the second is necessary for the integration by BASES and the third is for the
event generation by SPRING. T he interrelation among the subprograms gellerated by
GRACE is depicted ill figure 3.3, where those subprograms in the white box <lre aut.o
ma tically geIH~rated by GRACE, while those ill th e shaded box are already cOlltained
in other program packages BASES/SPRING, interface program librar~1 to CHANEL , and
program package CHANEL. The program specifica tions of the libraries BASES/SPRING,

the in terface to CHANEL and progr;uIl package CHANEL are described ill scctiOllS 3 :) , 7.2
and 7.3 , re 'pcctively.

Fig. 3 .3 Relation among the generated subprograms

[n the following these three kin ds of program com ponents a re summarized. The most
of components used in BASES are requi red also in SPRING, so that th v appear in the
both items .

78 CHAPTER 3. GRACE SYSTEM

1) a set of program components fo r amplitud e calculi1.tion

SETMAS

AMPARM

AMPTBL

AMPSUM

AMnnnn

AMPoRD

incll . f

inc12. f
TEST

(subroutine)
(subroutine)
(subroutine)
(subroutine)

(subTOutin r.)

(subroutine)
(incl'ude fi le)

(include file)
(main)

defines ma~sC's and d ecay wi d ths of partides.

defines coupling const.i1.nts and others.

ci1.lls AMnnnn to calculate i1.m pli tudes .

slims matrix c1rrrl<'nt.s over th r- hdicit.y

states. A matrix clem ent. is the square o f

t.h e sum o f alllp lit.lldes .

u\'lc ulat.es ;un pli t.11clC' o f the nnnn- til g raph > wh C' r('

t.l](~ num\)('r nnnn of t.he routi ne n a me is eqllal t.o

the graph number.

arran ges am pli t.u(ks

defines t.h e common vari ab lu for masses, i1.mpli

tud e tables ttc.

dr-fines the work space for AMPTBL.

works as the main program for \'c~ Gin g gauge

invariallce .

2) a set of program components for the illltegri1.t io n by BASES

MA I NBS

US ERI N

KI NIT

FUNe

KI NEM

US ROUT

inc1h. f

(main)
(subroutine)
(subroutine)
(functio n)

(subroutine)

(subroutine)
(include fi le)

is the main program for the in egrat ion .

initiali£;e~ BASES and user's pa rameters.

ini ti a li zes kinematics.

calculates the n umerical val ues of differen tial cross

section.

d erives pa r t icle four mom enta from the in tegrat ion

variables.

prints tL ' amplitude 'u mm ary table .

defines the size of t he histogram buffer.

3) a se t of program components for the e cut generation by SPRING

MAI NSP (main)
US ERIN (subroutine)
KINIT (subroutine)
FUNC (funct ion)

KINEM (subroutine)

inc lh . f (include file)
SPI NIT (subTOutine)
SPEVNT (subroutine)
SPTERM (subro'utine)

is the mi1.iu progmm for the event generation.

initia lizes BASES and user's paramr-ters.

ini tiali ze kinematics.

calculates th e llu rne rical values of differe n t ia l cross

spc tion.

deri ves parti cle four moment.a from t he int.egrati on

variables.

defines the s ize of the histogram b uffer.

initializes routine for user's purpose.

saves four vectors on a file.

is called at the t.ermination for user 's purpose.

Although the program components inclh. f, USERIN , KIN IT , FUNC and KINEM are

created a u tomati cally by GRACE, t hey are sti ll imcomplete. Especi a lly the kin ematics

http:u\'lculat.es

79 3.2. GENERATED SOURCE CODE

routines KINIT and KINEM are to be filled up by the user according to their specifications
described in section 3.3. Example of these routines for the process e+ e- -> H! +vV-1'
are a lso given there.

The subprograms USERIN and FUNC are used both in the numerical integration by
BASES and the event generation by SPRING . In the user ini tialization routine USERIN ,

subroutines KIN IT is called for in itializing kin ematics part. The routines SETMAS and
AMPARM are called for the initiali ztion of amplitude calculation.
The function su bprogram FUNC is used fo r calcula ting the numerical value of differen tia l
cross section, where subroutine KINEM is called for calculating four vectors of ext.ernal
momenta and subroutines AMPTBL and AMPSUM are called for the amplitude calcula
tioll . Since specifications for USERIN and FUNC are described in sections 3.5 .3 and 3. 5. 4
respectively, in this section we mention the amplitude calculation part briefly.

3.2.1 Initialization of amplitude calculation

Parameters for the amplitude calculation are set in subprograms SETMAS and AMPARM,

and a re passed to the relevant subroutines through the several commons, which are
given in the include file incl1. f .

Subroutine SETMAS

The structure of subprogram SETMAS is shown III the source list 3.l. In SETMAS the
following fundamental parameters are defined .

1) 	Masses and widths are defined.

2) 	 Gauge paraIlleter
The information about the gauge parameters is summarized in the include file
incl1.f.

Calculation either in covariant gauge(Rcgauge) with an arbitrary gauge pa
rameter or in unitary gauge is possible in GRACE system. The distinction between
them is given by integer variables in the common /SMGAUS/.

COMMON /SMGAUS/IGAUOO, IGAUAB, IGAUWB, IGAUZB, IGAUGL

where IGAUAB, IGAUWB, IGAUZB and IGAUGL are the gauge selection flags for pho
ton, W±, ZO and gluon, respectively. Unitary gauge Eq.(2 .101) is selected by
setting flag IGAUxx to 0 for xx boson. This is effectively equivalent to the case
where the gauge parameter of xx boson is set equal to infinity.

For the covariant gauge, four different values of gauge parameters can be set by
using an array AGAUGE(i) (i runs from 1 to 4).

In 	the generated FORTRAN code, unitary gauge is taken as the default gauge.

COMMON /SMGAUG/AGAUGE(O:4)

REAL*8 AGAUGE

80 CHAPTER 3. GRACE SYSTEM

AGAUGE(IGAUAB), AGAUGE(IGAUWB), AGAUGE(IGAUZB) and AGAUGE(IGAUGL) rep
resent the values of gauge parameters etA, etw, etz and etc, respectively (see
Eq .(2.50)). To give different values of gauge parameters for each boson, the flags
IGAUAB, IGAUWB, IGAUZB and IGAUGL are to be set equal to 1, 2, 3, a nd 4, re
spectively, for example. Of course, the values should be set for the variables
AGAUGECIGAUxx)s here.

3) 	 Spin summation
T he components of spin and polarization vector a re controlled by

Fermion o (helicity = -1), 1 (helicity = +1)
Vector boson 0, 1 (transverse), 2 (longitudinal).

For each external particle I of non-zero spin, the spin summation is taken from
JHS (I) to JHE (I) as follows;

ANS = 0 . 0
DO 100 J = JHS(I). JHE(I)

ANS = ANS + table_of_amplitude(J)
100 CONTINUE

where

JHS(I) = 0
JHE(I) = LEPEI A - 1

and

LEPEXA = 2

for the external photon as an example. In t he gen rated code, the spin summation
is originally arranged to give unpolarized cr ss section . The spin freed oms of
external particles are given in the include fi le i nc l1 .f (see Source list 3.3) as
follows;

LEPEXA = 2 spin freedom of external photon
LEPEXW 3 spin freedom of external W ± boson
LEPEXZ 3 spin freedom of external ZO boson
LEPEXG 2 spin freedom of external gluon
LEXTRN 2 spin freedom of external fermion

The variable ASPIN is the normaliza t ion factor of spin average for initial bosons
and fer mions.

4) 	 Selection of d iagrams
If one sets the i-th element of the array JSELG () to "zero", then one can omit
the corresponding i-th graph and skip the calcula tion of this amplitude. Each
element of the array correspond to the graph number which can be read off from
the drawn picture of graphs.

http:Eq.(2.50

81 3.2. GENERATED SOURCE CODE

SUBROUTINE SETMAS

IMPLICIT REAL*8(A-H,O-Z)

INCLUDE 'incll.f'

COMMON /AMSPIN/JHS(NEXTRN), JHE(NEXTRN), ASPIN

*---

* 	Graph selection
DO 10 NG = 1, NGRAPH

JSELG(NG) = 1

10 CONTINUE

*---

* 	Mass
AM WB = 80.0DO
AHZB = 91. lDO
AMAB = O.ODO
AMEL = 0.SllD-3
AHMU = 10S.6S8387D-3

masss 	 of particle.
* 	Width

AGWB O. ODO
AGZB O. ODO
AG AB O. ODO
AGEL = O.ODO
AGHU = O.ODO

decay 	width of particle .

* 	Gauge parameters (default is unitary gauge)
I GAUAB = 0
IGAUVB = 0
IGAUZB = 0
IGAUGL = 0
AGAUGE (IGAUOO) 1.0DO
AGAUGE(IGAUAB) 1.0DO
AGAUGE (IGAWB) 1 .0DO
AG AUGE (IGAUZE) 1 . 0DO
AGAUGE (IGAUGL) 1.0DO

•
• 	 Spin average Control of spin summation.

ASPIN = 1.000

• 	 1: EL INITI AL LPRTCL
J HS (1) = 0

JHE(1) = LEITRN - 1

ASPI N = ASPTN/ DBLE(JHE(l) - JHS(1)+1)

• 	 2: EL INITIAL LANTIP
JHS (2) = 0

JHE (2) = LEXTRN - 1
ASPIN ASPI N/ DBLE(JHE(2)-JHS(2)+1)

Source list 3.1 su oprogram SETMAS
continued to the next page

82 CHAPTER 3. GRACE SYSTEM

* 3: WB FINAL LPRTCL
JHS(3) 0
JHE(3) LEPEXW - 1

* 4: WB FINAL LANTIP
JHS(4) 0
JHE(4) LEPEXW - 1

* 5: AB FINAL LPRTCL
JHS(5) 0
JHE(5) LEPEXA - 1

*
RETURN
END

Source list 3.1 subprogram SETMAS

Subroutine AMP ARM

In the source list 3.2 the structure of subprogram AMPARM is given, which prepares the
following items:

1) 	Version number

The version number of GRACE system is compared wi th that of the interface
package to CHANEL in SHINIT. If t hey are not consistent, job is terminated for the
sake of safLy.

SUBROUTI NE AMPARM

IMPLICIT REAL*8(A- H, O-Z)

INCLUDE 'incl l .f '

COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA

*---
CALL SMINIT (1, 0)

* Constant s
*---

PI ACOS(1.0DO
PI2 = PI • PI
RAD = PI / 180.000
GEVPB 0.3893857D9
ALPHA = 7 .2973503D-3
AHiffi2 AMWB*AMWB
AMZB2 AMZB*AMZB

constant parameters for vertex .

Source list 3.2 subprogram AMP ARM
continu.ed to the next page

http:continu.ed

83 3.2. GENERATED SOURCE CODE

.---
• VVV

coupling constants
• 	 QCD coupling constant should be calculated in 'KINIT'.

CQCD = 1.0DO
CQCDSQ = 1. ODO
CQQG(l) = -1.0DO
CQQG(2) = -1.0DO

• Color facotr
DO 100 I = 1, NGRAPH

IGRAPH(I) = 0

DO 100 J = 1, NGRAPH

CF(J, I) = 1.0DO

100 CONTINUE

RETURN
END

Source list 3.2 subprogram AMP ARM

2) 	 Constants
Numerical constants 7f , 7f2, 7f /180, GeV/pb and 0' = e2 /47f for the amplitude
calculation are set and some of them are passed through the common / AHCNST /

for later use.

3) 	 Coupling constants

Coupling constants for various vertices are calculated.

4) 	 Color facotrs
Color factors (the array CF(i,j)) for each combination of two graphs are calcu
lated.

In clude file incl1. f

This file is prepared for passing the parameters for the amplitude calculation set in
the subroutines SETMAS and AMPARM to the relevant subroutines through the several
commons. In the source list 3.3 the structure of incl1. f for the process e+ e- --+

W +W-,), is shown.

1) 	 Parameter statements
The parameters which define the sizes of arrays are given by the parameter state
ment. LEPEXA, LEPEXW, LEPEXZ and LEPEXG are the spin freedoms of external
photon, W-boson, Z-boson and gluon, respectively. LEPINA, LEPINW, LEPINZ and
LEPING are those for internal lines. LEXTRN and LINTRN are the spin freedoms for
fermions of external and internal lines, respectively.

84 CHAPTER 3. GRACE SYSTEM

The parameters LOUTGO, LINCOM, LANTIP and LPRTCL are just the input constants
for the program package CHANEL.

2) 	 Table of amplitude
The calculated amplitudes for all graphs are stored in an array AG(). An array
APROP () is used to keep the numerical value of the denominators of propagators.

The arrays AV (), LT() and INDEXG () in the common /SMATBL/ are for tem
porary use.

3) 	Masses and width s
The variables in the commons / AMMASS/ and / AMGMMA/ are masses and wid ths of
particles, respectively, which are defined in SETMAS.

4) 	 Coupling constants
The coupling constant for each type of vertex is in the common / AMCPLC/, which
is defined in AMPARM.

5) Four momenta of external particles
The four momenta of external particles are given in the arrays PEnnnn(), where
the fourth c mponents correspond to the energies. An array PPROD (i ,j) gives
the inner prod ucts of particle momenta i and j . They are derived in KINEM and
copied to these arrays in FUNC.

6) 	CHANEL inputs for the external p articles
The arrays PSnnnn, EWnnnn, CEnnnn and EPnnnn are the lists of light-like vectors,
weight factors, phase factors and list of polarization vectors, respectively, which
are defined in section 2.4.

PARAMETER (LOUTGO ~ 2, LINeOM ~ 1)

PARAMETER (LANTIP = -1, LPRTCL ~ 1)

PARAMETER (LSCALR = 1)

PARAKETER (LEPEXA = 2 , LEPEXW = 3, LEPEXZ ~ 3, LEPEXG = 2)

PARAMETER (LEPINA = 4, LEPINW = 4, LEPINZ ~ 4, LEPI NG = 3)

PARAMETER (LEXTRN = 2, LINTRN= 4)

• 	 Table of amplitudes

PARAMETER (NGRAPH ~ 28 , NEXTRN = 5, LAG ~ 72)
PARAMETER (NGRPSQ = NGRAPH. NGRAPH)
COMMON / AMSLCT/JSELG(NGRAPH), JGRAPH, JHIGGS, JWEAKB
COMPLEX.16 AG, APROP
COMMON /AMGRPH/AG(0:LAG-1,NGRAPH), APROP(NGRAPH),

&: ANCP (NGRAPH), ANSP (0: NGRAPH) ,

&: CF(NGRAPH, NGRAPH), IGRAPH(NGRAPH)

Source list 3.3 Include file incl1 . f
continue to the next page

http:COMPLEX.16

85 3.2. GENERATED SOURCE CODE

* 	Masses and width of particles
COMMON /AMMASS/AMWB,AMZB,AMAB,AMXB,AMX3,AMPH,AMLU,AMNE,AMNM,AMNT,

&

COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU,AGNE,AGNM,AGNT,
&

* 	Coupling constants
COMMON /AMCPLC/CZWW ,CAWW ,CWWAA ,CWWZA

&

* Momenta of external particles
COMMON /AMEXTR/PE0001(4),PE0002(4) ,PE0003(4) ,PE0004(4) ,

& PE0005(4) ,

& PPROD(NEXTRN, NEXTRN)

* 	Switch of gauge parameters
COMMON /SMGAUS/IGAUOO,IGAUAB,IGAUWB,IGAUZB,IGAUGL
COMMON / SMGAUG/AGAUGE(O:4)

* 	Normalization
COMMON /SMDBGG/FKNORM,FKCALL,NKCALL

* 	Calculated table of amplitudes
COMMO N /SMATBL/AV, LT, INDEXG
COMPLEX*16 AV(O:LAG-l)
INTEGER LT(O:NEXTRN), INDEXG(NEXTRN)

* For 	external particles
CO MM ON /SMEXTP/

& PSOOO1, EWOOO1, CEOOO1,

ok PSOOO2, EWOOO2, CEOOO2,

ok EPOOO3, EWOOO3,

&-. EPOOO4, EWOOO4,

&: EP0005, EWOOOS

REAL*8 PS0001(4 ,2) , EWOOO1(1)

COMPLEX*16 CEOOO1(2.2)

REAL*8 PSOOO2(4 . 2). EWOOO2(1)

CO MPLEX* 16 CEOOO2(2.2)

REAL*8 EP0003(4, LEPEIW), EWOOO3(LEPEXW)

REAL *8 EP0004(4 , LEPEXW), EWOOO4(LEPEXW)

REAL*8 EPOOOS(4,LEPEXA), EWOOOS(LEPEXA)

Source list 3.3 Include file incll. f

3.2.2 A m.plit ude calcula tion

To calculate the numerical values of amplitudes, first the values of integration vari
ables are t ranslated into the four momenta of external particles , which is done by t he
subroutine KINEM. Then the subroutine AMPTBL is called to calcula te the amplitudes.

Subroutine AMPTBL

The subroutine AMPTBL for the process e+e- -> W+ W -), is shown in the source list
3.4, whose functions are as follows;

86 CHAPTER 3. GRACE SYSTEM

1) 	 ExternaJ part icles
At the beginning of AMPTBL all the information about the external fermious and
vector bosons are prepared in suitable form for the calculation of vertices as shown
in the source Jist 3.4. For the external fermion (vector boson) the subroutine
SMEXTF (SMEXTV) is called for t his purpose, whose specifications are giveu in
section 7.2.

SUBROUTINE AMPTBL
** 5120 E+ E- => W+ W- A TREE

IMPLICIT REAL*8(A-H,O-Z)

INCLUDE 'inc11.f'

INCLUDE 'inc12.f'

*--

JGRAPH = 0
* 	 External l i nes

CALL SMEXTF(LINCOM , AMEL ,PE0001,PSOOOl ,CEOOO1)
EW0001(1) = LPRTCL
CALL SMEXTF (LOUTGO,AMEL,PE0002,PS0002,CE0002)
EW0002(1) = LANTIP
CALL SMEXTV(LEPEXW, AMWB, PE0003,EP0003,EW0003,IGAUWB)
CALL SMEXTV(LEPEXW.AMWB, PE0004,EP0004,EW0004,IGAUWB)
CALL SMEXTV(LEPEXA,AHAB. PE0005.EP0005,EW0005.IGAUAB)

• 	 Gr aph NO. 1 - 1 (1)
I F (JSELG(1).NE. 0) THEN
JGRAPH = JGRAPH + 1

IGRAPH(JGRAPH) 1
CALL AM0001
ENDIF

* 	Gr aph NO. 28 - 1 (28)
IF (JSELG(28) . NE.0) THEN
JGRAPH = JGRAPH + 1
lGRAPH (JGRAPH) 28
CALL AM0028
ENDIF

RETURN
END

Source list 3.4 Example of subroutine AMPTBL

The variables LEPEXW and LEPEXA represent the spin freedoms of external W
bosons and photon, respectively, and are set in the include file incl1. f by the
parameter statement as shown in the source list 3 .3. For the fermion the vari
able EWnnnn(1) is set equal to "1" for particle or "-1" for anti-particle. In

87 3.2. GENERATED SOURCE CODE

this example, EW0001(1) is set equal to "1 " (electron) and EW0002(1) to "-1"

(posi tron).

2) 	 Calculation of each amplitude
The subroutine AMnnnn is called to calculate tile nnnn-th graph . Since there are
28 graphs in the process e+e- ---; VV+W-" there are 28 subroutines from AMOOOl
to AM0028. The flag JSELG(i) is used for selecting the graph. If it is set equal to
"zero" in the subroutine SETMAS the corresponding i-th graph is not included in
the calculation. This flag is to be set by the user for the time being, but it will
be implemented in near future .

S u broutine AMnnnn

A main part of amplitude calculation appears in subroutines AMnnnns. To describe the
amplitude generation in section 2.4, we take a Feynman graph as an example in the
process e+e- ---; W+W-, shown in figure 2.1. The correspoding subroutine to the
graph is AM0026, whose compositions are as follows;

1) 	 Internal momenta
The internal momenta PE0183 and PE0185 are calculated from the external mo
menta, which correspond to those of internal neutrino and W-boson, respectively.

2) 	 Propagators
The product of denominators of propagators is calculated by the subroutine
SHPRPD, where the inputs are the momentum transfer, mass square and mass
times width.

The numerator of each propagator is handled by the subroutines SMINTF and
SMINTV for the internal neutrino and W-boson, respectively.

3) 	 Vertices
Numerical values of vertex amplitudes are calculated by subroutines SHFFV and
SMVVV. By SHFFV the vertices vee -W+ and e+vcW- are calculated and for the
vertex W-W+ , subroutine SHVVV is used. The calculated amplitudes of vertices
vee-W+ and e+veW- and W-W+, are saved in the arrays AV0122, AV0123 and
AV0124, respectively.

4) 	Connection of vertices
First the vertices vce-W+ and e+vcW- are connected by the routine SHCONF,
where the amplitudes AV0122 and AV0123 are combined by summing over all the
possible helicity states of the internal neutrino with weight EW0183. The resultant
amplitude is stored in an array AV0125.

Second the resultant amplitude AV0125 and W-W+, amplitude AV0124 are con
nected by taking summation over all the possible polarization s tates of internal
W-boson with weight EW0185 using tile routine SHCONV. The total amplitude is
saved in an array AV .

88 CHAPTER 3. GRACE SYSTEM

5) 	 Rearrange the internal structure of amplitude
In order to sum up all amplitudes, they have to have the same internal structure.
However, the internal structure of amplitude AV does strongly depend upon the
order of constructing the amplitude, which may be different graph by graph. A
subroutine AMPORD is used to change the amplitude AV in an individual structure
into the amplitude AG in an unified structure.

.. Graph No. 26 - 1 (26)
** •••••**•••

SUBROUTINE AM0026

IMPLICIT REAL"8(A-H,O-Z)

INCLUDE 'incll.f'
.. --

COMMON /AMYlORK/

~ PE0183, EW0183, PS0183, VM0183, CE0183 ,

~ PE0185, EP0185, EW0185, VM0185,

~ AV0122, AV0123, AV0124, AV0125

COMMON /AMYlORI/

~ LT0122, LT0123 , LT0124, LT0125

.. 5856+ 68 bytes used.
REAL.. 8 PE0183(4) , EW0183(2) , PS0183(4,3), VM0183
COMPLEX"16 CE0183(2,4)
REAL ..8 PE0185(4) , EP0185(4,LEPINW), EW0185(LEPINW), VM0185
INTEGER LT0122(O:3)
COMPLEX"16 AV0122(O:LINTRN"LEXTRN..LEPEXW-1)
INTEGER LT0123(O:3)
COMPLEX"16 AV0123(O:LEXTRN"LINTRN"LEPINW-l)
INTEGER LT0124(O:3)
COMPLEX"16 AV0124(O:LEPINW"LEPEXW"LEPEXA-l)
INTEGER LT0125(O: 4)
COMPLEX"16 AV0125(O:LINTRN"LEPINW"LINTRN"LEPINW-1)

*--
.. 	 Internal momenta

DO 26 I = 1, 4

PE0183(I) -PE0002(I) +PE0003(I)

PE0185(I) -PE0004(I) -PE0005(I)

26 	CONTINUE

APROP(JGRAPH) = 1 . 0DO

VM0183 = - 2.0DO"PPROD(2, 3) + 1.ODO ..AMWB 2 + 1.ODO.. AMEL.... 2

CALL SMPRPD (APROP (JGRAPH) ,VH0183 ,AHNE.... 2 ,AHNE"AGNE)

VH0185 = + 2 . 0DO.PPROD(4, 5) + 1.0DO..AMWB 2 + 1.ODO .. AHAB 2

CALL SHPRPD(APROP(JGRAPH),VH0185,AMWB....2,AHWB .. AGWB)

.. Internal lines
CALL SHINTF(AHNE,PE0183,VH0183,EW0183,PS0183,CE0183)
CALL SHINTV(LEPINW,AHWB,PE0185,EP0185,EW0185,VH0185,IGAUWB)

Source list 3.5 Subroutine AH0026 for e+e- -> W+W-,
continue to the next page

89 3.2. GENERATED SOURCE CODE

* Vertices
CALL SMFFV(LINTRN,LEXTRN,LEPEXW,EW0183,EW0002,AMNE,AMEL,

& CWEL (1,2) ,CE0183,CE0002,PS0183,PS0002,EP0003
& ,LT0122,AV0122)

CALL SMFFV(LEXTRN,LINTRN,LEPINW,EWOOOl,EW0183,AMEL,AMNE,
& CWEL (1,1) ,CE0001,CE0183,PS0001,PS0183,EP0185
& ,LT0123,AV0123)

CALL 	 SMVVV(LEPINW,LEPEXW,LEPEXA,-l,-l,-l,CAWW ,PE0185,PE0004,
PE0005,EP0185,EP0004,EP0005,LT0124,AV0124)

* 	 Connect vertices.
CALL SMCONF(LT0123,LT0122, 2, l,EW0183,AV0123,AV0122,

& LT0125,AV0125)
CALL SMCONV(LT0124,LT0125, 1, 2,EW0185,AV0124,AV0125,

& 	 LT,AV)

APROP(JGRAPH) = +1.0DO/APROP(JGRAPH)

INDEXG(1) 4

INDEXG(2) 5

INDEXG (3) 1

INDEXG(4) 2

INDEXG(5) 3

CALL AMPORD(LT, AV, INDEXG, AG(O,JGRAPH))

RETURN

END

Source list 3.5 Subroutine AM0026 for e+e- --> W+W - ,),

90 	 CHAPTER 3. GRACE SYSTEM

3.3 Specification o f the kinem atics rou tines

None of essential part of kinematics is generated by GRACE. The reason is that ill general
the choice of integration variables is highly dependent on the structure of singularities
in the amplitude squared, such as infrared divergence, mass-singularity and t-channel
photon exchange. It is quite difficult to prepare a kinematics enough general for any
process. Therefore the user has to wri te the kinematics most appropriate for the process
to be calculated. The subroutines which the user should complete are

KI NIT Ini tialization of kinematics.
KI NEM Calculate four-momenta of final particles from integration

variables.

In the generated program the energy of a particle is stored in the 4-th component
of the array which express the fo ur-momentum.

3.3.1 Subroutine KINIT

KINIT makes the initialization of t h kinematics and is called by USERIN . BASES calls
USERIN at the beginning. The template of USERIN is generated by GRACE and is to be
finalized by t he user. The functions of USERIN a re

1) 	 Initialization of A mplitude calculation
Call SETHAS and AHPARM.

2) 	 Initialization of kinematics
Call KINIT for intialization of kinematics

3) 	Initialization of BASES parameters
Set t he parameters for BASES. These paramet ,rs are t ransmitted to BASES through
the commons IBASE1/ and /BASE2/.

4) 	 Initialization of histograms
Let BASES k-now the Dumber of histograms and that of scatter plots by calling
BHIN IT and init ialize histograms.

5) 	 Init ialization of amplitude summary table
After the integration a summary table of the contribution from each graph to
the cross section is printed out. T h buffer for the amplitude summary table is
initialized.

An example of USERIN for the process e+e- ~ W+W-" will be shown in section 3.5.3.
In the source list 3.6 the subroutine KINIT for the process e+e- ~ W+W-" is

shown, of which the program structure is as follows:

1) Masses EM and WM are set and are pi).Ssed through the common /MASS 1/.

91 3.3. SPECIFICATION OF THE KINEMATICS ROUTINES

2) 	 Init ialize the M energy and parameters for kinematics and are passed through
the commons ENRGY and TRNSF.

3) 	 In itialize several cut paramet.ers and arc passed th rough th e commons KCUTS and
ACUTS.

4) 	 T he maximum number of multiplicity MXREG is set and a re passed through the
common / AMREG/. This p arameter MXREG is used in FUNC (See sect ion 3.5.4).

5) 	 Finally the cut paramet.ers are printed out.

SUBROUTINE KINIT
I MPL IC IT REAL*8(A-H,O-Z)

* Masses and width of par ticles
CO HMON / AMMASS/ AMWB , AMZB, AMAB,AMXB,AMX3,AMPH,AMLU,AMNE,AMNM,AMNT,

& AMLO,AMEL, AMMD, AMTA,AMQU,AMDQ,AMCQ,AMTQ,AMQO,AMOQ ,
& AMS Q,AMB Q,AMCP,AMCM,AMCZ,AMCA,AMGL

COMMON / AMGMMA / AGWB ,AGZB,AGAB,AGXB, AGX3,AGPH,AGLU,AGNE,AGNM, AGNT,
& AGLD, AGEL,AGMD , AGTA ,AGQU, AGUQ,AGCQ,AGTQ,AGQO,AGDQ,
& AGS Q, AGBQ,AGCP ,AGCM ,AGCZ,AGCA,AGGL

COHM ON / LOOPO / LO OP
COMMON / AMREG / MXREG
COHMON / AMCNST/ PI, PI 2 , RAD, GEVPB, ALPHA
COMMON / ENRGY / S ,W, E,P, P1P2,FACT
CCIMMON / TRNSF / YACO,EPSP,AP,XLOG
COMMON / KCUTS / RMN,RMX, ETH
CO MMON / ACUTS / OELCUT ,OLTCSG,DLTCSO, CSMX,CSMN
COMMON / MASSl / EM,WM
COMMON / MASS2 / EM2, WH2

DIMENSION W(5)
DATA WW / 200.00, 300.DO, 400.00, 400.00, 1000 .DO /

------ --------------------- Entry point -- - ---------------------------
*--- 1. Masses

WM AMW

*--
C

2.
WH2 WM*WM

Initialize constants

W W (5)
E 1.'/2.00

for kinemat ics .
W total energy

Sou rce list. 3.6 KINIT for the process e+ e- -> W+W-'Y
continue to the next page

92 CHAPTER 3. GRACE SYSTEM

C--------------------------------- ------------------ energy cuts
ETH WM
IF(ETH .LT. WM ETH WM
RMN 1 .0-3
RMX E - 4.00*WM2/W

C--- angle cuts
CSMX 1.00
CSMN - CSMX

OLTCSG 0 .00

OLTCSO 0.00

ZETAC 20 . 00

OELCUT COS((180.00 - ZETAC)*RAO)

C-- energy variables
P SQRT« E - EM)*(E + EM))
S W*W

PIP2 E*E + P*P
C--------------------------------------- factors for initial raditaion
C used in KINEM.

EPSP EM2/(p*(E + P))

AP EPSP + 1.00

ZZZ (1.00 - OLTCSG)/(OLTCSG + EPSP)
XLOG LOG(1 .00 + 2.00*ZZZ)
YACO XLOG/AP/P**2

C--- factor including flux.
VREL 2.00
FLUX = VREL*S
FACT = GEVPB/(FLUX*4.DO*(2.00*PI)**4)

*-----~---

*--- 3. Set KXREG : the maximum number of values which are returned
* by FUNC for one phase space point

KXREG = 2
*--

WRITE(6,100) W,EK
100 FORKAT(lHl,III' W= ',F8 . 2,3X,' EK = ',GI0 . 3,' IN GEV')

WRITE(6,'("1 RMN =",GI0.3)') RKN

WRITE(6,110) ETH,CSKX,CSKN

110 FORKAT(lH ,III' (1) KINEMATICAL CUTS :'11
t lOX,' ETH' ,GI0.3,' GEV'I
t lOX,' CSMX = ',FB.3 , I
t lOX, ' CSMN = ',F8. 3 , I I
t 5X,' WHERE ETH = THRESHOLD ENERGY FOR Q20 ANO QI0'1

5X, ' CSKN AND CSKX ARE ANGLE CUT FOR CS AND CSQ'
II)

RETURN

ENO

Source list 3.6 KINIT for the process e+e- ---> W+W-,.

93 3.3. SPECIFICATION OF THE KINEMATICS ROUTINES

3.3.2 Subroutine KINEM

In order to integrate the differential cross section, BASES samples a point. ill the int~gra
tion volume and calls the fUIlction subprogram FUNC, which calculates the numerical
value of integrand at the sampling point and returns it as the value of function. For
calculating the differential cross section integration variables are to be translated into
four-momenta of external particles, which is dOlle by the subprogram KINEM. The out
look of KINEM is as follows:

SUBROUTINE KINEM(NEXTRN, XX, PE, PP, YACOB, NREG, IREG, JUMP)

IMPLICIT REAL*8
PARAMETER (MXDIM = 50)
INTEGER NEXTRN. NREG, IREG, JUMP
REAL*8 XX(MXDIM), PE(4,NEXTRN), PP(NEXTRN.NEXTRN), YACOB

T he meanings of t he arguments are as follows;

NEXTRN input Number of ext.ernal particles
XX input Values of integration variables at the sampling point
PE output Table of four momenta of external particles
PP output Table of inner products of four momenta

YACOB ou tput 	 Normalization for converting the square of amplitude to t he
cross section

NREG in/out 	 The number of points in the phase space which correspond
to a point in the integration volume.
This value is set equal to one by FUNC for the firs t call a t ach
sampling point.

IREG input 	 Counter of calling KI NEM at the same sampling point. Func
tion FUNC increments IREG for each call , and calls KI NEM while
IREG ::::; NREG .

JUMP ou tput 	 If the sampling point is out of kinematical boundary, J UMP is
set to be a non zero integer value.

An example of KINEM for the process e+e- --> W+ W -, is shown in the source list 3.7.
The specification for wri tiTlg KINEM is as follows:

1) 	Initialization
At the beginning of routine , variable JUMP should be cleared for the safety.

2) 	 Calculation of four v ctors of external particles
From the integration variables XX (i), four vectors of external particles are derived
and are stored in the arrays PE(1~4,k), where PECl ,k) , PE(2,k) and PE(3,k)
correspond to Px, Py and P l> respectively, and PE(4,k) is energy of the k-th par
ticle.

94 CHAPTER 3. GRACE SYSTEM

3) 	 Jump flag JUMP

During calculation of four vector, when the sampling point XX(i) in the integra
tion volume is out of the kinematical boundary, then the jump flag JUMP should
be set equal to non-zero integer value. Otherwise, it must be zero.

4) 	 Inner prod ucts of four momenta
The inner products, taking all combinations of the external four momenta, are
calculated and stored in the array PP(l, m), where the numbers I and mare
corresponding to the labels of mom nta PE (1 "-'4, l) and PE (1 "-'4, m), respectively.
Namely,

PP(I, m) PE(4, l) * PE(4, m) - PE(l, I) * PE(l, m)

-PE(2, I) * PE(2, m) - PE(3, I) * PE(3, m).

5) 	Region flag NREG

When t he kinematics is represented by a many valued function, namely, a sam
pling point in the integration volume corresponds to several points in the mo
mentum phase space, the number of multiplicity for this sampling point should
be given as the value of NREG. The structure of KINEM for this case is as follows:

IF(IREG .EO. 1) THEN

The first call of KINEM for this sampling point.

If this point corresponds to several points in the phase space,

n points for example, then set NREG = n.

ELSE

The IREG-th call for the same sampling point

ENDIF

In the example of 3.7 there is no such a structure, because the kinematics IS

constructed by a single valued function.

6) 	 Notice
One should be careful not to loose the numerical accuracy by the cancellation
over many digits which may take place when the inner-product PP are calculated
from the four components of momenta. Use of invariants is recommended.

95 3.3. SPECIFICATION OF THE KINEMATICS ROUTINES

SUBROUTINE KINEM(NEXTRN, XX, PE, PP , YACOB, NREG, I REG , JUMP)

IMPLICIT REAL* 8(A-H,0-Z)

PARAMETER (MXDIM = 50)

INTEGER NEXTRN

REAL*8 XX(MXDIM)

REAL*8 PE(4,NEXTRN), PP(NEXTRN,NEXTRN)

REAL*8 YACOB

INTEGER NREG, IREG

INTEGER JUMP

COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA
* Masses and width of particles

COMMON /AMMASS/AMWB,AMZB,AMAB,AMXB,AMX3,AMPH,AMLU,AMNE,AMNM,AMNT,
& AMLD,AMEL,AMMU,AMTA,AMQU,AMUQ,AMCQ,AMTQ,AMQD,AMDQ,
& AMSQ, AM BQ,AMCP,AMCM,AMCZ,AMCA,AMGL

COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU,AGNE,AGNM,AGNT,
& AGLD,AGEL,AGMU,AGTA,AGQU,AGUQ,AGCQ,AGTQ,AGQD,AGDQ,

AGSQ,AGBQ,AGCP,AGCM,AGCZ,AGCA,AGGL
*--

COMMON / ENRGY / S,W,E,P,P1P2,FACT

COMMON / TRNSF / YACO,EPSP,AP , XLOG

COMMON / KCUTS / RMN,RMX,ETH

COMMON / ACUTS / DELCUT,DLTCSG,DLTCSO,CSMX,CSMN

CO MMON / MASSi / EM,WM

CO MM ON / MASS2 / EM2,WM2

* - ---

JUMP = 0
C---kinem-2
C Kinematics for the process
C

C e-(Pl) + e+(P2) ----> W-(Ql) + W+(Q2) + gamma(R)
C

C--
C (1) Frame of reference :

C (a) Photon is along the z-axis .

C (b) Initial e+ is in the x-z plane.

C (2) Definition of variables

C (a) Polar angle of e+ is CSG.

C (b) Photon energy is R.

C (c) Polar angle of W+ is CSO and

C azimuthal angle is PHI.

C (d) Energies of W- and W+ are Ql0 and Q20.

C (e) Angle between e+ and W+ is CSTH.

C (3) Variable sequence : R ---> CSG ---> Q20 ---> PHI

C--

Source list 3.7 An example of KINEM
continue to the next page

96 CHAPTER 3. GRACE SYSTEM

C-- R
RR RMX/RMN

R = RMN*RR**XX(l)
DR = LoG(RR)/R

C------------- -- CSG
ZZZ EXP(2.DO*XLoG*(XX(2) - O.5DO))
CSG (ZZZ - 1.DO)/(ZZZ + 1.DO)*AP
SNG SQRT« 1 .DO - CSG)*(1 . DO + CSG))
D2K AP*(2 . DO/(1.DO + ZZZ))
D1K ZZZ*D2K

C--------------- --Ql0, Q20
CSOMX 1. DO - DLTCSO
RCS02 (R*CSOMX)**2

WR W - R
ER E - R

U WR**2 - RCS02

V W*WR*ER

D RCS02*((W*ER)**2 - WK2*U)

SQD SQRT(D)

Q20KX (V + SQD)/U

Q20MN (V - SQD)/U

A E - Q20KX

B E - Q20KN

CA Q20MX - ER

CB Q20KN - ER

RX B*CA/(CB*A

DQ20 LoG(RX)/(S*R)

ZZZ A/CA*RX**XX(3)

XXX R*ZZZ/(1.DO + ZZZ

Q20 E - XXX

Q2 SQRT« Q20 - WK)*(Q20 + WK))

Ql0 W - Q20 - R

Ql SQRT« Ql0 - WK)*(Ql0 + WK))

IF(Q20 .LT. ETH .oR. Ql0 .LT. ETH GOTo 9999

IF(CSol .GT . 1.DO - DLTCSo) GoTo 9999

C--- CSO
CSO = (W*(E - R - Q20) + R*Q20)/(Q2*R)
SHO = SQRT« 1 . DO - cso)*(1.DO + CSO))

C-- - PHI
DPHI 2 . DO*PI

CSPHI = COS(DPHI*XX(4))

SNPHI = SIN(DPHI*XX(4))

C--------------- -- CSTH
CSTH = CSO*CSG + SNO*SNG*CSPHI

IF(CSTH .GT . CSKX .OR. CSTH .LT. CSKN) GOTO 9999

Source list 3.7 An example of KINEK
continue to the next page

3.3 SPECIFICATION OF THE KINEMATICS ROUTINES 	 97

C--- CSOl
CSOl - (R + Q2*CSO)/Ql

C--------------------- ---
CSQ - (R*CSG + Q2*CSTH)/Ql

IF(CSQ .GT . CSMX .OR. CSQ .LT. CSMN GOTO 9999
COSDEL (Q20*QI0 - W*(Q20 + QI0)

+ E*W + WM2)/(Q2*Ql)
IF(COSDEL . GT. DELCUT GOTO 9999

C-------- --------- ---------- -------------- ---------------- invariants
D1 R*P*DIK
D2 R*P*D2K

EPSQ WM2/(Q20 + Q2)
D3 R*E/ER*(EPSQ + Q2*(1.DO + CSO))

D4 R*(EPSQ + Q2*(1.DO - CSO))

PIQ2 E*Q20 + P*Q2*CSTH

P2Q2 E*Q20 - P"'Q2*CSTH

Q1Q2 W*(E - R) - WH2

P1Q1 EM2 + P1P2 - D1 - P1Q2

P2Q1 EH2 + P1P2 - D2 - P2Q2

*=~====~====================~===

* 	 Table of four momenta.
* PEO, J) : I = 1 -> X, 2 -> Y, ... 4 -> energy, of J-th particle.

* 	2: EL+ INITIAL LANTIP
PE(1,2) P*SNG
PE(2.2) O.ODO
PE(3,2) P*CSG
PE(4 .2) E

.. 	 1: EL- INIT IAL LPRTCL
PE(1. 0 -PE(l, 2)
PE(2,1) -PE(2 . 2)
PE(3,1) -PE(3 . 2)
PE(4.1) PE (4, 2)

* 	3: 1o'B+ FINAL LPRTCL
PE(1,3) Q2*SNO*CSPHI
PE(2.3) Q2*SNO*SNPHI
PE(3 .3) Q2*CSO
PE(4.3) Q20

* 	5: AB FINAL LPRTCL
PECi, 5) O.ODO
PE(2 .5) O.ODO
PE(3. 5) R
PE(4 . 5) R

* 	4: 1o'B- FINAL LANTIP
PE(1,4) PE(1 . 1)+PE(1,2)-PE(1,S)-PE(l,3)
PE(2 ,4) PE(2 ,l)+PE(2,2)-PE(2,5)-PE(2,3)
PE(3,4) PE(3,l)+PE(3,2)-PE(3,S)-PE(3,3)
PE(4,4) Q10

Source list 3.7 An example of KINEM
continue to the next page

98 CHAPTER 3. GRACE SYSTEM

C----------------------------- momentum check (mass)**2 of particles

ICHK 	 = 0
IF(ICHK .NE. 0) THEN

PRINT * ,------------------------,

PRINT *, , EM**2, WM**2, " EM2, WM2

PRINT *, ,------------------------,

DO 10 J = 1,5

SQP = PE(l,J)**2+PE(2,J)**2+PE(3,J)**2

10 PRINT *, ' mass**2 " PE(4,J)**2 - SQP

ENDIF

C---- PPCI, J) iDDer product between PE(*,I) and PE(*,J) -- 1nvariants

PP(1,l) EM2

PP(1,2) P1P2

PP(1,3) = P1Q2

PPCi,4) = P1Q1

PP(1,5) = D1

PP(2,l) = P1P2

PP(2,2) EM2

PP(2,3) P2Q2

PP(2,4) P2Q1

PP(2,5) D2

PP(3,l) P1Q2

PP(3,2) P2Q2

PP(3,3) WM2

PP(3,4) = Q1Q2

PP(3,5) = D4

PP(4,1) = P1Q1

PP(4,2) P2Q1

PP(4,3) = Q1Q2

PP(4,4) = WM2

PP(4,5) D3

PP(5,1) = D1

PP(5,2) = D2

PP(5,3) = D4

PP(5,4) = D3

PP(5,5) = O. ODO

C--- Jacobian
YACOB = FACT*DR*(YACO*D1*D2)*(DQ20*D3*D4)*DPHI/2.DO

RETURN
9999 	.JUMP =

RETURN

END

Source list 3.7 An example of KINEM

http:FACT*DR*(YACO*D1*D2)*(DQ20*D3*D4)*DPHI/2.DO

993.4. TEST OF GENERATED SOURCE CODE

3.4 Test of g e nerated source code

The main program to check gauge invariance at one point in the integration volume is
produced by GRACE, shown in source list 3.8. Before running this program the full set
of program components for the integration, namely USERIN, KINIT, FUNC, and KINEM,

should be prepared. The program flow of this test is as follows:

1) 	Initialization
Call USERIN to initialize the parameters for calculating the differential cross sec
tion with FONC .

2) 	 Select a po int
A point is selected in the integration volume. When one wants to test by several
different points, take the following structure:

PARAMETER (NPOINT = 5)

REAL*8 XX(NPOINT)

DATA XX I 0.1,0.3,0.5,0.7,0.9 I

CALL USERI N

DO 20 K = 1 , NPOINT

(1) 	 calcu late the function with the unitary gauge
and print out the result

(2) 	 calculate the function with the covariant gauge
and print out the result

20 CONTINUE

If the kinematics has an experimental cut which does not include the selected
point, one cannot make the check correctly. It is recommended to make the
check for various points in the integration volume.

3) 	Calculation in the unitary gauge
The differential cross section is calculated in the unitary gauge and the result is
printed out.

4) 	 Calculation in the covariant gauge
The differential cross section is calculated in the covariant gauge and the result
is printed out.

The subprograms USERIN and FUNC call the histogram package. Since, however , this test
program calculates the integrand at a point in the integration volume, the histogram
has no meaning. Thus we use just dummy routines of the histogram package so that
we do not need to change the subprograms USERIN and FUNC at all.

100 CHAPTER 3. GRACE SYSTEM

* 	Test main program
IMPLICIT REAL*8(A-H,0-Z)

PARAMETER (MXDIM = 50)

COMMON / LOOPO / LOOP

COMMON / BASEl/ XL(MXDIM),XU(MXDIM),NDIM,NWILD ,

&; IG(MXDIM) ,NCALL

COMMON / BASE2 / ACC1 , ACC2,ITMX1,ITMX2

COMMON / BASE3 / SI,SI2,SWGT,SCHI ,SCALLS , ATACC,NSU,IT,WGT

*--- - -- - --------- - --------------------------- - ---- - ------------ - ----- --

DIMENSION X(MXDIM)

INCLUDE 'incll . f '

INCLUDE 'inc12 .f'

*--
WRITE(*, ' (10X,A//)')'* 5120 E+ E- => W+ W- A TREE '

CALL USERIN
WGT = 1.00

CT DO 20 MANY X'S

DO 10 I = 1, NO 1M

XCI) = 0.4500

10 CONTINUE

DO 40 I = 1, NGRAPH

JSELGCI) 1

40 CONTINUE

WRlTE(*,*) 'X (X CI) , I=l,NDIM)

WRlTE(*,*) 'JSELG JSELG

* 	 Unitary gauge
IGAUAB = 0
IGAUWB = 0
IGAUZB = 0
IGAUGL = 0

AGAUGE(O) = 1.0020

, ,WRITE(*,*) 'IGAUAB = IGAUAB, AGAUGE = ',AGAUGE(I GAUAB)

WRlTE(*, *) ' IGAUWB = , , IGAUWB, , AGAUGE = ' ,A GAUGE(IGAUWB)

, ,WRITE(*, *) 'IGAUZB = IGAUZB, AGAUGE = ',AGAUGE(IGAUZB)
,WRlTE(*,*) 'IGAUGL = IGAUGL, , AGAUGE = ',AGAUGE(IGAUGL)

AAA = FlINC(X)

WRITE(*,*) 'ANSi ',AAA

WRITE(*,*) ' # GRAPHS = ',JGRAPH

Source list 3.8 Main program for gauge invariance check
continue to the next page

101 3.4. TEST OF GENERATED SOURCE CODE

* 	 Covariant gauge
1GAUAB = 1
1GAmffi = 2
1GAUZB = 3
1GAUGL = 4
AGAUGECIGAUAB) 2 . 0DO
AG AUGE(1GAtJWB) 3.0DO
AGAUGE(1GAUZB) 4.0DO
AGAUGE (IGAUGL) 5 . 0DO

WRITE (* , *) 'X (X (I) , 1=1, ND1 I1)

WRITE C*,*) ']SELG]SELG

WRI TE(* , *) ' I GAUAB IGAUAB, ' AGAUGE = ', AG AUGECIGAUAB)
WRITE(*.*) 'IGAmffi I GAUWB , ' AGAUGE = ' , AGAUGE(I GAUWB)
WR1TE(*,*) 'IGAUZB 1GAUZB, ' AGAUGE = ' ,AGAUGE(1GAUZB)
WRITE(*,*) 'IGAUGL = , 1GAUGL , ' AGAUGE = ',AGAUGE(IGAUGL)

BBB = FUNCCX)
WR1TE(*,*) ' ANS2 , ,BBB
WR1TE (*,*) '# GRAPHS , , JGRA PH

IFCBBB. NE .O) THEN
WRITE(*,*) 'ANS1/ ANS2 - 1 =' AAA /BBB - 1

ELSE
WRITEC*,*) 'ANS1 = ', AAA. ' ANS2 ='. BBB

ENDIF
CT 20 CO NTINUE

STOP

END

Source list 3.8 Main program for gauge invaria nce check

In the ou tput 3. 1 the squared values of th ampli tude at a point in t he p hase space
in di fferent gauge, covariant gauge and unitary gauge are shown, which is the output
of the test program. The number of calculated Feynman graphs is different in t hese
gauges . The relat ive error is printed in t he out put. We usually r quire about 14 digits
agreement in double precision and about 32 digits in uadruple precision J. In t he
output one can also see contribution of each graph to the result .

lIn quadruple precision, we have checked it on FACOM mainframe compu te r, Sun spare workstation
and HITAC 3050 workstation

102 CHAPTER 3. GRACE SYSTEM

GRAC£ Ver. 1.0

• 5120 £+ £- => W+ W- A TREE

w= 1000.00 EM .511£-03 IN G£V

RlIN .100£-02

(1) KINEMATICAL CUTS

£TH 80.0 G£V

CSHX 1.000

CSHN -1.000

WHERE 	 £TH = THRESHOLD ENERGY FOR Q20 AND QI0

CSHN AND CSHX ARE ANGLE CUT FOR CS AND CSQ

X .45 .45 .45 . 45
JS£LG 1
IGAUAB 0 AGAUG£ = 1.000000000000000£+20
IGAUWB 0 AGAUG£ = 1.000000000000000£+20
IGAUZB 0 AGAUG£ = 1.000000000000000£+20
IGAUGL 0 AGAUG£ = 1.000000000000000£+20

ANSI 1.34979414428365
• GRAPHS 18
X .45 .45 .45 .45
J S£LG = 1
IGAUAB 1 AGAUG£ = 2 .0
IGAUWB 2 AGAUG£ = 3.0
IGAUZB 3 AGAUG£ = 4.0
IGAUGL 4 AGAUG£ = 6.0
ANS2 1.34979414428364
• GRAPHS ~ 28
ANSI/ANS2 - 1 = 5.561116123125782£-16

INT£GRATED VALUE OF SQUARE OF EACH GRAPH
GRAPH ABSOLUTE RELATIVE

1 .23935707£-04 .17732857£-04
2 . 29254464£-04 .21673271£-04

3 .30405158£-10 .22526774£-10

4 .24923917£+02 .18464976£+02

5 .30462264£+02 .22568074£+02

6 . 16871906£-06 .12499614£-06

7 . 33536397£+02 .24846564£+02

8 .40988511£+02 .30366490£+02

9 .14039649£+01 .10401326£+01

10 .11466966£+01 . 65101606£+00

11 .34248206£+02 . 25372910£+02

12 .60292161£+03 .37269127£+03

13 .37723272£+03 . 27947426£+03

14 . 18116921E-07 . 13421988E-07

Output 3.1 Result from gauge invariance check
continue to the next page

103 3.4 . TEST OF GENERATED SOURCE CODE

15 . 3 0004545 E+02

16 .821 73348E+02

17 .42105481E+01

18 . 9 2509178E+03

19 . 14010416E-11

20 .46106302E+03

21 .37723 271E+0 3

22 .46034419E-09

23 .10452 751 E-13
24 . 31070077E+02
25 .10159998E-13
26 .83905907E+02
27 . 28065832E+Ol
28 .92394308E+03

TOTAL .13497941E+ 01

.22228978E+02

.60878430E+02

.31194002E+01

. 68535767E+03

. 10379669E- 11

.34158025E+03

. 27947426E+03

.34104770E-09

.77439594E-14

.23018382E+02

.75270725E-14

. 62162002E+02

.20792676E+Ol

.68450666E+03

Output 3.1 Result from the gauge invariance check

104 	 CHAPTER 3. GRACE SYSTEM

3.5 Numerical integration

T he GRACE system generates a set of FORTRAN subprograms necessary for the Monte
Carlo integration program package BASES, which consists of MAINBS, USERIN, FUNC and
USROUT. In this section a description of the integration program package BASES and
these subprograms generated by GRACE are given in the following order:

(1) 	Job parameters
In the initialization stage of integra ion, BASES reads these parameters to control
tbe program fl ow.

(2) 	Program structure of BASES

Relation among BASES and those subprograms generated by GRACE is described
in section 3.5.2.

(3) 	 Initialization subprogram USERIN in section 3.5.3.

(4) 	 Function program of integrand FUNC in sect ion 3.5.4 .

(5) 	 Histogram package in 3.5.5.

(6) 	 Output from BASES in 3.5.6.

3.5.1 Job parameters

In order to control the integration job, there a re fOUT job parameters; loop parameters,
print flag, computing t ime limit and job .Bag. They ar read at the beginning of a job
on a main fram e computer, while they are to be given interact ively from a t rminal on
a unix machine.

Job flag
The integra tion may take much computer t ime, for instance, if calculat ion of the
integrand needs a long computation. Then it might happen on a main frame
computer t hat a job is terminated before reaching the convergence condition of
integration due to t he computing t ime limit of the job class and lose all infor
mation in the worst case. To prevent this t rouble, BASES watchs the remaining
computing time and when it is not enough for the next iteration, all t emporary
information is saved on a disc file before t he job is terminated. T he meaning of
job flag is as follows;

JFLAG meaning of job flag
0
1
2
3

First trial of the grid optimization step
First trial of the integration step
Continuation of the grid optimization step
Continuation of the integration step.

105 3.5. NUMERJCAL INTEGRATION

At the beginning of a new integration job, JFLAG = 0 should be set. If the job is
termina ted for lack of the computing time, the value of next job flag is given at
the end of the output.

If we ask bet ter accuracy or more iterations than the present result, by setting
JFLAG = 3, further continuation of the integration step can be carried ou t even
once after the integration finishes by achieving a given accuracy of the es t. imate or
reaching a given number of iterations. In order to continue the int.egration step
fur ther, the maximum itera ti on number ITMX 2 and th<' exppct.ed accuracy ACC2

arc to be set larger and smaller thall the previous ones, respectively, in addition
to set JFLAG = 3.

To us his option, a file should be prepa.red beforehand, which we ("all the prob
abi lity informat ion file (see section 3.5.6). On a main frame computer this til
is allocated to the logical unit number 23 ill the JCL (see section 4. 2. 5).

Since on a unix machine the computing t ime limit. is not usually settled , a
job will run until the convergence condit ion is achie cd. Therefore only JFLAG =
o and 3 are m eaningfv.l on a unix machine. I-lowe er, if user wants to generate
four vectors by SPRI NG, th probabili ty information fi le should be prepared in the
integration stage. Fo r this case, it should be opened with the I gical \lu it n umber
23 in t he m ain program MAINBS .

Loop parameters
W hen we want t know the energ depeudellce of the cross section for instance,
we must integrate the differential cross section at se eral energy points. To make
this possible in a single job , t he loop option is prepared. To use the loop opt ion,

(a) insert statements like t he following in su bprogram USERIN;

CO MMON ILOOpol LOOP
REAL*a WCM(6)
DATA WCM 1 40.0, 60.0, 70.0, 105 . 0, 150.0, 260.01

IF((LOOP .LE. °) .OR. (LOOP .GT. 6)) STOP

W= WCM(LOOP)

In this example the eM energy \oj is selected from six energy points WCM(6)

by the number LOOP, which is counted by BASES.

(b) set the loop parameters. The loop parameters consis t of the first loop number
LOOPF and last loop number LOOPL of the loop.

When the loop parameters are given as (LDOPF, LOOPL) = (4, 4), then only the
fourth energy point \oj = 105.0 is calculated. If (LDOPF , LOOPL) = (1, 3) are given,
three energy points are selected successively from \oj = 40.0 to 70 .0.

http:exppct.ed

106 CHAPTER 3. GRACE SYSTEM

Print flag

Since there are several kinds of outputs from BASES, selecting the output by the
print flag is useful. The outputs from BASES are the following:

(a) final result of the integration.

(b) convergence behavior for the grid optimization step,

(c) histograms and scatter plots for the grid optimization step,

(d) convergence behavior for the integration step, and

(e) histograms and scatter plots for the integration step

A combination of the above ou tputs is prin t.ed according to the absolute value of
the print flag, willch defi n d a.s follows:

INPRI NTI meaning of print flag
0
1
2
3
4

2' 5

nothing bu t USROUT is called
only (a)
(a) and (e)
(d) and (e)
(b), (d) and (e)
(b), (c), (d) and (e)

If the negative number "-NPRI NT" is given as the print flag, t.h user output
routine USROUT is called at the end of the job as well as one of the above combi
nations is print.ed according to NPRINT. The routine USROUT should be prepared
by user if the negative number or "0" is specified as the print flag.

Computing time limit
(This facility fu.nct ions only fOT a main frame computer.) The computing t ime
limit is to be given as a job paramet.er in the unit of minute wit h real number,
while the internal time in BASES counts in the unit of second. When the remaining
computing time is not enough for the next iteration, the job is terminat .d (see
also the item of job flag).

3.5.2 Program structure of BASES

In figure 3.4 is shown the structure of program BASES, where MAINBS, USERIN, KINIT,

KINEM and FUNC are generated by GRACE and are to be finalized by user.

Program flow
The main program MAINBS calls the steering routine BSMAIN, which controls the
program flow of integration as follows:

http:paramet.er
http:print.ed
http:print.ed

107 3.5. NUMERlCAL INTEGRATION

Fig. 3.4 Program structure of BASES

108 CHAPTER 3. GRACE SYSTEM

(A) 	 Initialization

(1) 	 At the beginning, the job parameters described in the previous section
are read from the unit number 5.
On a unix system, these parameters are obta ined from terminal by sub
program BSUNIX.

(2) In subprogram BSUSRI, the parameters for BASES are set to the default
values and the subprogram USERIN is called to ini t ialize t hem. If some
fundamental paramet p-rs, like number of dimensions of integral , are not
set in USERIN, the program will stop.
Specification of USERIN is given in section 3.5.3.

(3) 	If the job flag is not equal to "0", then the current results are read from
the file by the subprogram BSREAD.

(4) 	If the job flag is equal to "0", then t he widths of all grid are set uniform .

(B) T he grid optimization and integration steps

(1) 	 For each hypercube, Ntrial points are sampled in the foll wing way;

(a) 	Sample a small region in t he hypercube and sampl{~ a point, in the
small region for each variable.

(b) 	Call function su bprogram FUNC to calcula te the differential cross
section at the sampled point.

and the estimate and variance of the integral are calculat ed .

(2) 	 Sums of the estimates and variances over all hypercubes ar taken to
calculate the estimate and error of the integral .

(3) 	 If the integration converges, then go to step (C) .
(4) 	 If the integration does not yet converge, then;

For the grid optimization step,
call the subprogram BSGDEF to adjust each widt h of grids and then
go to step (B.l).

For 	the integration step,

go to step (B.l).

(C) 	Termination of task

(1) 	 Print out the result .

(2) 	 When this is the grid optimization step, set t he job flag equal to "1"
and go to step (B .l) .

(3) 	 When this is the integration step, call USROUT, write the probability
information on a file and stop.

Main program MAINBS

In the program MAINBS, the name of function program should be given by an
external statement and subprogram BSMAIN is called, which is a steering routine
of the integration. Furthermore, to secure the histogram buffer t.he common

109.3.5 	 NUMERlCAL INTEGRATION

/PLOTB/ is declared in this main. An example of MAINBS for the unix system is

given in the source list 3.9.

EXTERNAL FUNC

DOUBLE PRECISION FUNC

INCLUDE 'inclh.f'

COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

open(23, file ='bases.data ' ,status='unknown' ,form='unformatted')

CALL BSMAIN(FUNC)

close(23)

STOP
END

Source list 3.9 An Example of MAINBS

The file inclh. f is referred by the INCLUDE statement, where the number of
histograms and that of scatter plots are given by the PARAMETER stat ment as
follows:

PARAMETER (NH IST = 5, NSCAT = 6)

The reason why we use the in lude file to define the numbers of histograms
and scatter plots is that it is much better to change them in a include fi le t han
to change the all subprograms includi ng t hem since these numbers are used in
several subprograms.

A binary file bases. data is created for the probability information as mentioned
in previous section .

If the name of function program differs from FUNC, it should be declared with the
real name instead of FUNC.

3.5.3 Initialization subprogram USERIN

At the beginning of the integration job, the subroutine USERIN is called to initialize
the parameters both for the integration and calculating the integrand. The template
of USERIN is generated by GRACE and is to be fi nalized by the user. The functions of
USERIN are as follows:

(1) 	Initialization of the amplitude calculation
This is done by calling subprograms SETMAS and AMPARM,which are described in
section 3.2.1.

110 CHAPTER 3. GRACE SYSTEM

(2) 	 Initialization of kinematics
This is done by calling the subprogram KINIT. KINIT must be prepared by the
user, specification of which is given in section 3.3.

(3) 	Initialization of the integration parameters
The parameters for integration are summarized in the commons /BASE1/ and
/BASE2/, where all real variables are to be given by the double precision.

PARAMETER (MXDIM = 50)

COMMON IBASEll XL(MXDIM), XU(MXDIM), NDIM ,NWILD, IG(MXDIM), NCALL

XL(i) (i 1, NDIM) The lower bound of i-th variable.

xu (i) (i 1, NDIM) The upper bound of i-th variable.

NDIM The dimension of the integral.

NWILD The number of wild variables (at least one and at

most 15).
IG(i) (i 1, NDIM) 	 The flag for the grid optimization. If IG(i) = 1(0) ,

the grid for the i-th variable is (not) optimized.

If the integrand is approximately constant for a

variable, it may give better convergence than vary

ing widths to set the grid uniform for this variable.

The default flag is "1" (optimization).

NCALL 	 The number of sampling points per iteration.

The number of real sampling points differs from a given number NeALL, which is
automatically determined by the following algorithm. It is noticed that the order
of variables XU(i), XL(i) and IG(i) (i = 1 , NDIM), should start with the wild
variables.

N(~uenJ = 1,000 N(g·uen j = 5,000

N wild N. Ncu~ N g N;;";;'J Nwild N. Ncubc N.i/
N(~alj

I 25 25 50 1,000 I 25 25 50 5,000
2 22 484 44 968 2 25 625 50 5,000
3 7 343 49 686 3 13 2,197 39 4,394
4 4 256 48 768 4 7 2,401 49 4 ,802
5 3 243 48 972 5 4 1,024 48 4 ,096
6 2 64 50 960 6 3 729 48 4,374
7 2 128 50 896 7 3 2,187 48 4,374
8 2 256 50 768 8 2 256 50 4,864
9 I I 50 1,000 9 2 512 50 4,608

10 I I 50 1,000 10 2 1024 50 4,096
N(g·venj = 10,000 N(g1tJen.) = 20,000

Nwild N. Nc.ube N g
N(reol j

Nwil d N. Ncutx; No
N(real)

1 25 25 50 10,000 I 25 25 50 20,000
2 25 625 50 10,000 2 25 625 50 20,000
3 17 4 ,913 34 9,826 3 21 9,261 42 18,522
4 8 4,096 48 9,182 4 10 10 ,000 50 20,000
5 5 3 ,125 50 9,375 5 6 7,776 48 15,552
6 4 4 ,096 48 8,192 6 4 4 ,096 48 16,384
7 3 2,187 48 8,448 7 3 2,187 48 19,693
8 2 256 50 9,984 8 3 6 ,561 48 19,683
9 2 512 50 9,728 9 2 512 50 19,968

10 2 1,024 50 9,216 10 2 1,024 50 19 ,456

III 3.5. 	 NUMERICAL INTEGRATION

The number of subregions per variable Ns is determined by the maximum number
which satisfies the two inequalities:

Neall - ' -Ns = (-2-) "'w;'d S 25 and N:w;'d < 32768.

The number of hypercubes is given by Ncube = N:'w; 'd , then the number of
sampling points per hypercube is Ntrial = N eall / Nwbe- Since the number N tria/

is an integer, the calculated number N~:7t/) = N trtal x N cubc may differ from the
. b N(gillen)given num er call .

The table gives the numbers of real sampling points N~:~a/) depending on the

gi ven numbers of sampling points N;~;/ven) and the numbers of wild variables

Nw i 1d ·

COMMON /BASE2/ ACC1, ACC2, ITMX1, ITMX2

ACCl The accuracy (%) for the grid optimization step (default
0. 2 %).

ACC2 The a curacy (%) for the integration step (default 0.05 %).

ITMXl The m axim um iteration n umber of the grid optimization step

(default 15).

I TMl2 The maximum iteration number of the integration step (de

fau lt 100).

(4) 	 Numbers of Histograms and Scatter plots
In order to let the system know the numbers of histograms and scatter plots, the
subroutine BHIN IT is to be called somewhere in USERIN like;

CALL BHINIT(NHIST, NSCAT)

where NHI ST (NSCAT) is the Dumber of histograms (scatter plots) and one his
togram (s atter plot) requires 281 (2527) 32-bit words. An additional storage of
281 words is kept for a histogram of the numbers of trials in SPRING. It is noted
that the buffer for the histograms and scatter plots should be secured in t he main
program HAINBS.

(5) 	 Initialization of Histograms and Scatter plots
To make a histogram and a scatter plot , the following initialization routines are

to be called in the USERIN;

CALL XHINIT(ID#,
lower_limit, upper_limit, # of bins, ' Title '),

and

112 CHAPTER 3. GRACE SYSTEM

CALL OHINIT(10#,

x_loyer_limit, x_upper_limit, # of x bins,
y_loyer_limit, y_upper_limit, # of y bins,

, Title ') ,

respectively. The ID and bin numbers are to be given by an integer value, and
the lower and upper limits are to be given by the dou ble precision values. The
maximum bin number both for histograms and scatter plots is 50, which is defined
by the paper size. When too many histograms or scatter plots are initialized, til~
first NHIST-l his togra ms and NSCAT scatter plots are initialized and the others
are neglected.

An example for the process e+e- -t W +l-V-, is shown in the source list 3.10. In this
example, the histogra.ms for all integration variables and scatter plots for all combina
tions of integration variables are demanded, which is a standard se t of histograms and
scatter plots demanded in the generated USERI N by GRACE. For this case, the para.m
eters NHI ST and NSCAT are to be set equal to at least NDIM and NDIM* (ND I M-1) /2 iu
the include file inclh. f, respectively.

SUBROUTINE USERIN

IMPLICIT REAL*8(A-H, O-Z)

PARAMETER (MXDIM = 50)

COHMON / LOOPO / LOOP

COHMON / BASEl / XL (MXD IM),XU(MXDIM) ,NDI M.NVILD ,

t IG (KXDIM).NCALL
COMMON / BASE2 / ACC1 , ACC2,ITMX1,ITMX2
COHMOH / BASE3 / SI , SI2,SWGT,SCHI,SCALLS,ATACC.NSU,IT,WGT

• 	 Table of amplitudes
PARAMETER (NGRAPH = 28 . NEXTRH = 5, LAG = 72)
PARAMETER (NGRPSQ = NGRAPH*NGRAPH)
COMMON / AMSLCT/JSELG(NGRAPH) . JGRAPH . JHIGGS, JWEAKB
COMPLEX*16 AG, APROP
COHMON /AMGRPH/AG(O:LAG-l,NGRAPH). APROP(NGRAPH),

t ANCP(NGRAPH), AHSP(O:NGRAPH).

t CF(HGRAPH.NGRAPH). IGRAPH(NGRAPH)

INCLUDE 'inclh.f'

CHARACTER XSTR*14, DSTR*24

.=====~==~==================

• Parameters for Amplitude calculation
*===

Source list 3.10 An example of USERIN

cantin tie to the next page

http:histogra.ms

113 3.5. NUMERICAL INTEGRATION

============= Mass and Width*
CALL SETMAS

*
============= Coupling constants*

CALL AMP ARM

•
*=========== ================== ==

Initialization of Kinemat ics*
*==========================~===

*
CALL KINIT

•
*========================= ==

Parameters for BASES*
*================================= ======== ==============================

*--- 1 . 	 Dimension of integration.

NOIM 4

NWILO 4

*--- 2 . 	 Region of integr at ion.

DO 10 I = 1, NO I M

H(I) 0.00

XU(I) 1. DO

IG (I) = 1

10 CONT INUE

*- - - 3. 	Numbers of iterat i ons and sampling points / iteration
and expected accuracies

ITMX1 5

ITHX2 5

AGC1 0.200

ACC2 0.0100

NCALL = 5000
*===

Initializat ion of Histograms and scatter plot s
*===

* Change NHIST = NDIM, NSCAT NOIH* (NOIM - l) /2
* in the parameter statement (in I NCLH)

CALL BHINIT(NHIST,NSCAT)

Source list 3.10 An example of USERIN

continue to the next page

114 CHAPTER 3. GRACE SYSTEll'J

NX = 50

ND = 50

DO 100 I = I, NDIM
WRITE(XSTR, 110) I

110 FORMAT('X(',I2,') Spectrum')
CALL XHINIT(I, XL(I), XU(I), NX, XSTR)

100 CONTINUE

K = 0

DO 200 I = 1, NDIM - 1
DO 200 J = I + 1, NDIM

WRITE (DSTR, 210) I, J
210 FORMAT('X(' ,I2,')-X(' ,12,') Distribution')

K = K + 1

CALL DHINIT(K, XL(I) .XU(I),ND, XL(J),XU(J) ,ND,DSTR)

200 	 CONTINUE

*===~=== .. Initialization of summary table
•=================~===

DO 300 IGR = 0, NGRAPH
ANSP(IGR) = O.ODO

300 	 CONTINUE
FKCALL = 0
NKCALL = 0

RETURN
END

Source list 3.10 An example of USERI N

3.5.4 Function program of the integrand

The function program calculates the value of integrand at t he sampling point fed by
BASES.

A set of numeri al values of the integration variables at a sampling point is passed
t hrough the argument. of function program. A typical st ructure of the function program
is given in t he source list 3.11 where the dimensi n of integration is five. A recipe for
writing the function program is as follows:

1) 	 Calcula te the kinematical variables, by which the di fferential cross section IS

described, from the integration variables, X(i) for i = 1, NOIM.

2) 	 If, in the last step, a sampling point is found to be outside of the kinematical
boundary, set the value of function equal to zero and return.

115 3.5. NUMERlCAL INTEGRATION

3) 	 If the point is inside the kinematical boundary, calculate the numerical value of
the differential cross section and set the value of function equal to the calculated

value.

4) 	 If a histogram is required , call subprogram XHFILL once.

5) 	 If a scatter plot is required, call subprogram OHFILL once.

DOUBLE PRECISION FUNCTION FUNC(X)

DOUBLE PRECISION X(5)

FUNC = 0.0

Calculation of the kinematics
IF(the point is outside the kinematical boundary) RETURN

FUNC = is calculated from XCi) for i = 1, 5.

CALL XHFILL(ID, V, FUNC)
CALL DHFILL(ID, VX, VY, FUNC)

RETURN
END

Source list 3.11 Typical structure of FUNC

An example of FUNC for the process e+e- ~ W+W-, is given in the source list 3.12.
The structure of this example is as follows:

1) 	The array XX stores the values of integration variables.

2) 	 Total number of external particles NEXTRN and xx are transferred to subprogram
KINEM. The tables of momenta P and inner-products of them PP, and normaliza
tion factor YACDB are received from KINEM.
In the case of QeD calculation, the running coupling constant can be included
in YACDB, which should be defined by the user.

3) 	P and PP are copied to the common variables PExxxx and PPRDO, respectively,
and they are used in the amplitude calculation.

4) 	 Subprogram AMPTBL calculates the amplitudes and makes the tables of them.

5) 	Summation over the spin states by calling the subprogram AMPSUM.

6) Fill the histograms and scatter pots by the subprograms XHFILL and OHFILL,
respectively.

116 CHAPTER 3. GRACE SYSTEM

7) 	 The variable JUMP

If the sampling point is out of the kinematical boundary, JUMP is set to a non zero
integer in KINEM. For this case, the amplit.ude does not need to be calculated .

8) 	 The variables NREG and IREG

When the kinematics contains a multi-valued function, i.e. one sampling point
in the integra tion volume corresponds to several points in the pbase space, the
variables NREG and IREG take the total number of multiplicity and the current
number of multiplicity, respectively.

In the subprogram FUNC, the variables NREG and IREG are set to "1" at the
beginning and subroutine KI NEM is called. A typical structure of subroutine
KINEM for multi-valued function is as following:

SUBROUTINE KINEM(NEXTERN, XX, P, PP, YACOB, NREG, IREG, JUMP)

IF(IREG.EQ. l) THEN
NREG = (the number of multiplicity at the sampling point XX)
(Calculate four momenta P for the first calculation)
(Calculate in ner prod ucts of four momenta PP)
(Calculate Jacobian YACOB for the first calculation)

ELSE IF (IREG . EQ. 2) THEN
(Calculate fo ur momenta P for the second calculation)
(Calculate inner products of four momenta PP)

(Calculate Jacobian YACOB for the firs t calculation)

ELSE IF

ENDIF

RETURN

END

KINEM calcula tes the total number of multiplicity at t he sampling point and store
it in NREG . If it is greater than "1" , t hen the first calculat ion of four momenta
is performed . From the second calculation, IREG is incremented with keeping
NREG unchanged and momenta are returned by calling KINEM. The same step is
repeated until IREG reaches NREG. The value of MXREG is defined in the subroutine
KIN IT and is used to protect unexpected repeat. It is clear that NREG is the total
number of multiplicity at a sampling point given by KINEM and IREG plays the
role of counter which shows the number of KINEM calls.

9) 	 vVhen one wants to demand some experimental cut on tbe phase space, one can
define it either in KINEM or in a new subroutine. The new subroutine should be
called just after calling KINEM.

http:IF(IREG.EQ

117 3.5. NUMERiCAL INTEGRATION

If the sampling point falls into the region excluded by the experimental cut, then

GO TO 1000

is executed.

FUNCTION FUNC(X)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (MXOIM = 50)

REAL*8 FU NC

REAL*8 X(MXDIM)

COMMON / LOoPO / LOOP

COMMON / BASEl / XL (MXD IM),XU(MXOIM) ,NOIM,NWILO,

8r. I G(MXOIM) ,NCALL
COMM ON / BASE2 / ACC1, ACC2.ITMX 1, I TM12
COMM ON / BASE3 / SI,SI2,SWGT ,SCHI,SCALLS ,ATACC,NSU,IT,WGT
INCLUDE 'incl!. f'
COMMON /AMREG / HXREG
COMMON / AMSPI N/ JHS (NEXTRN), JHE(NEXTRN), ASPIN

ANSO, 	 ANS
P : Table of f our momenta*

* 	PP : Table of i nner p r oducts
REAL*8 XX (MXOI M) , P(4 ,NEXTRN) ,PP(NEXTRN,NEXTRN)
COHHON /SP4VEC/ VEC(4,NEXTRN)

*===
Initializat ion*

..===
ANSUH = 0.000
DO 5 I = 1, NOIH

n (I) = XCI)

5 CONTINUE

NREG

OFT 0.00

*===
Kinematics*

*===

DO 1000 IREG = 1 , HXREG

IF(IREG .GT. NREG) GO TO 1000

CALL KI NEM (NEXTRN , XX , P, PP, YACOB,NREG,IREG,JUMP)

Source list 3.12 An example of FUNC

continue to the next page

118 CHAPTER 3. GRACE SYSTEM

*--

Reset the 	temporal buffer for the region 1
*-------------- - ---

IF(IREG .EQ. 1) THEN

DFT = O.DO

DO 180 K = 1, NEXTRN

DO 180 J = 1, 4

VEC(J,K) O.DO
180 CONTINUE

ENDIF

IF(JUMP .NE. 0) GO TO 1000

*--

For 	user's cut
*-------- --

C CALL USRCUT(JUMP)

C IF(JUMP .NE. 0) GOTO 1000

*--

* Four momenta of external particles
*--

DO 20 I = 1 , 4
* 	 1 : EL- INITIAL LPRTCL

PEOO01(I) P(I, l)

* 2: 	 EL+ INITIAL LANTIP
PEOO020) P(I, 2)

* 3 : 	 WB+ FINAL LPRTCL
PEOO03(I) PO, 3)

* 4: 	 WB- FINAL LANTIP
PEOO04(I) P(I, 4)

* 5 : 	 AB FINAL LPRTCL
PEOO05(I) p(I, 5)

20 CONTINUE

*--
Inner products of momenta of external particles

*--
DO 30 J = 1, NEXTRN
DO 30 I = 1, NEXTRN

PPROD(I, J) = PP(I, J)
30 CONTINUE

*===
Amplitude calculation*

*===
* 	 =============

CALL AMPTBL
* =============

Source list 3.12 An example of FUNC

continue to the next page

3.5 NUMERICAL INTEGRATION 	 119

* ===================

CALL AMPSUM(ANSO)
* ===================

FKNORM YACOB*ASPIN

ANS ANSO*FKNORM

ANSUM ANSUM + ANS

*------------ ---- - -------------------- - ---------------------------- - ---

Save four momenta and probabilities of the region 1*
*---- - --------------------------- - -------------------------------------

1F(1REG .EQ. 1) THEN

OFT = ANS

DO 420 K = 1, NEXTRN

DO 420 J = 1, 4

VEC(J,K) P(J,K)

420 CONTINUE

ENDIF

*======================~==

• Fill Histograms and Scatter plots
*===

DO 40 I = 1, NDlM

CALL XHFILL(I, XX(1), ANS)

40 CONTI NUE

K = 0

DO 50 I 1, NOlM-1

DO 50 J 1+1, NOIM

K 	 K + 1
CALL DHF1LL(K, XX (l) . XX (J), ANS)

50 CONTI NUE

*===

Update 	s ummary t able*
*===

ANSP (O) = ANSP(O) + WGT*ANS
DO 60 1GR = 1, JGRAPH

ANSP(lGR)=ANSP(lGR) + WGT* YACOB*ASPlN*ANCP(lGR)
60 	 CO NTI NUE

NKCALL = NKCALL + 1

IF(NKCALL .GT. 10000) THEN

NKCALL NKCALL - 10000

FKCALL = FKCALL + 10000

END1F

1000 CONTINUE

FUNC = ANSUM

Source list 3.12 An example of FUNC

continue to the next page

120 CHAPTER 3. GRACE SYSTEM

*--------------- ----- --
.. Put the final 4 vectors into the arrays VEC()
*-- ------------------------------

.. IF(FUNC .GT. O.DO) THEN

.. IF(DFT/FUNC .LT. DRN(DUM)) THEN

.. DO 850 K = 1, NEXTRN

.. DO 850 J = 1, 4

.. VEC(J,K) = P(J,K)

.. 850 CONTINUE

.. ENDIF

.. ENDIF

RETURN
END

Source list 3.12 An example of FUNe

3.5.5 Histogram package

The program. package BASES/SPRING has its own histogram package, whose character
istics are as follows;

1) 	The buffer size of histograms and scatter plots is to be defined III the mam
program KA INBS.

INCLUDE 'inclh .f '

COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

The parameters NHIST and NSCAT are defined in the include file inclh. f . By
changing these numbers one can make histograms and scatter plots up to 50 for
each. The required buffer sizes for a histogram and a scatter plot are 281 and
2527 32-bit words, respectively.

2) Somewhere in USERIN, there should be a statement

CALL BHINIT(NHIST, NSCAT)

in order to let the system know the numbers of histograms and scatter plots.

3) To initialize the histograms and scatter plots, the following routines are to be
called in USERIN.

CALL XHINIT(ID#,
lower_limit, upper_limit, # of bins, , Title '),

121 3.5. NUMERiCAL INTEGRATION

and
CALL DHINIT(ID#,

x_Iower_limit, x_upper_Iimit, # of x bins,

y_Iower_limit, y_upper_lirnit, # of y bins,
, Title '),

respectively.

4) 	 '1':) fill the histograms or the scatter plots OIl a scalar comp1lter the followin g
filling routines are called ill the fun cl ion FUNC :

CALL XHFILL (I D#, V, FUNC for each histogram

CALL DHFILL(1D#, VX , VY, FUNC) for each scatter plot

5) 	The ou tpu ts of histograms aud scatter plots can d isplay even a negative function
as well as the posi tive d finite fUllction.

6) 	 The maximuIIl number of bins both for histugrams and scatter plots is 50.

3.5.6 Output from BASES

As described in section 3.5.1 , t here are several kinds of ou tputs from BASES, and we can
select a combination of outputs by the print flag. T he outputs consist of the following
items.

1) 	Job parameter

At the beginning of a job and just after reading the job pararrwters, their values
arc printed out as well as the number of nodes, which consist of t he start and
fin al loop counts, t he print flag, the job input flag and the comput ing time limit
as shown in the output 3.2.

2) 	 P arameters for B ASES

After returning from USERIN, t he parameters given there are printed out, some of
which are numbers of the integration variables, t he wild variabl and the sampling
points per iteration, N dim , N wi1d and N~tn). From these numbers, the number
of the small-regions per variable N g , that of the sub-regions per variable N.,

that of real sampling points per iteration N~~tl), and that of hypercubes Ncube
are calculated and printed. Further, for each integration variable, the lower and
upper limits, XL(i) and XUCi), the grid optimization flag IG(i), and the kind of
variable (i. e. wild or not) are printed . And finally the maximum iteration number
and the expected accuracy both for the grid optimization and the integration
steps are printed. An example of this output is given in the output 3.2.

122 CHAPTER 3. GRACE SYSTEM

Date : 931 11 9 14 : 02 ..

BBBBBB AAA SSSSS EEEEEE SSS55

BB BB AA AA 5S S5 EE 55 55

BB BB AA AA 55 EE SS

BBBBBB AAAAAAA 55SS5 EEEEEE SSS5S

BB BB AA AA SS EE SS

BB BB AA AA SS SS EE S5 S5

BBBBBB AA AA SS5SS EEEEEE SSSSS

BASES Version 5.0
.................................•.................•

« 	 Parameters for this JOB »

Current Loop Count

Maximum Loop Count 1

Print Flag 4

JOB Input Flag o

Number of Nodes

CPU Time Limit No limit

« Parameters for BASES »

(1) 	Dimensions of integration etc.

• of dimensions : Ndim 4 (SO at max.)

• of Wilds N"ild 4 (15 at max.)

• of sample points Ncall 4802 (real) 5000 (given)

• of small regions Ng 49 I vaIiable

• of subregions Ns 7 I variable

• of Hypercubes Ncube 2401

(2) 	About the integration variables
------~---------------~---------------+-------+-------

XL(i) XU(i) IGCi) Wild
------+---------------+---------------+-------+------

1 O.OOOOOOE.OO 1.000000E.00 yes
2 O.OOOOOOE.OO 1.000000E·00 yes
3 O.OOOOOOE.OO 1.000000E.00 yes
4 O.OOOOOOE·OO 1.000000E.00 yes

------+---------------+---------------+-------+------

(3) 	Parameters for the grid optimization step
Max.' of iterations: ITHXl &
Expected accuracy : Accl .2000 1

(4) 	Parameters for the integration step
Max.' of iterations : ITHX2 ~ 5
Expected accuracy : Acc2 .0100 1

Output 3.2 General information of tbe integration

3) Convergency behavior

According to the print flag the two kinds of conyergency behaviors can be ob
tained, one is for the grid optimization step and another is for the integration
step. The print format consists of the result of each iteration and the cumulative
result and the computing time used.

123 3.5. NUMERlCAL INTEGRATION

In the result of each iteration, the sampling efficiency (the percentage of the
points inside of the kinematical boundary), the ratio of the numbers of the
negative valued sampling points to the total number of sampling points in unit
of percent, the estimate of integral of the iteration and the estimated accuracy
in unit of percent are shown.

In the cumulative result , the cumulative estimates of integral and error are listed
up in addition to the accuracy ill the unit of percent. The computing time in this
table is measured from the beginning of the grid optimization step till the end of
the current iteration, which does not contain the time of overhead but that used
for estimating integral.

In the convergency behavior for the grid optimization step, it should be checked
that the accuracy for each iteration does decrease iteration by iteration and con
verge to a stable val ue. If not the case, it is recommended to increase the number
of sampling points Neall and try again. When the increment of number of sam
pling points does not help to improve the behavior, the current choice of the
integration variables may not be suitable for the behavior of integrand. Exam
ples of convergency behavior both for the grid optimization and integration steps
are given in the outputs 3.3 and 3.4, respectively.

Date: 93/ 1/ 9 14:02
Convergency Behavior for the Grid Optimization Step

(- Result of each iteration -) (- Cumulative Result -> < CPU time)
IT Eff R_Neg Estimate Ace 7. Estimate(+- Error)order Ace 7. (H: ": Sec)

1 94 . 00 3.298E+00 3.406 3.298227(+- .112323)E 00 3.406 0: 1 : 9.79
2 96 .00 3.500E+00 1.670 3.457213(+- .051841)E 00 1.500 0: 2:20 . 89
3 97 .00 3.417E+00 1.045 3.429967(+- .029414)E 00 .858 0: 3 :32.87
4 97 .00 3.400E+00 1.031 3.417499(+- .022635)E 00 .659 0: 4:45.09
6 97 .00 3.384E+00 .911 3 . 405825(+- .018189)E 00 .534 0: 5:57.28

Output 3.3 Convergency behavior for the grid optimization step

Date: 93/ 1/ 9 14:02
Convergency Behavior for the Integration Step

(- Result of each iteration -) (- Cumulative Result -) < CPU time>
IT Eff R_Neg Estimate Ace Yo Estimate(+- Error)order Ace 7. (H: ": Sec)

1 97 . 00 3.449E+00 .987 3.449476(+- .034036)E 00 . 987 0: 7 : 9.38
2 97 .00 3.370E+00 .944 3.407093(+- .023241) E 00 .682 0 : 8:22.18
3 97 .00 3.391E+00 .956 3.401467(+- .018889)E 00 .555 0: 9:33.93
4 97 .00 3.378E+00 . 966 3.395686(+- .016360)E 00 .481 0:10:45.54
5 97 .00 3. 383E+00 .932 3.392969(+- .014514)E 00 .428 0 : 11: 58.49

Output 3.4 Convergency behavior for the integration step

http:0:10:45.54

124 CHAPTER 3. GR}WE SYSTEM

The accuracy of each iteration must be stable in the integration step. When the
integration variables does not suit for the integrand, it fluctuates iteration by
iteration and may jump suddenly to a big value in the worst case.

In the interactive mode the convergency behavior is printed iteration by iteration,
while it is printed only for the final 50 iterations in the batch mode. This mode
is to be selected at the installation time by setting the flag "INTV" in the routine
BSMAIN.

4) Histograms and scatter plots

If histograms and scatter plots are initialized in USERIN and filled in FUNC, their
results are printed at each end of the grid optimization step and the integration
step according to the print flag. In the output 3.5 we show only the histogram
ID = 3 for saving the space of this manual.

The first and the last bins of histogram represent values of the underflow and the
overflow bins, respectively. The first column shows the lower edge value of each
histogram bin. The second column represents the estimated differential value and
error after the characters "+-", both of which are to be multiplied by a factor
"E xx" shown as order. On the right ha nd side of these columns a histogra m
of the differential values is drawn both in the linear scale with "*" a nd in the
logarithmic scale with "0" . If negative values exist in some bins only the linear
scale histogram is shown.

The scatter plot represents only t he relat ive height of the function . The height
of the function value is described by ten characters; 1, 2, 3, ... , 8, 9 and *, while
the depth (for the negative values) is displayed by ten characters; a, b, c, d, ... ,
h, i and #. The point which has a negative value but larger than the value of the
level "a" is indicated by "-". On the other hand, the point describing a positive
value but less than the level "1" is given either by "+" (if a negative value exists
somewhere) or by ". " (i f only the positive values exist). In the output 3.6 an
example of scatter plot is shown.

125 3.5. NUMERlCAL INTEGRATION

Histogram (1D ~ 3) for X(3) SPECTRUM
Linear Scale illdicated by ".01

d(Sigma)/dx 0.0£+00 83£+00 1.7£+01 2.5£-01
+--- - ---+------------------+------------+------------+-----------+-----------+

£ 0 .000 £ 01

. 000 . 595+- . 051 £
 11 a •••••••••••••••••••••••••••••••••····· .0000000001

01•••••••••••••00000000000000000000000000 1

.040 5 .954-- .265 £ 01··········00000000000000000000000000

.060 4.817+- .229 £ 01········00000000000000000000000000

.080 3 . 415+- .171 E 01 ······0000000000000000000000000

.100 3.698-- .167 £ 01 ·· •• ··00000000000000000000000000

.120 3.053+- . 148 £ or.····OOOOOOOOOOOOOOOOOOOOOOOOO

.140 2.898+- .154 £ 0) ····.0000000000000000000000000

.160 2.443-- .160 £ 01" " 000000000000000000000000

.180 2.917+- .155 E 01 · · •• • 0000000000000000000000000

.200 2.183+- .134 £ 0 1.··. 00000000000000000000000

.220 1.874 +- .12 7 £ 01 · ...00000000000000000000000

.240 2.161+- .129 £ 01 · '·'00000000000000000000000

.260 1 . 924+- . 123 £ or ••• OOOOOOOOOOOOOOOOOOOOOOO

.280 1.589+- . 110 £ 01,'.0 000000000000000000000

.300 1.543-- .100 £ or· ••OOOOOOOOOOOOOOOOOOOOO

.320 1 . 387+- . 107 £ 01 '. '00000000000000000000

. 340 1.316-- .086 £ 01 "000000000000000000000

.360 1.239+- .091 £ 01.'00000000000000000000

.380 1.282+- .091 £ or ••OOOOOOOOOOOOOOOOOOOOO

. 400 1 . 021+- .069 £ 01 " 0000000000000000000

.420 9.757-- . 814 E -11 " 000000000000000000

.440 9.046-- .458 £ -11" 000000000000000000

.460 8.947+- .466 £ -l r .·OOOoOOOOOOOOOOOOOO

.480 9.287+- . 679 £ -1 1"000000000000000000

.500 8.258+- .790 £ -11 " 00000000000000000

.520 9.083+- .589 £ -11 " 000000000000000000

.540 9 549+- .668 £ - l r " oOOoOOOOOoOOOoOOOO

.560 9 718+- .739 £ - 11" 000000000000000000

.580 9 076+- .840 £ -11 '.000000000000000000

.600 .193+- .088 £ 01" 00000000000000000000

.620 1.401+- .093 £ 01"'00000000000000000000

.640 1.428+- .119 £ 01"'000000000000000000000

.660 1.097+- .101 £ 01 ••0000000000000000000 I

.680 1. 947+- .123 E 01 " . 00000000000000000000000 I

.700 1.979. - .126 £ 01"'00000000000000000000000

.720 2.099+- .122 E 01 ••••00000000000000000000000

.740 2 . 214+- .138 E 01 ••• • 00000000000000000000000

.760 1.784+- . 125 £ 01".00000000000000000000000

.780 2.376+- . 141 E 0 1." '000000000000000000000000

.800 2 .483+- .1 44 E 01 •••• 000000000000000000000000

.820 2 . 566+- .149 E 01 • •• • 0000000000000000000000000

.840 2.883+- .1 62 E 01 • ••• • 0000000000000000000000000

.860 2 . 803+- . 150 E 01 • •••• 000000000000000000000000

.880 3 .448 +- .175 E 01••••• • 0000000000000000000000000

.900 3.906+- .176 £ 01•••••• 00000000000000000000000000 1

.920 4.146+- . 196 E 01••• ••· .00000000000000000000000000 r

.940 5.760+- .247 E 01 ••••••••• 000000000000000000000000000 I

.960 8.741+- .291 E 01 •••••••••••• • • 0000000000000000000000000

.020 8.402-- . 279 £

.980 2.612+- .052 E 1I ••0 000000001

E 0 .000 E 01

+-------+------------------+-------------------+-------------------+---------+
x d(Sigma) / dx 1.0£-01 1.0£+00 1.0£+01

Logarithmic Scale indicated by "0"

Output 3.5 An example or histog ram

126 CHAPTER 3. GRACE SYSTEM

Scat_Plot (ID = 6) for X(3)-X(4) DISTRIBUTION

E 0 +----- --+
.980 18212.1. • 1.1 1. .11371
.960 I8332 .. 1111 . 1 11.114-1
.940 I832. ' .1.1. 212-1
.920 1821 . 11.1 • 1 . 1. 13*1
. 900 1722111.1 1 11.112361
.880 1821 .. 1 1 11181
. 860 17111. 1. 1. .1.1.12361
.840 1821.11.1.1 .. 1 1 1 112271
.820 1831.11.1 1 1. 1.1. . . 1171
.800 I821211. ... 11. ... ' 1 1. 111. . . 1. 2271
.780 1421.1.1 .. 1. 1 11.111.128I
.760 1711 111 . . 1 1 .. 1 1 1111124 I
.740 1421.1.1 . . 1 1 111116I
. 720 15212.1. .. 11. 1 161
.700 1811 .. 211. 1. 111171
. 680 I5211.11 1. 1. 26I
.660 I8111 1. '" 1 1 . . 1 . 1 . . 1371
. 640 141. .. 1..1.. 1. .. 1. .1111216I
.620 172 . 1.1. 111271
.600 17221.1.1. .. 1. 1.11371
.580 17211.1. 1.... 1. 1.111 . 15I
.560 I52 ... 11.1. 1. . . . 1.136I
.540 I52111. 11. 1. . . 1. ... 116I
.520 I5112 1. 1. 12241
.500 Y I5221 1 1.. 11.1 .11381

.480 172 .. . 1. 1. ... 11251

.460 I5 . 21. 11. 1. . . 1. 1. 126 I

.440 I611. 1. 11. 2.171

.420 17111.11.11. 1. 1261

. 400 1622. 1 11251

. 380 173 .. 1. 11. ' 1. . .. 111114 I

.360 151111 1 1 1 1 . . 1.1.181

.340 18211 .. 1. . . 1............ 1. 211181

.320 14211. 1. , 1.1111. .261

.300 152111.11 1. 1... 1. 2271

.280 1611 .. 1. .. 1. . . 11 .. 1. 1. . . 1. . 1. 1111271

.260 18111.... •....... 1. .. 1.2151

.240 162.1.1 1. 1 . . 1.2341

.220 I9111.12•........ 1..11115I

.200 I63 .111. .1. 11 1. .1. . . 1281

.180 16211 .. 1. .1...... 1. 1. 1128I

.160 1512 .. 1. 1. 1..... 1.11 ... 1.1271

.140 18221. 1. 1. 1. 1..1. 212171

.120 183111. .1.1. . 1. 1. . . .1. 1121. 11139I

.100 17122 .. 11. 1. .. 1. .. 121271

.080 1821.1 1. 2371

.060 172121111. 1. 1. 111471

.040 I93311111.1. 1..1. . . 1.11.11-1

.020 19211. .1. 1. .. , 1.12 .1238I

. 000 18232 ... 1 .1 .. 1 • 1 ... 1 ... 1 .. 3271

E 0 +--+
LOll-

Edge
00

E 0
00000011111222223333344445555556666777777888899999

Low- 01367923579245791457914580135791358014579235801367

Edge 09909909999009999099990900999999990090999099009909

Output 3.6 An example of scaller plot

http:I9111.12
http:152111.11
http:17111.11.11

127 3.5. NUMERlCAL INTEGRATION

5) 	 M essage at the JOB term ination

At the end of the job a message from BASES is printed. When the job was
t.erminated due to the shortage of the computing time, tbe following message is
gIven:

•••• Computing time out *.*.
Nex t Loop Cou.o t 1
Next JOB Flag 3

Submitting a successive job with the loop count 1 and the job flag 3, the integra
tion can be continued further. If the job is terminated normally by convergence of
integration or by reaching the maximum iteration number, the following message
is printed out:

**** END of BASES Loop J
Max. Loop Count = [

~----~

It may happen that the accuracy of the integration is not small enough even
after the normal termination of job. Because a job is terminated not only by
the accuracy, but also by the iteration number. In this case we can continue the
integration by giving the maximum iteration number larger than the previous job
and by setting the job flag 3.

•••••• Computing Time Information

Start at: 93/ 1/ 9 14:02
End at: 93/ 1/ 9 14:26

(1) 	For this JOB H: H: Sec
Overhead 0: 0: 0.18
Grid Optim . Step 0: 5:57.28
Integration Step 0 : 6 : 1.20
JOB elapsed time 0: 11 :58.67

(2) 	For Total calculation H: M: Sec
Overhead 0: 0: 0.18

Grid Optim . Step 0: 5:57.28

Integration Step 0: 6: 1.20

(3) 	Expected event generation time
Expected time for 1000 event. : 21.49 Sec

•••••• Computing Time Information

Output 3 .7 Computing time information

128 CHAPTER 3. GRACE SYSTEM

6) 	 List of computing time

As well as the message, a list of computing time is printed at the end of the job
as shown in a output 3.7.

When the integration has been achieved by a single job, the items (1) and (2)
are exactly the same. If the integration is performed by several jobs, the com
puting time is only for the current job, while that for total calculation includes
all computing time from the beginning. T he expected event generation time is
printed at the item (3). From this value , the computing time limit for the event
generation will be evaluated.

7) 	 Final result of in tegra tion

When the print flag is set equal to ' 1" or "2", the final result of the integration
step is printed, which consists of the loop number, the cumula tive estimate and
error, the number of iterations both for the grid optimization and the integration
steps and the computing time used.

Loop' Estimate(+- Error)order Itl It2 (H: H: Sec)

I 3.392969(+-0.0145I4)E 00 5 0:11:56.49

Output 3.8 Result of integ-ration

When we calculate the cross sect ion at several energy points by using the loop
option, we can obtain the values of the cross section in t.he form of a table if the
print flag is set equal to "1". It is noted t hat this computing time is reset at the
beginning of each loop count.

8) 	Probability information

Before terminating the integration job, BASES generates a data file by the routine
BSWRIT, where

1) 	Probability information
Probability of each hypercube, according to which a hypercube is sampled
in the event generation.

2) 	 The maximum values of integrand
The maximum value of integrand in each hypercube is stored, by which the
sampling point are tested by using a uniform random number.

3) 	 Contents of histograms
In the event generation, those histograms are printed out comparing to
the distribution of generated events which are defined in the integration by

http:0:11:56.49

129 3.5. NUMERICAL INTEGRATION

BASES. For this purpose, the contents of histograms taken in the BASES are
stored ill this file.

4) 	Control da ta for BASES

By giving the job flag nOD zero value, the in tegration can be cont inued
further as describ~~o in se tion 3.5.1. For this purpose, the control data as
well as the results up to t.he current job are stored in this file .

Although there are several versions of BASES/SPRING , e.g. the original BASES
/ SPRING, BASES2S /SPRING2S, and BASESSO /SPRINGSO, the data format of this
fil e does depend on thf~ version. T he newest. one is BASESSO /SPRINGSO and is
recommended to use. We call BASESSO/SPRINGSO as BASES/SPRI NG throughout
this manual. Be careful not 1.0 use the different versions for BASES and SPRING.

130 	 CHAPTER 3. GRACE SYSTEM

3.6 Event generation

As described in section 2.8, an advantage of BASES/SPRING packages is that if a dif
ferential cross section is integrated by BASES the four vectors of final state particles
are easily generated with weight one by using SPRING . In this section, a description of
SPRING is given in the following order.

(1) 	 Input for SPRING

(2) 	 Program structure of SPRING

(3) Specifications of the subprograms to be prepared

(4) 	 Output from SPRING

The event generation by SPRING is normally quite fast. But if calculation of the inte
grand requires much computing time, both the integration and the event generation
takes much time . For such a case we recommend to use a vector computer if available.
A vector version of SPRING will be described in section 5.

3.6.1 Input for SPRING

There are two inputs for SPRING. One is a file of the probability information for each
hypercube, which is prod uced by the integration package BASES . In this fil the following
data are saved:

(a) 	The probabili ty of sampling each hypercube.

(b) 	The maximum value of integrand in each hypercube.

(c) 	 The contents of histograms and scatter plots.

(d) T he control data for BASES.

SPRING with a different version from that of BASES should not be used for the event
generation, since t he data format of this fi le does depend on the version as mentioned
in the previous section. The most new one is BASES50/SPRING50 and is recommended
to use.

Another input is something like the job parameter. At the beginning of the gener
ation job, the following parameters are read from the logical unit 5:

(1) 	The number of events to be generated .

(2) 	 The computing time limit in unit of minutes.
Even if an UNIX system is used, this parameter should be given to avoid an infinite
loop as described in subsection 3.6.2.

131 3.6. EVENT GENERATION

The event generation loop is terminated not only by the generation of given numbers
of events, but also by lack of the remaining computing time.

Fig. 3.5 Program structure of SPRING

132 CHAPTER 3. GRACE SYSTEM

3.6.2 Program structure of SPRING

In figure 3.5, the program structure of SPRING is shown, where the subprograms in
the lo1hi te box are generated by GRACE automatically and are to be finalized by user.
Others are included in the BASES/SPRING library or CHANEL library.

In the source list 3. 13, the main program MAINSP generated by GRACE is shown.
At the beginning of the main , the common /PLOTB/ is declared to keep enough buffer
for the histograms similar to MAINBS for the integration . Then it calls the steering
routine SPMAIN, whose arguments are the entry name of the integrand function and
a parameter MXTRY. The parameter MXTRY defines the maximum number of trials for
getting an accepted event , which make the event generation free from an infinite loop
described later in this subsection. \-\Then the four vectors of generated events are going
to be written on a file, the file must be opened here.

* Main program for SPRING
IMPLICIT REAL*8(A-H,O-Z)

INCLUDE 'inclh.f'

COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

EXTERNAL FUNC

WRITE(*,'(10X,A//)')'* 5120 E+ E- => W. W- A TREE'

open(23,file='bases.data',status='old',form='unformatted')

MXTRY = 50

CALL SPHAIH(FUHC, HXTRY)

close(23)

STOP

END

Source list 3.13 The main program MAINSP

The program flow in SPHAIN is as follows;

(A) 	Initialization

(1) 	 At the beginning, the number of generated events and computing time limit
are read.

(2) By the subroutine BSREAD the probability information of all hypercubes and
the contents of histograms and scatter plots are read from a binary file.

(3) 	USERIN is called for initialization of histograms etc. and kinematics.

133 3.6. 	 EVENT GENERATION

(4) 	The probability dist ribution read from the file is changed into the cumulative
distribution.

(5) 	 The subprogram SPINIT is called where we can initialize the additional
histograms and scatter plots if we want. The description of additional his
tograms and scatter plots is given later in this section.

If user wants to use other histogram package (e.g . Handypack or HBOOK)
for taking the ev nt distribution , the initialization of these package should
oe done in SP IN IT.

(B) 	 Event generation loop

(1) A hypercube (say the i-th hypercube) is sampled according to its probabilit.y
by a random number generated by a function DRN.

(2) 	 A point is sampled in a small region in the i-th hypercube, sampled in the
step (B. 1).

(;}) 	 The value of the integrand at the sampled point (is alculated by calling
FUNC.

(4) 	 If the sampled point (satisfies the condition

f(() f(xi) .
-()/Max.[-(-)l < 'rJ (= a ulllform random number),
p (P Xi

then this point is ace p ted as an event, and go out of the event generation
loop.

(5) 	If the sampled point is not accepted and the number of trials to get an event
is less than the given value of MXTRY, the histogram information for the point
is cleared by the subroutine SHCLER and go to the step (B.2).

(6) 	 If the number of trials is la rger than the given value, this hypercube is
abandoned, and go to the s tep (B .1).

(C) Four vectors of generated events
When a point is a cepted as an event, the subprogram SPEVNT is called, where
the four vectors of final stat e particles of the accepted event are calculated and
written onto a output file. If the additional histograms and scatter plots are
uefined in SPINIT, they are fil led in t his routine. If other hist gram package is
used, their filling routines are called here. This routine should be coded by user
oneself.

(D) 	 Check the number of events
Increment the number of generated event and test the remaining computing time.
If the number of events is less than the given number or there remains enough
computing time for generating one event, go to the step (B.1).

134 CHAPTER 3. GRACE SYSTEM

(E) 	Termination
Before terminating the job, histograms and scatter plots are printed by SHPLOT .

If other histogram packa.ge is used , some print routines should be called in the
subprogram SPTERM.

As described in the step (B.5), the parameter MXTRY plays an import.ant role . With
out limiting the maximum number of trials to get an event, the generation loop may
come into an infinite loop. This parameter is set in the main program MAINSP and
default number is equal to 50.

3.6.3 Subprograms to be p r epared

To use BASES the main program MAINBS and the subprograms USERIN, KINIT, FUNC,

KINEM and USROUT are to be prepared by user. They are generated by GRACE auto
matically and are left for user to finalize. T hese subprograms are also necessary for
the event generation by SPRING except for MAINBS and USROUT. As their specifications
can be found in subsections 3.5.2, 3.5.3 and 3.5.4. we will not repeat them here unless
there exist difference between their specifications in BASES and SPRING. In addition to
them, SPRING requires the main program MAINSP and subprograms SPIN IT, SPEVNT

and SPTERM.

No change
Main program MAINSP is produced by GRACE in a complete form. Subprograms
USERI N. KINIT and KINEM, used in BASES, does not need to be modified. Espe
cially the subprogram USERIN should be ident ical to that used in BASES.

FUNC
When the integrand is a single-valued function, it should not be changed. But if

it is a two-valued function , the last part of the function code must be activate,
which part is normally commented out. The example of this case is shown in the
source list 3.14.

When the kinematics is described by a many-valued function, a sample point in
t he integrat ion volume corresponds to several distinct points in the phase space,
for each of which differentia1 cross section is calculated. In the integration the
values of differential cross section at these points are simply summed and the
sum is given as the function value ruNC, while in the event generation a point
among these points must be sampled according to their probabilities.

The example in the source list 3.14 and 3.12 shows the two-valued function case.
For the first point the four vectors and numerical value of the differential cross
section are stored in an arrays VEC(j, k) and variable DFT at the do loop 420 in
the list 3.12. If the ratio of DFT and FUNC is less than a random number, the
second point in the phase space is taken as a sampled point, where FUNC is the
sum of the differential cross section values at these two points. This method can
be easily extended to a many-valued function case.

http:packa.ge

135 3.6. EVENT GENERATION

1000 CONTImJE

FUNC = ANSUM

.---
• Put the final 4 vectors into the arrays VEC()
.---

IF(FUNC .GT. 0.00) THEN
IF(DFT/FUNC .LT. DRN(DUM» THEN

DO 850 K = 1, NEXTRN
DO 850 J = 1, 4

VEC(J,K) P(J,K)
850 CONTImJE

ENDIF
ENDIF

RETURN
END

Source list 3.14 The last part of FUNC

SP INIT
Subprogram SPINIT, generated by GRACE, is just dummy. Before going into the

generation loop, this subprogram is called for initialization.

If you want to make some histograms or scatter plots in addition to those intro
duced in BASES, each histogram or scatter plot should be initialized here. In this
meaning these histograms or scatter plots defined here are called as the additional
histograms or scatter plots. An example is shown in the source list 3.15.

SUBROUTINE SPINIT

CALL XHINIT(5, 0.00, 180.DO, 36,'Photon Angular dist.')

RETURN

END

Source list 3.15 An example of SPINIT

If someone wants to use other histogram package like Handypack or HBOOK,
initialization of these programs should be done in this routine.

SPEVNT
Subprogram SPEVNT, generated by GRACE, is a dummy routine. Only when a

event is accepted, this routine is called. The four vectors of generated event are
to be written on a file here. The function program FUNC, generated by GRACE,

136 CHAPTER 3. GRACE SYSTEM

has the common variable VEC (4 , NEXTRN), where the four vectors of initial and
final particles are stored.

If the addition al histograms or scatter plots are defined in SPINIT, the filling
routines XHFILL or DHFILL are to be called here. Am example to take th e polar
angle distribution of the photon is in the source list 3.16. For other histogram
packages, the filling routines should b called here.

SPTERM
Subprogram SPTERM, generated by GRACE, is dummy. This routine is called

just before terminating the process. When other histogram package is used , the
output routine should be caned in this routine.

It should be noted that the subprograms USERIN and FUNC must not be changed. If
some part is changed and it gives a different behavior of the integrand , the generation
efficiency of SPRING might become very low and the completely wrong event samples
might be generated because the resultant differential cross section does not match to
the probability distribution in the input file of SPRING. The same situation can emerge
when events are generated by using the differential cross section of process A with the
input file produced by using a different process B.

SUBROUTINE SPEVNT

IMPLICIT REAL.8 (A-H, 0-2)

•
PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)

COMMON /SP4VEC/ VEC(4,NEXTRN)

COHMON / AMCNST / PI, PI2, RAD, GEVPB, ALPHA

•
• Calculate photon angular dist.

PP SQRT«VEC(l,l) ••2+VEC(2,1) ••2+VEC(3,l) ••2)
.(VEC(1,5)·.2+VEC(2,5) ••2+VEC(3,5) ••2»

CS =(VEC(l,l).VEC(l,5)+VEC(2,l).VEC(2,5)
+VEC(3,1).VEC(3,5))/PP

TH = ACOS(CS).180.DO/PI

IF(TH .LT. O.DO) THEN

PRINT .,TH,CS

ENDIF

CALL XHFILL(5, TH, PP)

RETURN

END

Source list 3.16 An example of SPEVNT

137 3.6. EVENT GENERATION

3.6.4 Output from SPRING

The output from SPRING consists of the general information, histogram output, the
number of trials distribution and the four vector output. There are two kinds of
histogram output, one is the original histogram and other is the additional histogram.

General information
After generating events, th e following information is printed:

Date: 93/ 1/20 22:20
.....••..........•••••...•••.....~..•...............

SSSS ppppp RRRRR IIII N NN GGGG

SS 55 pp pp RR RR II NN NN GG GG

SS pp PP RR RR II NNN NN GG

SSSS PPPPP RRRR II NNN NN GG GGGG *

SS PP RR RR II NN NNN GG GG

SS SS PP RR RR II NN NH GG GG

• SSSS pp RR RR rIll NN N GGGG

SPRING Version 5.0 •
•••~ •••••••••••••••••••••••••••••*•••••••••••••••••

Number of generated events 10000
Computing time 	 for generation 270 . 260 Seconds

for Overhead . 230 Seconds
for Histograms .650 Seconds

GO ti1Ile 271. 14.0 Seconds
H~. number of trials ~XTRY = 50 per event
Number of mis-generations o

Output 3.9 General informat ion of the event generation

When the number of trials to generate one event exceeds t he number MXTRY,
t his outbreak is counted as tb Dumber of mis-generation . If this number is
not negligible sm, ll, something happens in the event generation, e.g. mis-ma tch
between the integrand and the probability information of the inpu t file, or the
grids determined by BASES are not enough optimized. This can be also checked
by t he number of tria ls distribution described later.

Histograms
Th re are two kinds of histograms.

One is the original histogram, wh ich is defined in t h integration stage by BASES.

The contents of these histograms produced in the integration are read from the
inpu t file and are compared with the frequency distribution taken in t he event
genera tion. This comparison is done in the logarithmic scale, where the statistical
error of each bin is represented by "< >" . If error is smaller than the two character
space, only the frequency is shown by "0" . The histogram obtained by BASES is
represented by "*" . An example of the original histogram is shown in the output

138 CHAPTER 3. GRACE SYSTEM

3.10 , which can be compared with the histogram shown in the out.put 3.5 of
section 3.5.6.

Another kind of histogram is the additional histogram, which is defined in SPINIT.
Since there is no data taken in the integration stage for the additional histogram,
only the frequency distribution is displayed , whose example is given in the output
3.11.

139 3.6. EVENT GENER..... TJON

Original Histogram (rO = 3) for X(3) SPECTRUM

Total = 10000 events It.": Orig. Dist. in Log Sc ale.

x d (Sig/dx) dN/dx I.OE-OI 1.0E+OO I.OE+OI
+--------+----------+-------+-------------------+-------------------+---------+

E 0 .OOOE 01 or

.000 2.595E 11 15301****** •• 0I

.020 8.402E or
 5021······································0

.040 5 .954E or
 3581···································<>

.060 4.817E or
 2651·· ••• ••••••••••••••••• ••·.······<>

. 080 3.415E or
 2171······························<>

.100 .698E or
 2071·········.······•••···········<>

.120 .053E 01
 1811·····························<>

.140 2 .898E or 1711····· · ·· •••••········.··.···<>

. 160 2 . 443E or 1781····························<0>
or.180 2 . 917E 1391··························<0>·

or.200 2. 183E 1191··········.········· ••·.·<>

.220 .874E 01
 1181·························<>

.240 2. 161E or
 1121························<0>

.260 .924E or
 1091·••••••••·•••••·.·······<0>

.280 .589E 01 1171······••••••. ••····· •••• ·<>

.300 .543E or 1091·····•••••·.·.·····.····<0>

.320 . 387E 01 901·····•••··••••·••••••·<0>

.340 . 316E or
 861·················· ·· ··<0>

.360 .239E or
 801···················.·<0>

. 380 .282E or 561 ••••·······.·.··.·<0>.·

or. 400 1.021E 491·····.···········<0>·

.420 9.757E -11 711 •••· •••••·•·•••••·.·<0>

.440 9.046E -II
 491·················<0>

.460 8.947E -II 491··· ••·•·••••••·••<0>

.480 9 . 287E -II
 441················<0>·

.500 8.258E -II
 481······.·········<.0>

.520 9.083E -11 311·······•••·.<.0>··.·

.540 9.549E -lr 451········••••••·.<0>·

.560 9.718E -II 491·········••••••• ·<0>

.580 9.076E -II 561.··········•••••··<0>

.600 1.193E or 681·••••·•••·••·•••••••<0>

.620 1.40lE
 01 731···.··········•••·.·<0>

.640 1.428E 01 821····••••••••••·•· •.•• <0>

.660 1.097E or 951 ••••••••••••••••.•••• <>

.680 1 .947E or
 961···················••··<0>

.700 1.979E or 1311 ••••••· •..••.••••••.•••••• <>

.720 2.099E or 1351·········.·•••••••••·••••·<>

.740 2.214E or 1101························<0>

.760 1.784E 01
 1281···········••• •••·•••••••<0>

.780 2.376E or 1191·•••••••••••..••••••••••.<> •

. 800 2.483E 01 1171 •••••••••••••..••••••••••<> •

. 820 2.566E or 1691 •••••••••••••••.•••••••••••.<>

.840 2.883E or
 1621·····•••••••••••••••••••·.··<>

.860 2.803E or
 1761··········••···········.····<0>

.880 3.448E or 2151·••••••••·•••••••••••••••··•• ·<>

.900 3.906E or 2061 ••• ·••••··•••··•••••••••••••••<>

.920 4.146E or 2601 •••••••••• · ••··•••••••••••·•··•• <>

.940 5.760E or 3251 •••••••••••••••••.••••••••••••••••<>

.960 8.741E or 5751·•••• •••••••••••••••••••••••••••••••••• <>

.980 2.612E II 15231••••••••••••.. · .•••••••••...•.•••••••••.•••••••• 01

E 0 .OOOE or or

+--------+----------+-------+-------------------+-------------------+---------+

x d(Sig/dx) dJI/dx "0" : Generated Events. (A.rbitrary unit in Log)

Output 3.10 An example of the original histogram

140 CHAPTER 3. GRACE SYSTEM

Additional Histogram (10 = 5) for Photon Angular dist.
Total;:;: 9999 events "." : No. of events in Linear scale.

x Lg(dN/dx) dN/dx O.OE+OO 1.4E+03 2.8E+03 4.1E+03
+--------+----------+-------+------------+------------+-----------+-----------+

E 2 .OOOE 01
. 000 4.386E 31
.050 2.430E 21
.100 8.800E 11
.150 6.900E 11
.200 3.900E 11
.250 3.200E 11
.300 1.500E 11
.350 2.200E 11
.400 1.300E 11
.450 6.000E 01
.500 9 . 000E 01
.550 6.000E 01
.600 1.100E 11
.650 1.100E 11
.700 1.300E 11
.750 4.000E 01
.800 6.000E 01
.850 8.000E 01
.900 6.000E 01
.950 9 . 000E 01

1.000 7.000E 01
1.050 8 . 000E 01
1.100 8.000E 01
1.150 1.300E 11
1.200 7.000E 01
1.250 1.200E 11
1 . 300 9.000E 01
1.350 1 . 100E 11
1.400 2 . 200E 11
1.450 3.200E 11
1.500 2.600E 11
1.650 I 3.300E 11
1.600 I 6 .200E 11
1.650 9.100E 11
1.700 1.750E 21
1 . 750 4.497E 31

E 2 .OOOE 01

01

43861············.·····················•• ··.·000000
2431***000000000000000000000000000

881*000000000000000000000000

691*0000000000000000000000

391*0000000000000000000

321*000000000000000000

151*00000000000000

221*0000000000000000

131*0000000000000

61-000000000

91*00000000000

61*000000000

111-0000000DOOOOO

111*0000000000000

131-0000000000000

41*0000000

61*000000000

81-00000000000

61-000000000

91*00000000000

71*0000000000

81_00000000000

81-00000000000

131-0000000000000

7I -0000000000

121*0000000000000

91*0000000DOOO

111-0000000000000

221*0000000000000000

321-000000000000000000

261-00000000000000000

331-000000000000000000

521*000000000000000000000

911*000000000000000000000000

1751*-000000000000000000000000000
44971 ••••••• •••••••••••••••••••••• •••• ••••••••00000

01
+--------+----------+-------+------------+-----------+------------+-----------+

x Lg(dN/dx) dN/dx 1.0E+00 1. OE+01 1.0E+02 1.0E+03
"0" : No. of Events in Log. Bcale .

Output 3.11 An example of the additional histogram

Number of trials distribution
The number of trials distribution is printed out at t he fi nal stage, by which we
can see how efficient the event generat ion was. The first column represents the
number of trials to obtain one event and the number of events is shown in the
third column. An example for the process e+e- -> VV+W--Y is shown in the
output 3.12, where about 80% of events are generated with the first trial.

141 3.6. EVENT GENERATION

••••••••••••• Number of trials to get an event •••••••••••••
Tot.al = 10000 event.s "." No. of events in Linear scale .

Lg(dN/dx) dN/dx O.OE+OO 2.3E+03 4.5E+03 6.8E+03
+--------+----------+-------+------------+------------+-----------+-----------+

E .OOOE 01 01
.100 6.777E 31 67771*··········.***·······················0000000000

.200 1.826E 31 18261·••• ·.·····000000000000000000000000000000

.300 6.110E 21 6111····0000000000000000000000000000000

.400 2.770E 21 2771.·00000000000000000000000000000

.500 1.560E 2I 1561.000000000000000000000000000

.600 1. 080E 21 1081'0000000000000000000000000

.700 6.000E II 601·0000000000000000000000

.800 3 600E 1I 361.0000000000000000000

. 900 3 400E II 341'0000000000000000000

1.000 2.600E II 261·00000000000000000

1.100 2 OOOE 1I 201'0000000000000000

1.200 1.700E 1I 171'000000000000000

1.300 8.000E 01 81'00000000000

1.400 5.000E 01 51'00000000

1.500 5.000E 01 51·00000000

1.600 2.000E 01 21'000

1.700 3.000E 01 31·00000

1.800 4.000E 01 41.0000000

1.900 4.000E 01 41-0000000

2.000 4.000E 01 41-0000000

2.100 .OOOE 01 01

2.200 .OOOE 01 01

2.300 3.000E 01 31·00000

2.400 2.000E 01 21*000

2.500 1.000E or lIO

2.600 4.000E or 41-0000000

2.700 2.000E 01 21*000

2.800 .OOOE 01 01

2.900 1 .000E 01 lIO

3.000 .OOOE 01 01

3.100 .OOOE 01 01

3.200 2.000E 01 21*000

3.300 .OOOE 01 01

3 .400 .OOOE or 01
3.500 .OOOE 01 01

3.600 .OOOE 01 01

3.700 . OOOE 01 01

3.800 .OOOE 01 or

3.900 .OOOE 01 01

4.000 .OOOE 01 01

4.100 .OOOE or 01

4.200 .OOOE 01 01

4 . 300 1. OOOE 01 1I0
4.400 .OOOE 01 01

4.500 .OOOE 01 01

4 . 600 .OOOE 01 01
4.700 1. OOOE 01 lID

4.BOO .OOOE 01 01

4.900 .OOOE or 01

5.000 	 .OOOE 01 01

E 1 .OOOE 01 01

+--------+----------+-------+------------+-----------+------------+-----------+

Lg(dN/dx) dN/dx 1.0E+00 1.0E+Ol 1.0E+02 1 .0E+03
"0" : No. of Events in Log. scale.

Output 3.12 The number or trial s distribution

142 CHAPTER 3. GRACE SYSTEM

If this distribution has a long tail, this means generation efficiency is low, then
the following points should be tested:

(1) 	 The grids determined b:-· BASES is llot optimized well. If this is the case, try
integration again ,,-itL wore sampling points (by se tting NCALL larger than
the current number).

(2) 	The integrand does not wat.ch for the probability distribution in the input
file. Check whetLer the subprograms USERIN and FUNC are exactly identical
to those used in the integTation.

(3) 	 The integration could not give a good answer due to unsuitable integration
variables for the integrand. In this case, improvement of the kinematics is
required_

Chapt er 4

How to use GRAC E system

The GRACE system was developed Oll a main frame computer FACOM, but now it is
a\-ailable on UNIX system. The usage of GRACE on FACOM is basically to use JCL in the
Batch Job environment. Although an interactive mode is ava ilable on an UNIX system,
the interpreter of GRACE on UNIX syst m is still wry primitive_ It will be improved in
Hear future. We suppose the X-\lVindow system is available on UNIX system, which is
used for drawing Feynmall graphs Oll the screen. The UNIX systems, where we have
installed and tested GRACE , a re SUN SPARC and HP9000/750.

In the first section the usage on UNIX machine is described and the second section
is devoted to tha t on the main frame computer. In the last section how to run on a
parallel processor is briefly described.

4. 1 Running on U NIX

In this section , we describe how to execute GRACE sys tem on UN IX system. We assume
the "GRACEDIR" is a directory where GRACE system is installed.
At firs t user should add the following statement in the file" . cshrc". I

setenv GRACEDIR lusr/local/grace

set path=($path $(GRACEDIR) / bin)

$ (GRACEDIR) Ibin is a subdirectory wh re the executable system of GRACE has been

installed .

It is recommended to create a new directory for the calculation of one physical process.

For the process e+e- ---+ W+W-" as an example, we create a directory eelollola and

rom: to the directory as below:

grace!. mkdir eewwa J
grace% cd eewwa[
~---

Then we start to generate Feynman graphs for the process in the next subsection.

J \\"e assume user uses C sheIL

143

144 CHAPTER 4. HOW TO USE GRACE SYSTEM

4.1.1 Generate Feynman graph

For the graph generation the following two input files are necessary.

1) Definition of physical process

2) Model definition file

Definition of physical process

Specification of defining physical process is described in subsection 3. 1. 1. W hen there
is the target process in the file $(GRACEDIR)/data/Index, the input parameters for
the process can be found in a file dnnnn, where the number nnnn is the process number
defined in the file Index. For the process e+e- ---t W+W--y we can use the file d5120 ,
where the following parameter is saved.

* 5120 E+E- => W+ W- A TREE
WORDER 3

INITIAL EL 1
INITIAL ELB 1
FINAL WE 1

FINAL WEB 1
FINAL AB 1
END

Fig. 4.1 Input file for the process e+e- -> W+W-l'

When there is no input-parameter file for the process to be studied, we have to write
them by ourselves according to the specification described in subsection 3.1.1.

Model definition file

Two model definition files, "particle. table" and "particle. tableO" , are prepared
in GRACE system as the standard, whose descriptions are given in chapter 6. As the
default the file $ (GRACEDIR) / data/particle . table is used for the model definition
file. If user wants to use his own model definition file instead of this default file, then
user should specify the input file name (for example "myparticle. table") by the
environment parameter "GRACETABLE" as follows;

setenv GRACETABLE /home/graceuser/myparticle.table

- - - ---

145 4.1. RUNNING ON UNIX

Execute graph generation

Suppose a file eewwa . input is created in the current directory eewwa as the input file
defining the physical process, then the graph generation procedure starts by typing the
command:

grace% gengraph eewva.input)
(
~.

Then the graph generator creates a file "INTBL" in the current directory, to which the
particle table is copied from the model definition file As an output a file " OUTDS" is
created in the current directory, where the graph informat.ion is written. Also the total
number of generated graphs is reported.

4 .1.2 D raw Fe y nman graph

A Feynman graph drawer is initiated by the command :

C~g_r_______ a_ __________ac e t.' dr_w__________________ ____________________~)
Then Drawer asks the first and last graph numbers, you want to draw, as follows;

GRACE Version 1.0

Feynman Graph Drawer.

* Enter Graph numbers (First, Last) or "I" for all graphs.

Knowing that there are 28 graphs in the process e+e- ---t W+W-" by typing

(~1._2_8______________________~)
or

(~I______ ~)
then Drawer prints the current physical process and asks further

_ __

146 CHAPTER 4. HOW TO USE GRACE SYSTEM

*particle.table Electro-Weak and QCD, no Cabbibo Mixing, with Scalar

* 5120 E+ E- =) W+ W- A TREE

Enter N, M (N*M graphs in a page)

When "2, 3" is given as the input then the first six graphs are drawn on the screen by
the X-VVindow. Clicking somewhere on this window, the next six graphs will appear.
When all graphs are drawn, Drawer will be terminated . In the current version of Drawer
nothing can be done except for drawing Feynman graphs. It will be improved in future.
This procedure uses the model definition file "INTBL" and the graph information file
"aUTOS", which should not be changed.

4.1. 3 G enerate source code

After the graph generation, FORTRAN source code is generated by typing the com
mand:

(~g_r_a_c_e_r.. _g_e_n_f_o_r_t 	 ~)

The procedure genfort uses the files INTEL and a UTDS as inpu t, which should not be
changed. T he files xxxxxx. f and Hakefile are created as the output in the current
directory, where xxxxxx corresponds to a name of program components described in
section 3.2. For instance, subprogram SETMAS appeared in section 3.2 is created in a
file setmas. f.

Editing FORTRAN source codes

The following program components should be finalized by the user.

1) 	Initialization rout ine USERI N
In USERIN the following ini tialization should be done (see subsection 3.5.3).

Integration parameters
NDI M The number of dimensions of integral
NWILD The number of wild variables
XL(i) ,XU (i) The lower and upper bounds of integration variable X(i)

IG (i) The grid optimization flag for i-th variable
NCALL The number of sampling points per iteration
ACC1 The expect.ed accuracy for the grid optimization step
ITMX1 The maximum iteration number for the grid optimization step
ACC2 The expected accuracy for the integration step
ITMX2 The maximum iteration number for the integration step

147 4.1. RUNNING ON UNIX

Initialization of histograms and scatter plots

To let BASES/SPRING know the maximum numbers of histograms and scatter

plots, BHINIT should be called. These numbers are given by a parameter

statement in the include file "inclh. f".

The initialization routines XHINIT and DHINIT should be called for each

histogram and scatter plot, respectively. In the generated USERIN by GRACE,

historrrams for all integration variables and scatter plots for all combinations

of them are required. vVben one wants to take histograms and scatter plots

by his own will, this part should be changed according to the specificatioll

in subsection 3.5.5.

Initialization of the amplitude calculation

Since this part is automatically generated by GRACE, it needs no change.

Initialization of the kinematics by calling KINIT

The subroutine KINIT should be prepared by user (see section 3.3).

2) 	 Function program of the integrand

T he function program FUNC should be made in a complete form.

The kinematics routine KINEM should be prepared by user, whose specification
is given in subsection 3.3.

Filling histograms and scatter plots
In the generat.ed FUNC by GRACE, histograms for all integration variables and
scatter plots for all combinations of them are to be filled here. When one
changed the initialization of histograms and scatter plots, their filling parts
should be also changed (see subsection 3.5.5).

3) Include file "inclh. f"

T his file is included in the main programs MAINBS, HAINSP and the subroutine
USERI N, where the maximum numbers of histograms and scatter plots are set by
t he parameter statement, as described in sections 3.5.2, 3.5.3 and 3 .6.2. Since
these numbers are still open in the generated file inclh . f, they should be given
by user.

4 .1.4 M akefile

T he command "genfort" also gen rates the makefile. The libraries BASES/SPRING,

interface to CHANEL and CHANEL are stored in the directory GRACELDIR. The objects
commonly used both in BASES and SPRING are defined by macro name OBlS.

http:generat.ed

148 CHAPTER 4 . HOW TO USE GRACE SYSTEM

SHELL 	 /bin/csh
FC 	 fort77

GRACELDIR 	 /usr/local/grace/lib

BASESLIB = 	bases
CHANELLIB = 	 chanel
BDUMMLIB 	 bdummy

OBJS 	 userin. o amparrn . o \
func.o amptbl .o amp s um . o ampord.o \
usrout . o kinit . o kinem.o setmas . o \
amOOO1.o am0002.0 amOOO3.0 amOOO4.0 \
amOOOS . o amOOO6.0 am0007.0 amOOOS . o \
amOOO9.0 amOO1O . o amOOll.o amOO12 . 0 \
amOO13.0 amOO14.0 amOO1S . 0 amOO16.0 \
amOO17.0 amOO18 .0 amOO19 .o amOO20.0 \
amOO21 . o amOO22 . o amOO23.0 amOO24.0 \
amOO2S . 0 amOO26.0 amOO27.0 amOO28.0

INT 	 int
INTOBJ 	 mainbs.o
SPRING = 	 spring
SPOBJS = mainsp.o spevnt.o spinit .o spterm . o
TEST 	 test
TESTOBJ 	 t e st.o

all: 	 $(INT) $(SPRING)

$(INT): 	 $(INTOBJ) $(OBJS) $(GRACELDIR)/lib$(BASESLIB).a \

$(GRACELDIR)/lib$(CHANELLIB).a
$(FC) $(INTOBJ) $(OBJS) -0 $(INT) -L$(GRACELDIR) \
-l$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

$(SPRING): 	 $(SPOBJS) $(OBJS) $(GRACELDIR)/lib$(BASESLIB).a
$(FC) $(SPOBJS) $(OBJS) -0 $(SPRING) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

test: 	 $ (TEST)

$(TEST): 	 $(OBJS) $(TESTOBJ) $(GRACELDIR)/lib$(BDUMMLIB).a \
$(GRACELDIR)/lib$(CHANELLIB) . a
$(FC) $(TESTOBJ) $(OBJS) -0 $(TEST) -L$(GRACELDIR) \
-1$(BDUMMLIB) -1$(CHANELLIB) $(FFLAGS)

clean:
rm -f $.0 $(INT) $(SPRING) $(TEST)

Source list 4.1 Makefile for HP9000/750

The macro names INT and INTOBJ define the executable and the object of the main
program for the integration , respectively. Similarly the macro names SPRING , SPOBJS,

149 4.1. RUNNING ON UNIX

TEST and TESTDE] are defined.

4.1. 5 Test of the ga uge invariance

The main program test. f is used t.o check the generated amplit.udes at a point 1Il

the integration volume as described ill section 3.4. In the main program subroutines
USERIN and FUNC are called, which call the histogram packages. Since the histogram
has no meaning in this te~t, we use dummy library for them stored in the directory
GRACELDIR. Thus it is not. necessary to comment out the statements in the subprograms
FUNC and USERIN for thi~ test, which call relevant hist.ogram routines.

The rxecutable test is created and is execu t.ed by the following commands:

grace;' make test J
[gracer. test

'------~

Au example of output from the test fo r the process e+ e- -; W +W-l' is shown in
section 3.1 where the cOJl sis tency '.vith 14 digits is found between t he covaxiant and
uni tary gauges. It should be noted that this test does not guarantee a complete gauge
invariance even though it could give consistency between the two gauges, since it tests
only at a specific point in t he phase spac . It is recommended to test t he gauge
invariance at several points in the ph ase space.

4.1.6 Int egration

Aft r preparation of the subprograms USERIN, KINIT, FUNC and KIN EM and a successful
tes t of gauge invariance, we can proceed to the numerical integration by BASES. At
firs t we should make the executables for the integra tion and event generation by typing
make.

(grace'!. make)
~.-----

Then the executables int and spring are cr at ed.
For integration the command int is used .

(~g_r_a_C_e_%_l_n_t___)

When this is the first time to run the integration, the interpreter asks the job parameters
with the following prompt:

http:execut.ed

150 CHAPTER 4, HOW TO USE GRACE SYSTEM

LOOPF, LOOPL, NPRINT, JFLAG)(
~----.--~

where LOOPF, LOOPL, NPRINT and JFLAG are the first and last loop numbers, print flag
and job flag, respectively, described in subsection 3.5,1. These parameters are saved
in a file "bases.jobprm" in the current directory, From the next run, the system uses
this file instead of asking them. When these parameters are needed to change, the new
parameters are to be given ill this file,
The output from the integration package BASES is normally printed on a screen. \¥hen
we want to write the output on a file, bases. output as an example, the redirection of
UNIX system can be applied as follows ;

(_g_r_a_c_e_'l._, _i_n_t __>_b_a_s_e_s_,_o_u_t_p_u_t__________________________________~)

Before termination of t he integra tion job, BASES writes t he probability information on
a binary file bases. data, which is used for the event generation.
It is recommended to look at the integrat ion result carefully, especially over the con
vergency behaviors both for the grid optimization and integration steps. When the
accuracy of each iteration fluctuates, iteration by iteration, and , in some case, it jumps
up suddenly to a large value compared to the other iterations, the resultant estimate
of integral may not be reliable . There are two possible origins of this behavior; one
is due to too small sampling points and the other due to an unsuitable choice of the
integration variables for the integrand (see subsections 2.7.4 and 3.5.6). An example
of out put for the process e+ e- -+ W +W --y is given in subsection 3.5.6.

4.1. 7 Event gene ration

When the four vectors of generated events are to be wri tten on a file, then this file
should be open in MAINSP and the four vectors should be written on the file in SPEVNT.
In the case, where some other histogram packages are used for taking histograms of
generated events, init ialization of these histograms should be done in SPINIT, filling
them in SPEVNT and printing them in SPTERM. The specifications of these routines are
given in section 3.6.3.

Since the executable spring is created by the make command already, the event
generation starts by typing

(grace% spring)

Then SPRING reads the probability information from the binary file bases. data and
asks the number of events and computing time with the following prompt:

151 4.2. RUNNING ON FACOM

Number of events, Computing time (minutes) ?

The event generation will run until the given number of events are generated or the
computing time is exhausted. The reason why we have the computing time limit in
the event generation is that the generation loop may have a possibility to get into an
infinite loop when some mistakes were made (see subsections 3.5.6 item 8, subsections
3.6.1 and 3.6.2). In order to estimat.e the computing time for the event generation,
it is recommended to use the expect.ed generation time givell ill the computing time
information of BASES output.(see section 3.5.6 it.em G)
When the kinematics is made of a sillgle-valued function, the subprogram FUNC should
be identical both in the integration and event generation. But if it is not the case, FUNC
in the event generation should be modified from that in the integration a.s described in
subsection 3.6.I.
An example of output from SPRING is shown in subsection 3.6.4, which consists of the
general information, original and additional histograms, scatter plots, and number of
trials distribution. From the original histograms we can see how the generated events
reproduce those distributions produced by the integration. In the number of trials
distribution we can see the generation efficiency. In the example about 80 % of events
are generated by the first trial.

4.2 R u nning on FACOM

GRACEsystem OD FACOM at. KEK is installed in the user-id MLlB. As mentioned before the
GRACE system consists of the graph generation subsystem, source generation subsystem,
integration subsystem and event generation subsystem. Under the user MLIB there are
following four files for user's purpose:

1) 	 MLIB.GRACE.Vyymmdd.CNTL
contains several members of JCL to generate and to execute the graph generation
and source gener:1tion subsystems.

2) 	 MLIB.GRACE.Vyymmdd.DATA
contains the particle table and example of input data for the graph generation
and source generation subsystems.

3) 	 MLIB.GRACE.Vyymmdd.LOAD
contains the library load module for the graph generation and source generation
subsystems, and for the amplitude calculation.

4) 	 MLIB.BASES50.LOAD
contains the library load module for the integration and the event generation
subsystems.

http:expect.ed

152 CHAPTER 4. HOW TO USE GRACE SYSTEM

Vyymmdd in the file names means the version number when they are created.

In the following subsections Job control cards necessary to use GRACE system are
described.

4.2.1 Graph generation and source co.de generation

On UNIX system, the graph generation, drawing graph and source generation are pro
cessed as separate procedures. On FACDM, however, they can be processed with a single
job by submitting the JCL below.

Submission of this JCL initiates a catalogued procedure #GRACE, which uses the
following data sets:

1) 	 //GENFGR . INTBL DO
This defines the model used in the graph generation and source generation steps.
When this data set definition is commented out, the default model definition file
"PTCLTBLO" is used. A beginner is recommended to use this default file without
change.

When user wants to use his own model definition file, its file name should be
given in this definition as in the example.

2) 	 //GENFGR . SYSIN DD
This defines the input data for defining physical process described in subsection
3.1.1, which is used in the graph generation.

3) //GENFGR . DUTOS DO
This defines the output file of the graph information, by which Feynman graphs
are drawn. This file is also used in the source generation as an input. When this
definition is commented out, a work file is allocated for this purpose, which can
not use after this job.

4) //CREATE . NEWOS DD
This step creates a new file, "userid.~.05120.FDRT77" as an example, in which
generated FORTRAN source code is written.

5) 	 //GENFDRT . FT05FOOl 00
The file name created in the step / /CREATE. NEWOS 00 should be given here again
to let the source generator know this name.

By submitting ajob by this JCL, the structure of the diagrams are generated, Feynman
graphs are drawn on the output papers and the program components of Feynman
amplitudes are written on an indicated file with several members .

153 4.2. RUNNING ON FACOM

IIXXXXG JOB CLASS=M,REGION=4096K,MSGLEVEL=1
IIJOBPROC DD DSN=MLIB.GRACE.Vyymmdd.CNTL,DISP=SHR
II EXEC #GRACE
11*---
11* PARTICLE TABLE
II*GENFGR . INTBL DD DSN=MLIB.GRACE.Vyymmdd.DATA(PTCLTBLO) ,DISP=SHR
11*---
11* INPUT DATA
IIGENFGR.SYSIN DD DSN=MLIB.GRACE .Vyymmdd.DATA(D5120) ,DISP=SHR
II DD DSN=MLIB.GRACE.Vyymmdd.DATA(DEND),DISP=SHR
11*---
11* OUTPUT DATA OF CREATED GRAPHS
II*GENFGR.OUTDS DD DSN=userid.~.D5120 . DATA,

11* DISP=(NEW,CATLG) ,UNIT=SYSDA,SPACE=(TRK,(2,2),RLSE),
11* DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
11*---
11* CREATE FILE FOR OUTPUT FORTRAN SOURCE CODE
IICREATE NEWDS DD DSN=userid.~.D5120.FORT77,
II DISP=(NEW,CATLG),UNIT=SYSDA,SPACE=(TRK,(4,4,4)),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
11*---
11* CREATE FORTRAN SOURCE CODE
IIGENFORT .FT05FOOl DD *
userid ~.D5120.FORT77
II

Source list 4.2 JCL for the graph generation and source generation

A template of this JCL is stored in the file "MLIB. GRACE. Vyymmdd. CNTL (GENALL) . "
If graphs are not required to draw, a catalogued procedure #NODRAW is to be used
instead of #GRACE.

4. 2.2 G eneration of lib rary

A member #GENLIB in the output file is automatically generated, where a JCL for gen
erating library for this process is. This library for the amplitude calculation
(userid.~. D5120 . LOAD for example) will be used for the gauge invariance test, inte
gra tion and even t generation.

4.2.3 Test of t he generated source code

A member #TEST, which is a JCL for a testing program, is automatically generded.
T his JCL is for the execution of main program TEST which is used to check the generated
amplitudes at a point ill the integration volume. The user is recommended to confirm
the gauge invariance and Lorentz frame independence before making the integration
by BASES. Before submitting the job, one has to prepare the subroutines KINIT and
KINEM and to fix their filenames in the JCL.

154 CHAPTER 4. Ho\V TO USE GRACE SYSTEM

The main program TEST calls the subprograms USERIN and FUNC, which all the
histogram packages. Since the histograms in this test have no meaning, we use dummy
library for them, which is stored in the file MUB. GRACE. Vyymmdd . PROGS (BDUMMY) .

IIXXXXG JOB CLASS=M
II. MLIB . GRACE.Vyymmdd

II EXEC FORT7CL,

II PARM.FORT='OPT(3),GOSTMT,NAME,NONUM,NOSTATIS',

II PARM . LKED='NOMAP,NOLIST,NCAL,ALIAS'

IIFORT.SYSINC DD DSN=userid . ~ . D5120.FORT77,DISP=SHR

IIFORT.SYSIN DD DSN=userid .~. D5120.FORT77(AMPARM),DISP=SHR
II DD DSN=userid.~ . D5120.FORT77(AMPTBL),DISP=SHR
II DD DSN=userid.~.D5120.FORT77(AMPSUM),DISP=SHR
II DD DSN=userid. ~ . D5120.FORT77(AMPORD),DISP=SHR

II DD DSN=userid.~. D5120.FORT77(SETMAS),DISP=SHR

II·

II DD DSN=userid.~.D5120.FORT77(AM0001),DISP=SHR

II DD DSN=userid. C.D5120.FORT77(AM0002),DISP=SHR

II DD DSN=userid. C.D5120.FORT77(AM0003),DISP=SHR

II DD DSN=userid. C. D5120.FORT77(AH0004),DISP=SHR

II DD DSN=userid.~.D5120 . FORT77(AM0005),DISP=SHR

II DD DSN=userid .e . D5120.FORT77(AM0006),DISP=SHR

II DD DSN=userid .e. D51 20 .FORT77(AM0007),DISP=SHR

II DD DSN=userid . ~ .D5120.FORT77(AH0008),DISP=SHR

II DD OSN=userid.C .D5120 .FORT77 (AH0009),DISP=SHR

II DD DSN=userid.C .D5120 . FORT77(AMOOI0),DISP=SHR

II DD DSN=userid . C.D5120.FORT77(AMOOll) , DISP=SHR

II DD DSN=userid . C.D5120. FORT77 (AM0012), DISP=SHR

II DO DSN=user i d . C. D5120.FORT77(AH0013) , OISP=SHR

II DD DSN=user i d . C.D5120.FORT77(AM0014),DISP=SHR

II OD DSN=useri d .C. D5120.FORT77(AM0015),DISP=SHR

II DO OSN=user i d.C. D5120. FORT77(AH0016), DISP=SHR

II DD DSN=userid .0 .D5120 . FORT77(AM0017),DISP=SHR

II DD DSN=useri d.e .D5120 .FORT77(AM0018),DISP=SHR

II DD DSN=user i d.e . D5120 .FORT77(AM0019),DISP=SHR

II DD DSN=userid.C.D5120. FORT77(AH0020) ,DISP=SHR

II DD DSN=userid . C.D5120.FORT77 (AM0021), DISP=SHR

II DD DSN=user id . C.D5120.FORT77(AH0022),DISP=SHR

II DD DSN=user id .C .D5120.FORT77(AM0023),DISP=SHR

II DD DSN=user id . C.D5120. FORT77(AM0024),DISP=SHR

II DD DSN=user id .C. D5120.FORT77(AM0025) ,DISP=SHR

II DD DSN=userid.C.D5120.FORT77(AH0026),DISP=SHR

II DD DSN=userid.C.D5120.FORT77(AH0027) ,DISP=SHR

II DD DSN=userid . C. D5120.FORT77(AM0028),DISP=SHR

II·

IILKED.SYSLHOD DD DSN=userid .e.D5120.LOAD,

II DISP=(NEW,CATLG, DELETE) ,

II SPACE=(TRK,(007,2,015),RLSE)

Source list 4.3 JCL for making the library for amplitude calculation

155 4.2. RUNNING ON FACOM

IIXXXXT JOB CLASS=M
11* MTAK.GRACE.V920605 DATA
II 	EXEC FORT7CLG,
II PARM.FORT='OPT(3),GOSTMT,SOURCE,NONUM,NOSTATIS',
II PARM . LKED='NOMAP,NOLIST'
IIFORT.SYSINC DD DSN=userid.~.D5120.FORT77,DISP=SHR
IIFORT.SYSIN DD DSN=userid . ~.D5120 .FORT77(TEST) ,DISP=SHR
II DD DSN=userid . ~.D5120 . FORT77(FUNC),DISP=SHR

II DD DSN=userid.~.D5120.FORT77(USERIN),DISP=SHR
II DD DSN=userid.~.D5120.FORT77(USROUT),DISP=SHR
11* DD DSN=userid.~.D5120 . FORT77(SETMAS),DISP=SHR

II DD DSN=userid.~ . D5120.FORT77(KINIT),DISP=SHR
II DD DSN=userid.~.D5120.FORT77(KINEM),DISP=SHR
11*
II DD DSN=MLI8.GRACE . Vyymmdd.PROGS(BDUMMY),DISP=SHR
IILKED.SYSLIB DD
II DD DSN=userid.~.D5120.LOAD,DISP=SHR
II DD DSN=MLIB.GRACE.Vyymmdd.LOAD,DISP=SHR
II

Source list 4.4 JCL for the gauge invariance test

4.2 .4 Numerical integrat ion

JCL for the numerical integration is generated in a member #INT, by which the numer
ical integration over the phase space cab be performed by BASES. Before integration,
the following points are to be checked:

1) Include fi le INCLH
Set the numbers of histograms and scatter plots III the include file INCLH as
described in section 3.5. 5.

2) 	Preparation of the subprograms USERIN and FUNC

Their specifications are given in sections 3.5.3 and 3.5.4.

3) 	 Preparation of the kinematics routines
In the GRACE system, KINIT and KINEM are standard subroutine names for initial
izat ion and calculation of the kinematics, respectively. Their specifications are
given in section 4.3.

4) 	 Probability information
When event generation is considered, a file for the probability information must
be defined in the logical unit number 23. For the first integration, this file
('userid. PROCESS. DATA' as an example) should be created. For the second
or later use, this file should be use by allocating it as described in the example
of JCL.

If only the result of integration is required , this file can be defined as the dummy.

156 CHAPTER 4. HOW TO USE GRACE SYSTEM

5) 	 Job parameters

The job parameters described in section 3.5.1, are given as the data cards .

IIXXXXI JOB CLASS=V

11* MLIB.GRACE.Vyymmdd

II EXEC FORT7CLG,

II PARM.FORT='OPT(3) ,GOSTMT,SOURCE,NONUM,NOSTATIS' ,

II PARM.LKED='NOMAP,NOLIST'

IIFORT.SYSINC DD DSN=userid.~.DS120.FORT77,DISP=SHR

IIFORT.SYSIN DD DSN=userid.~.DS120.FORT77(MAINBS),DISP=SHR
II DD DSN=userid.~.DS120.FORT77(USERIN),DISP=SHR
II DD DSN=userid.~.DS120.FORT77(FUNC),DISP=SHR
II DD DSN=userid.~.DS120.FORT77(KINIT),DISP=SHR
II DD DSN=userid.~.DS120.FORT77(KINEM),DISP=SHR
II DD DSN=userid.~.DS120.FORT77(USROUT),DISP=SHR
11*
IILKED.SYSLIB DD
II DD DSN=userid.~.DS120.LOAD,DISP=SHR
II DD DSN=MLIB.GRACE . Vyymmdd.LOAD,DISP=SHR
II DD DSN=MLIB.BASESSO.LOAD,DISP=SHR
IIGO.SYSIN DD *

1,1 LOOP MIN AND MAX

-4 Print Flag

0 Flag

120.0 	 CPU Time in Minutes

1*

IIGO.FT23FOOl DD DUMMY

11* For the second or later use

1/*GO.FT23FOOl DD DSN=userid .PROCESS .DATA,DISP=SHR

11* For the first use

II*GO.FT23FOOl DD DSN=userid . PROCESS . DATA ,DISP=(NEW ,CATLG ,DELETE) ,

11* SPACE=(TRK,(S,S),RLSE),

11* DCB= (RECFM=VBS ,BLKSIZE=23476)

Source list 4.5 JCL for the numerical integration by BASES

4.2.5 Event generation

A JCL for the event generation is also generated by GRACE. Before running the event
generation, the following items are considered:

1) 	 Include file INCLH

The numbers of histograms and scatter plots should be set in the include file
INCLH, whose numbers must be greater than or equal to those defined in BASES.

2) 	 Subroutines SPINIT, SPEVNT and SPTERM

These routines are called by SPRING, whose specifications are given III section
3.6.3.

157 4.2. RUNNING ON FACOM

3) 	 Probability information file
This file should be prepared by BASES, which is read from the logical unit number
23.

4) 	 Input parameters
At the beginning of the event generation, the number of events and computing
time limit are read from the logical unit number 5.

IIXXXXS JOB CLASS=V
11* MLIB.GRACE.Vyywwdd
II EXEC FORT7CLG,
II PARM.FORT='OPT(3),GOSTMT,SOURCE,NONUM,NOSTATIS',
II PARM.LKED='NOMAP,NOLIST'
IIFORT.SYSINC DD DSN=userid.@.D5120.FORT77,DISP=SHR
IIFORT.SYSIN DD DSN=userid.@.D5120.FORT77(MAINSP) ,DISP=SHR
II DD DSN=userid.@.D5120.FORT77(USERIN),DISP=SHR
II DD DSN=userid.@.D5120.FORT77(FUNC),DISP=SHR
II DD DSN=userid.@.D5120.FORT77(KINIT),DISP=SHR
II DD DSN~userid.@.D5120.FORT77(KINEM),DISP=SHR
II DD DSN=userid.@.D5120.FORT77(SPINIT),DISP=SHR
II DD DSN=userid.@.D5120.FORT77(SPEVNT),DISP=SHR
II DD DSN=userid.@.D5120.FORT77(SPTERM),DISP=SHR
11*
IILKED.SYSLIB DD
II DD DSN=userid.@.D5120.LOAD,DISP=SHR
II DD DSN=MLIB.GRACE.Vyywwdd.LOAD,DISP=SHR
II DD DSN=MLIB.BASES50.LOAD,DISP=SHR
IIGO.SYSIN DD *

10000 	 Number of events
1.0 	 CPU Time in Minutes

1*

IIGO.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=SHR,LABEL=(",IN)

Source list 4.6 JCL for the event generation by SPRING

mailto:DSN=userid.@.D5120.LOAD,DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(SPTERM),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(SPEVNT),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(SPINIT),DISP=SHR
mailto:DSN~userid.@.D5120.FORT77(KINEM),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(KINIT),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(FUNC),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(USERIN),DISP=SHR
mailto:DSN=userid.@.D5120.FORT77(MAINSP
mailto:DSN=userid.@.D5120.FORT77,DISP=SHR

158 CHAPTER 4. HOW TO USE GRACE SYSTEM

4.3 Running o n parallel computers

\Ve have tested the BASES of GRACE system on parallel computers (INTEL iPSC/860,
nCUBE 2 aud F1Ijitsu APIOOO). III this section, we describe how to execute the nu
merical calculation. \Ve prepare th e BASES library for these parallel computers. In
particular we assume we use INTEL iPSC/860, because this machine is most powerful
one among these threc machines we used . User call use other parallel computers in the
simila r way.

As a remote host computer for INTEL iPSC/860 the SUN SPARC workstation is
used. Oll this rCllIot.e Lost computer, the cross-compiler and various software to use
INTEL iPSC/860, are installed. Therefore user only login into this remote machine
and can use I T EL iPSC/860.

At the first time user should add the following statement in the. cshrc.

setenv GRACEDIR /user/local/grace

set path=($path $(GRACEDIR)/bin)

setenv IPSC_XDEV /usr/ipsc/XDEV/ R3.0

set path=($path /usr/ipsc/bin $ (IPSC_XDEV)/i860/bin . sun4)

$ (GRACEDIR) IbiD is a subdirectory where the executables for GRACE has been installed.
Last 2 lines is required in order to create the proper environment for usage of INTEL
iPSC/860 itself.

It is recommended to create a new directory for the calculation of one physical
process. For the process e+e- ---> W +W-, a directory eewwa is created and move to
the directory :

grace;. mkdir eewwa J
[grace;' cd eewwa
~--~

User can perform the following steps using the commands installed on this UNIX
machine itself.

• Generation Feynman graph

• Drawing Feynman graph

• Generation source code

See sections 4.1.1, 4.1.2 and 4.1.3.

4.3.1 Command summary for INTEL iPSC/860

In this subsection , we summarize the commands for INTEL iPSC/860.

159 4.3. RUNNING ON PARALLEL COMPUTERS

C omm and Invocation Description

cubeinfo -n

get cube [-c cuuename] [-t cu.ue/.ypc]

load [-c cubename] filename

wait cube [-c c11.benameJ

killcube [-c c'IluenameJ

relcube [-c (;u/Jenarne]

Displays cube ownership information.

Allocate a cube, and make it

the currently attached cube.

Loads a user process into the cube.

Wait for process on node to finish before

proceeding.

Kill node process.
R elea...se a cube.

If user create the executable int. intel, user type as follows.

grace!. getcube -t 16;load int.intel;waitcube;killcube;relcube

In this case , user allocat.es 16 nodes.

4.3.2 Makefile

T he command" genfort" also generates the makefile. The libraries BASES/SPRING,

in terfa.ce to CHANEL and CHANEL are stored in the directory GRACELDIR. The objects
commonly used both in BASES and SPRING are defined by macro name OBJS, which is
referred in the later description.

SHELL
I HTELHOME
Fe
FFLAGS
LD
AS
LIBPATH

GRACELDIR

BASESLIB
CHAHELLIB
BDUMMLIB

OBJS

/bin/csh

/usr/ipsc/XDEV/R3.0

if77

-01 -Knoieee

ld860

as860

$ (IHTELHOME)/i860/lib-coff

/users/packages/grace/lib/intel

bases

chanel

bdummy

userin.o amparm.o \

func.o amptbl.o ampsum.o ampord.o \

usrout.o kinit.o kinem.o setmas.o \

amOOO1.o amOOO2.o amOOO3.o amOOO4.o \

amOOO5.o amOOO6.o amOOO7.o amOOO8.o \

amOOO9.o amOO10.o amOOll.o amOO12.o \

amOO13.o amOO14.o amOO15.o amOO16.o \

amOO17.o amOO18.o amOO19.o amOO20.o \

amOO2Lo amOO22.o amOO23.o amOO24.o \

amOO25.o amOO26.o amOO27.o amOO28.o

Source list 4.7 Makefile for INTEL
continue to the next page

http:interfa.ce
http:allocat.es

160 CHAPTER 4. HOW TO USE GRACE SYSTEM

INT = int.intel
INTOB1 = mainbs.o
SPRING = spring . intel
SPOB1S = mainsp.o spevnt.o spinit.o spterm.o
TEST = test . intel
TESTOB1 test.o

all : $(INT) $(SPRING)

$ (INT) : $(INTOB1) $(OB1S) $(GRACELDIR)/lib$(BASESLIB).a \
$(GRACELDIR)/lib$(CHANELLIB).a
$(FC) $(INTOB1) $(OB1S) -0 $(INT) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

$(SPRING): $(SPOB1S) $(OB1S) $(GRACELDIR)/lib$(BASESLIB).a
$(FC) $(SPOB1S) $(OB1S) -0 $(SPRING) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

test : $(TEST)

$(TEST) : $(OB1S) $(TESTOB1) $(GRACELDIR)/lib$(BDUMMLIB).a \
$(GRACELDIR)/lib$(CHANELLIB) .a
$(FC) $(TESTOB1) $(OB1S) -0 $(TEST) -L$(GRACELDIR) \
-1$(BDUMMLIB) -1$(CHANELLIB) $(FFLAGS)

clean:
rm -f *.0 $(INT) $(SPRING) $(TEST)

. f.o :

$(FC) $(FFLAGS) -c $<

Source list 4.7 Makefile for INTEL

The macro names INT and INTOBJ define the executable and the object of the main
program for the integration, respectively. Similarly the macro names SPRING, SPOBJS,
TEST and TESTOBJ are defined .

When the gauge invariance is tested by the generated source, subroutines USERIN
and FUNC are called in the main program, which call the histogram packages. Since the
histogram has no meaning in the test, we use dummy library for them, which is stored
in the directory GRACELDIR. Therefore it is not necessary to change the subprograms
FUNC and USERIN for this test .

4.3.3 Test of the gauge invariance

The main program test . f is used to check the generated amplitudes at a point in the
integration volume as described in section 3.4. The executable test is created and is
executed by the following commands:

161 4.3. RUNNING ON PARALLEL COMPUTERS

grace% make -f makefile.intel test
grace% getcube -t l;load intel . test;~aitcube;killcube;relcube

In this case, user alloca t.es only one node and it is meaningless when use allocate multi
nod es because the parallel libran' is not used for t est.

4.3.4 Integration

At first user should makp th e ex('cutables for the iIlt.egration and event genera tioIl by
command make.

(~g_r_a_c_______e____m _e _l _' l_ t__l_________________________________e ", mak - f __ak _f_l _e _ n_ e)

T hen the executables int. intel and spring. intel are created.

Bef f(~ loading process into the node p rocessors, USN sh uld prepare one file , t ha t is,

"bases . jobprm" described in section 4.1.6. B r integration

grace% get cube -t 16 ; l oad int . intel ; ~ai t c ube ;killcube ; re lcube

I t is recommended t open the ou put file ill the main program ma i nbs . f because
terminal I/ O takes much tim .

i f(mynode() .eq. 0) t hen
open (6 , f i le= 'bases. output' ,stat us = ' unknovn')

endlf

In this program, the func t.ion "mynode" is a system rall of I TEL iPSC/ 860 itself.
Then it returns node ID of Callillg process (0 to number of nodes - 1). In parallel
BASES , all output will be generated from only node ID=O.

In this case the output. from BASES is w itten on the fi le bases.output .
Before terminati n of the integration job, BASES writes the probability information

on t,hc file bases . data , which is used for the event. generation .

4.3.5 Event generation

At. the first time, user should creatp the input file where the the number of ev .nts and
computing time are specifi ed . For instance, we assume this fil e name is "spring. parm" ,
then user should insert two statements before CALL SPMAIN in the main program
mainsp. f .

http:allocat.es

162 CHAPTER 4. HOW TO USE GRACE SYSTEM

open(5,file='spring.parm' ,status='old')
open(6,file='spring.output' ,status='unknown')

Since the executable spring. intel is created by the make command already, the event
generation starts by

grace% getcube -t l;load spring.intel;waitcube;killcube;relcube

The event genera tion will run until the given number of events are generated or
the computing time is exhausted. Since the spring library is not parallelized, so user
should allocate only one node.

Chapter 5

G R ACE fo r a Vector comp uter

\Vhen some calculations are performed repea tedly, a vector computer displays its
power. Our problem, calculating the numerical value of differential cross section re
peatedly very many times to obtain that of cross section, is just the case. It is possible
to shorten the execution time of the integration by using the vector computer. In order
to make the execution of program fast with the vector computer, a vector1.zable program
has to be written, which is interpreted into vector operations by a compiler. When the
REDUCE system was used for taking trace of ,),-matrices, the vectorizable program was
used to be made by hand or by using a program package SPROC Ref.[9]. However, it
is now very easy for us to use the vector computer because GRACE system can also
produce a vectorizable program.

This chapter is devoted to the GRACE system for the vector computer and divided
into the following sections:

(1) 	Generated source code by GRACE

GRACE system can generate subprograms for BASES and SPRING in a vectorizable
form. They are summarized in section 5.1.

(2) 	BASES on a vector computer
The program structure of vector BASES and its usage are described in section 5.2.

(3) 	SPRING on a vector computer
A vector version of SPRING IS now available. In section 5.3, its algorithm and
usage are described.

When the numerical calculation of differential cross section takes very much time,
even SPRING takes also much time for generating events. In our example of the process
e+e- -> W+W-,)" consisting of 28 Feynman graphs, generation of 10k events takes a
comparable computing time to the integration by BASES. We consider a process with
more graphs, more computing time is required both for the integration and event gen
eration. This may easily occur in use of GRACE system because it generates everything
automatically except for the kinematics.

163

164 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

5.1 Generated source code by GRACE

GRACE generates three kinds of Source codes for the vector computer. The first is a set
of program components for the amplitude calculation, the secolld for the integration
by vector BASES and the third for the event generation by vector SPRING .

Some of these program components are identical to those for the scalar computer,
which are indicated by "s" in the following tables, while the program components with
"v" are special versions for the vector computer. Since almost all components used
in BASES are needed in SPRING, they are appeared in the both items . The program
components for the vector BASES and SPRING in the last two items are described later
in the relevant sections of this chapter.

The interrelation among these subprograms is shown in figure 5.1, where those
subprograms in the white box are automatically generated by GRACE, while those
in the shaded box are already contained in other program packages BASES/SPRING,

interface program library to CHANEL, and program package CHANEL.

Fig. 5.1 Relation among the generated subprograms

1) a set of program components for amplitude calc ulation

165 5.1. GENERATED SOURCE CODE BY GRACE

SETMAS subroutine S Definition of mass and decay width of particle.
AMPARM subroutine S Definition of coupling constants and others.
AMPTBL subroutine V Call AMnnnn to calculate amplitudes.
AMPSUM subroutine V Amplitudes are summed after being squared.
AMnnnn subroutine V Calculate amplitude of the nnnn-th graph, where

the number nnnn of these routine name is equal to
the graph number.

AMPORD subroutine V Arranges amplitudes.
INCLl include file V Define the common variables for masses, amplitude

tables etc.
INCL2 include file V Define the work space for AMPTBL.
INCLVS include file V Define the vector length.
TESTV maID V Main program for testing gauge invariallce.

Among the above components, only the include file INCLVS has to be finalized
by the user, while the others can be used as it is.

2) a set of program components for the integration by vector BASES

MAINVB main V Main program for the integration.

USERIN subroutine S lnitialization of BASES and user's parameters.

KINIT subroutine S Initialization of kinematics.

VBFNCT subroutine V Ca lculate the numerical values of differential cross

section.
KINEM subroutine V To derive pa.r t icle four momenta from the integra

tion variables.
USROUT subroutine S Print the amplitude summary table.
INCLVS include file V Define the vector length.
INCLVB include file V Define the common for integration variables etc.
INCLH include file S Define the histogram buffer.

3) a set of p rogram components for the event generation by vector SPRING

MAINVS main V Main program for the event generation.

USERIN subroutine S Initialization of BASES and user's parameters.

KINIT subroutine S Initialization of kinematics.

VBFNCT subroutine V Calculate the numerical values of differential cross

section.
KINEM subroutine V To derive particle four momenta from the integra

tion variables.
INCLVS include file V Define the vector length.
INCLVB include file V Define the common for integration variables etc.
INCLH include file S Define the histogram buffer.
SPINIT subroutine S Initialization routine for user's purpose.
SPEVNT subroutine V To save four vectors on a file.
SPTERM subroutine S Termination routine for user's purpose.

166 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

5.1.1 Include file INCLl

A remarkable difference between the vector program and thr scalar one is appeared
ill the include file INCLl, shown ill the source list S.l. All yariables relevant to the
amplitude calculation are arrays with au additional dimension of the vector length
NSIZE in the vector program.
Examples:

Variables [or the Scalar Variables [or the Vector COMMON

AG(O:LAG-1,NGRAPH) => AG(NSIZE,O:LAG-1,NGRAPH) /AMGRPH/

PEOOO1(4) => PEoOO1(NSIZE,4) /AMEXTR/

PPROD(NEXTRN,NEXTRN) => PPROD(NSIZE,NEXTRN,NEXTRN) /AMEXTR/

The vector length NSIZE is to b defined in the include file INCLVS, where a state
ment

PARAMETER (NSIZE = •••)

IS. One has to determine NSIZE as described in section 5.2.

PARAMETER (LOUTGO = 2, LINCOM = 1)

PARAMETER (LANTIP = -1, LPRTCL = 1)

PARAMETER (LSCALR = 1)

PARAMETER (LEPEXA 2 , LEPEXW = 3, LEPEXZ = 3, LEPEXG 2)

PARAMETER (LEPINA 4, LEPINW = 4, LEPINZ = 4, LEPING 3)

PARAMETER (LEXTRN 2, LINTRN = 4)

• 	Table of amplitudes
PARAMETER (NGRAPH 28, NEXTRN 5, LAG = 72)
PARAMETER (NGRPSQ NGRAPH*NGRAPH)
COMMON /AMSLCT/JSELG(NGRAPH), JGRAPH, JHIGGS, JWEAKB
CDMPLEX*16 AG, APROP
COMMON /AMGRPH/AG(NSIZE , O:LAG-l ,NGRAPH) ,APROP(NSIZE,NGRAPH),

&: ANCP(NSIZE,NGRAPH),ANSP(O :NGRAPH),

&: CF (NGRAPH, NGRAPH), IGRAPH (NGRAPH)

* 	Masses and width of particles
COMMON /AMMASS/AMWB,AMZB ,AHAB , AMXB, AMX3,AMPH,AMLU,AMNE,AMNM,AMNT,

&: 	 • • . . •

COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU,AGNE,AGNM,AGNT,
&:

• Coupling constants
COMMON /AMCPLC/CZWW ,CAWW ,CWWAA ,CWWZA

&

Source list 5.1 The content of include file INCLl

continue to the next page

167 5.1. GENERATED SOURCE CODE BY GRACE

* Momenta of external particles
COMMON /AMEXTR/PE0001(NSIZE,4) ,PE0002(NSIZE,4) ,

& PE0003(NSIZE,4) ,PE0004(NSIZE,4) ,
& PE0005(NSIZE,4) ,
& PPROD(NSIZE,NEXTRN, NEXTRN)

* 	Switch of gauge parameters
COMMON /SMGAUS/IGAUOO,IGAUAB,IGAUWB,IGAUZB,IGAUGL
COMMON /SMGAUG/AGAUGE(0:4)

* 	Normalization
COMMON /SMDBGG/FKNORM,FKCALL,NKCALL

* 	Calculated table of amplitudes
COMMON /SMATBL/AV, LT, INDEXG
COMPLEX*16 AV(NSIZE,O:LAG-l)
INTEGER LT(O:NEXTRN), INDEXG(NEXTRN)

* For 	external particles
COMMON /SMEXTP/

& PSOO01, EWOO01, CEOO01,

& PSOO02, EWOO02, CEOO02,

& EPOO03, EWOO03,

& EPOO04, EWOO04,

& EP0005, EWOO05

REAL*8 PS0001(NSIZE,4,2), EWOOO1(NSIZE,1)

COMPLEX*16 CEOO01(NSIZE,2,2)

REAL*8 PS0002(NSIZE,4,2) , EW0002 (NSIZE, 1)

COMPLEX*16 CEOO02(NSIZE,2,2)

REAL*8 EPOO03(NSIZE,4,LEPEXW), EWOO03(NSIZE,LEPEXW)

REAL*8 EPOO04(NSIZE,4,LEPEXW), EWOO04(NSIZE,LEPEXW)

REAL*8 EPOO05(NSIZE,4,LEPEXA), EWOO05(NSIZE,LEPEXA)

Source list 5.1 The content of include file INCLl

5 .1.2 Subroutine AMPTBL

Another difference between the scalar and the vector versions can be seen, for example,
in the subprogram AMPTBL, shown in the source list 5.2.

i) 	 At the first stage of amplitude calculation, the subroutine SMEXTF is called for
each external fermion and SMEXTV for each vector particle. They construct tables
about the external lines necessary for the succeeding calculation.

After the first call of SMEXTF, the variable EWOOOl (1) is set equal to "1", which
corresponds to the particle (electron). EW0002 (1) is set to "-1" after the second
call, which means this particle is the anti-particle (positron).

Then SMEXTV is called twice with mass of AMWB, which constructs tables of the
external W± particles. And finally SMEXTV is called with mass of AMAB for the
photon (See section 7.2).

168 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

SUBROUTINE AMPTBL(NSAMPL)
** 5120 E+ E- => W+ W- A TREE

IMPLICIT REAL*8(A-H,O-Z)

INCLUDE (INCLVS)

INCLUDE (INCL1)

INCLUDE (INCL2)

*--
JGRAPH = 0

* 	 External lines
CALL SMEXTF(NSAMPL,LINCOM,AMEL,PE0001,PS0001,CE0001)
DO 101 J = 1 , NSAMPL

EW0001(J,l) = LPRTCL
101 	CONTINUE

CALL SMEXTF(NSAMPL,LOUTGO,AMEL,PE0002,PS0002,CE0002)

DO 102 J = 1 , NSAMPL

EW0002(J,l) = LANTIP
102 	CONTINUE

CALL SMEXTV(NSAMPL,LEPEXW,AMWB,PE0003,EP0003,EW0003,IGAUWB)

CALL SMEXTV(NSAMPL,LEPEXW,AMWB,PE0004,EP0004,EW0004,IGAUWB)

CALL SMEXTV(NSAMPL,LEPEXA,AMAB,PE0005,EP0005,EW0005,IGAUAB)

* 	Graph NO . 1 - 1 (1)
IF (JWEAKB.NE.O) THEN
IF (JSELG(l).NE.O) THEN

JGRAPH = JGRAPH + 1

IGRAPH(JGRAPH) = 1

CALL AM0001(NSAMPL)

ENDIF

ENDIF

* 	Graph NO. 28 - 1 (28)
IF (JWEAKB.NE . O) THEN
IF (JSELG(28).NE.0) THEN

JGRAPH = JGRAPH + 1

IGRAPH(JGRAPH) = 28

CALL AM0028(NSAMPL)

ENDIF

ENDIF

REnIRN

END

Source list 5.2 An example of AHPTBL

ii) The subroutine AMnnnn is called for calculating amplitude of the nnnn-th graph.
Since there are 28 Feynman graphs for the process e+ e- ---> \11+ "{IV-,/" 28 su brou

http:JWEAKB.NE

5.2. 	 BASES ON A VECTOR COMPUTER 1G9

tines, AM0001, . .. , and AM0028, are called successively.

All subroutines including AMPTBL itself have the variable NSAMPL as the first argu
men t, which is the real vector length determined by BASES/SPRING. When the case of
NSIZE < NSAMPL occurs, the program is terminated after printing an error message.

5 .2 BASES o n a vecto r comp uter

Basic idea for vectorizing the integration program BASES is the following:

(.) lni tialization

(1) 	 At the beginning of integration the subprogram USERIN is called , where
the number of wild variable N wi1d alld that of sampling points per iteration
N;;:;e are given together with other parameters.

(2) From 	these numbers NWi1d and N;;:;e the number of hvpercubes NculJe is
determined by the algorithm described in subsection 2.7. The hypercubes
are divided into N v groups, each of which has N trial X N culJe/Nv (= Nsarnple)

sampling points per iteration. I

One reason for this grouping hypercubes into N v groups is applicability to
a parallel vector computer and another is to keep program size as small as
possible on the vector computer.

(B) 	Calculation of the estimate of integral and its error for one itera.tion

(1) 	The random numbers are generated for all sam pling points of one group by
a vectorized random number generator. As we have N sarnple sampling points
a group and N dim integration variables, Nsarnple x N dim random numbers are
generated.

(2) 	They are translated into the integration variables, which consist of Nsarnple

sets of Ndirn dimensional variables, where a set corresponds to a sampling
point.

(3) 	 The Nsarnple sets of variables are given at the same time to the subprogram
VBFNCT, where Nsarnple values of the integrand are calculated by a vectorized
program.

(4) 	 Steps (B.l) rv (B.3) are repeated unt il the estimates of all groups are finished.

(5) 	 Sums of estimate and variance are taken over all groups and the estimated
error is also calculated for the iteration.

(C) 	The program flows of the grid optimization and integration steps are identical to
those in the scalar version.

1The maximum number of N . ftmple is taken as that for NSIZE in the include fil e INCLVS.

170 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Fig. 5.2 Structure of the vector version BASES

171 5.2. BASES ON A VECTOR COMPUTER

Since groupin g hypercu bes is carried out by the identical algorithm to the parallel
computer, th e relation between the numbers N cubc and Nnodc described in subsection
2.7 is identical to t hat between the numbers Ncube a nd N v ·

5.2.1 Structure of vector BASES

T he program structure of vec tor version BASES is shown in figure 5.2, where the program
components with in the white box gene rated by GRACE and the others arc in the
libraries.

From the integration program, the subprograms USERIN, VBFNCT and USROUT are
called , which are t he interfaces to the user program. The specifications to write these
subp rograms a re described in subsection 5.2.2 .

T he subroutine VBMAIN controls the global Bow of integration , like the initialization
stage , the grid optimiza tion step , the integration step and termination stage . This
globa l Bow is exactly identical to th t for the scalar version described in su bsection
3.5.2.

The grid optimiza t ion and integration st ps arc controlled by VBASES, where the
distinction between t hese two steps is done by the job flag as mentioned in subsection
3.5.1.

5.2.2 SubprograIIls to be prepared

For the integr tion by BASES the main program MAI NVB and the subprograms USERI N,

VBFNCT, USROUT should b finalized by the user whose templates a re generated by
GRACE.

In USERIN, the subrout ines SETMAS, AMPARM and KINIT are called, for which t he
same routines as on the scalar computer can be used. For USROUT tb routine used on
the scalar computer is also applicable to the vector machine.

The subroutine VBFNCT, however, is not the function subprogram like FUNC on the
sca lar machine, but must be writt n by a vectorizable code . Furthermore, it includes
t h kinematics rou t ine KINEM, which should be vectorized to obtain a high performance
of the vector compu teI.

Main program MAINVB

MAINVB is given as in the form of the source list 5.2.

172 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

IMPLICIT REAL*8 (A-H, O-Z)

* 	Arrays for VBASES
INCLUDE (INCLVB)
COMMON /VBCNTO/ KG(NSIZE,MDIM), IA(NSIZE,MDIM)
COMMOM /VBRAND/ RX(NSIZE), NRN(NSIZE), LAB(NSIZE)

* 	Arrays for HISTOGRAM and SCAT_PLOT
INCLUDE (INCLH)
COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)
COMMON /VBHIST/ IADX(NSIZE,NHIST+1), IADD(NSIZE,2,NSCAT)
COMMON /HSTCNT/ IX(NSIZE), IY(NSIZE), IDFX(NSIZE)

• 	 Arrays for CHANEL
PARAMETER (NWORD = 167)
COMMON /CHWORK/ WORKS(NSIZE,NWORD)

* 	Control for number of nodes
COMMON /NINFO/ NODEID, NUMNOD, IPFLAG

NODEID = 0

NUMNOD = 16

CAL VBMAIN(MDIM, NSIZE, X, FX, WGT, lA, KG)

STOP

END

Source list 5.2 Main program MAINVB

The include file INCLVB IS generated automatically by GRACE and its content IS as
follows:

PARAMETER (HDIM = 4)
INCLUDE (INCLVS)
COMMON /VBVECT/ WGT(NSIZE), X(NSIZE,MDIM), FX(NSIZE)

where the include fi le INCLVS defines the vector length NSIZE in the following:

(~_____P_A_RA__M_E_T_ER__(__N_SI_Z_E__=_3_0_2__)__________________________________)

The parameter NUMNOD is th number N v mentioned at the beginning of this section.
The reason why this variable name is "number of nodes" is that when we use a parallel
vector computer the meaning of this variable becomes really the number of nodes.

The file INCLVS is also created automatically. The random numbers are generated
for Nsamplc sampling points by the subprogram VBRNDM, and are transferred into Nsample

sets of integration variables in routine VBASES . Then they are given to the subprogram
VBFNCT, where the values of integrand are calculated at these sets of sampling points.

173 5.2. BASES ON A VECTOR COMPUTER

Subroutine VBFNCT

In the subroutine VBFNCT the values of integrand are calculated for N , amplc sampling
points by a vectorizable code. In the source list 5.3 an example of this routine is given.
By comparing with the scalar version in section 3.5.4 we can see the difference between
the scalar and vector versions.

SUBROUTINE VBFNCT(NSAMPL)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (MXDIM = 50)

COMMON / BASEl / XL(MXDIM) ,XU(MXDIM) ,NDIM,NWILD,

& IG(MXDIM),NCALL

INCLUDE (INCLVB)

INCLUDE (INCL1)

COMMON /AMREG / MXREG

COMMON / AMSPIN/ JHS(NEXTRN). JHE(NEXTRN), ASPIN

REAL*8 ANSO(NSIZE)

* P : Table of four momenta
* PP : Table of inner products

REAL*8 P(NSIZE,4,NEXTRN),PP(NSIZE,NEXTRN,NEXTRN)
REAL*8 YACOB(NSIZE), DFX(NSIZE)
INTEGER NREG(NSIZE) ,JUMP(NSIZE) ,L(NSIZE)
COMMON /SP4VEC/ VEC(NSIZE,4,NEXTRN)
REAL+8 DFT(NSIZE), RN(NSIZE)

*===
Initialization*

+===
DO 100 I 1, NSAMPL

H(!) O. ODO

NREG(I) 1

100 CONTINUE
*===
+ Kinematics
*===

DO 1000 IREG = 1, MXREG

CALL KINEM(NSAMPL , NEXTRN , P, PP, YACOB ,NREG,IREG,JUMP)

*--
* Reset the temporal buffer for the region 1

*--
IF(IREG .EQ. 1) THEN

DO 150 I = 1, NSAMPL
DFT(I) = O.DO

150 CONTINUE

Source list 5.3 Subprogram VBFNCT
continue to the next page

174 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

DO 180 K 1, NEXTRN
DO 180 J 1, 4

DO 180 I 1, NSAMPL
VEC(I,J,K) = 0.00

180 CONTINUE
ENDIF

*--

• Gather the actual sampling points (MXLOOP) : # of actual S.P.
*--

MXLOOP 	 0
DO 200 I = 1, NSAMPL

DFX (I) = O. DO
IF(JUMP(I) 	 . EQ . 0) THEN

MXLOOP = MXLOOP + 1
L(MXLOOP) = I

ENDIF
200 CONTINUE

IF(MXLOOP .LE . 0) GO TO 1000
.--
• 	 Four momenta of external particles
*--

DO 300 I 1, 4

DO 300 J = 1, MXLOOP

• 	 1 : EL- INITIAL LPRTCL
PEOOOl (J, I) P(L(J) , I, 1)

2: EL+ INITIAL LANTIP•
PE0002 (J , I) P(L(J) , I, 2)

3: WB+ FINAL LPRTCL•
PE0003 (J , I) P(L(J), I, 3)

• 	 4: WB- FINAL LANTIP
PE0004 (J , I) P(L(J) , I, 4)

• 	 5: AB FINAL LPRTCL
PE0005 (J , I) P(L(J) , I, 5)

300 CONTINUE
.--
• Inner products of external particles
.--

DO 350 K 1, NEXTRN
DO 350 J 1, NEXTRN
DO 350 I 1, MXLOOP

PPROD(I, J, 	K) = PP(L(I), J. K)
350 CONTINUE

Source list 5.3 Subprogram VBFNCT
continue to the next page

175 5.2. 	 BASES ON A VECTOR COMPUTER

*===
Amplitude calculation

*===

CALL AMPTBL(MXLOOP)

CALL AMPSUM(MXLOOP,ANSO)

DO 400 I = 1, MXLOOP

DFX(L(I)) ANSO(I)*YACOB(L(I))*ASPIN

ANSP(O) ANSP(O) + WGT(L(I)) *DFX(L(I))

FX(L(I)) FX(L(I)) + DFX(L(I))

400 CONTINUE

*--- special treatment for SPRING -------------------------------------
* Save four momenta and probabilities of the region 1
*------------- ----------------- -------------------- -- --- -- ----- - -------

IF(IREG . EG. 1) THEN

DO 420 K 1, NEXTRN

DO 420 J = 1, 4

DO 420 I = 1, MXLOOP

VEC(L(I) ,J,K) = P(L(I) , J,K)

420 CONTINUE

DO 430 I 1, NSAMPL

DFT(I) DFX(I)

430 CONTINUE

ENDIF

*===

For 	histograms and scatter plots*
*===

DO 450 I = 1, NDIM
CALL XVFILL(I, NSAMPL, X(1,I), DFX)

450 CONTINUE
K = 	 0

DO 500 I 1, NDIM - 1

DO 500 J I + 1, NDlM

K = 	 K + 1

CALL DVFILL(K, NSAMPL, X(1,I), X(1,J), DFX)
500 CONTINUE

*===
For summary tables*

*===
DO 600 IGR = 1, JGRAPH
DO 600 I 1, MXLOOP

ANSP(IGR) ANSP(IGR)
+ WGT(L(I))*YACOB(L(I))*ASPIN*ANCP(L(I),IGR)

600 CONTINUE

1000 CONTINUE

Source list 5.3 Subprogram VBFNCT
continue to the next page

176 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

DO 	 700 I = 1, NSAMPL

NKCALL = NKCALL + 1

IF(NKCALL .GT. 10000) THEN

NKCALL = NKCALL - 10000
FKCALL = FKCALL + 10000

ENDIF
700 CONTINUE

*=== Special treatment for SPRING (in two valued function case) ======
* Put the final 4 vectors into the arrays VEC()
*===

CALL VBRNDM(1, NSIZE, NSAMPL, RN)

DO 800 I = 1, NSAMPL

L(I) 0

800 CONTINUE

MXLOOP 0

DO 820 I 1, NSAMPL

IF(FX(I) .GT. O.DO) THEN

IF(DFT(I)/FX(I) .LT. RN(I)) THEN

MXLOOP = MXLOOP + 1

L(MXLOOP) = I

ENDIF

ENDIF

820 CONTINUE

DO 850 K 1, NEXTRN

DO 850 J 1, 4

DO 850 I 1, MXLOOP

VEC(L(I),J,K) = P(L(I),J,K)

850 CONTINUE

RETURN

END

Source list 5.3 Subroutine VBFNCT

The structure of the subprogram VBFNCT is as follows:

(1) 	The number Nsam.ple is given by the argument of the subprogram and the numer
ical values of the integration variables are given by X(NSIZE,MDIM) in common
IVBVECTI. The numerical values of integrand are to be stored in FX (NSIZE) . The
other variables in the common IVBVECT1 are used in BASES and should not be
alter anywhere. The content of the include file INCLVB is as follows:

PARAMETER (MDIM = 4)
PARAMETER (NSIZE = 302
COMMON /VBVECT/ WGT(NSIZE), X(NSIZE,MDIM), FX(NSIZE)

177 5.2. 	 BASES ON A VECTOR COMPUTER

(2) 	 The variables or arrays of P, PP, YACOB, NREG and JUMP have an additional di
mension of the vector lengt.h NSIZE.

Examples:

Variables for the scalar Variables for the vector

P(4,NEXTRN) => P(NSIZE,4,NEXTRN)

YACOB => YACOB(NSIZE)

NREG => NREG(NSIZE)

(3) 	 In the subprogram KINIT, the multiplicity of kinematics function MXREG should
be set (See sec tion 3 . . 1) . For our example of the process e+e- -) W' + lrV - ,)" as
we prepare a single valued function as the kinematics, then we set MXREG equal
to "1" . Furthermore, the values of integrand should be cleared and the variable
NREG should be initialized to be "1".

DO 	 100 I 1, NSAMPL

FXO) O.ODO

NREG(I)

100 	CONTINUE

(4) 	Kinematics and t he gathering t h points.
In the calculation of kinematics , there may be those sampling points which are
outside the kinemat ical bounda ry or some detector acceptance. The integrand
should not be calculated for these points. In such a case, the "gathering and
scatterin.ti' method is recommended to use. To gather those sampling points,
which are in the boundary, the "list vector' is used. In the "list vector' L(i),
where the pointers only for those sampling points, which are in the boundary or
the flag JUMP(i) = 0, are stored and the kinematical variables, like four momenta,
are gathered into the first MXLOOP of an array PEnnnnCI, J), as shown below .

• Calculation of kinematics for NSAMPL points at the same time

CALL KINEM(NS AKPL, NEXTERN, P, PP, YACOB, NREG, l REG, JUMP)

MXLOOP = 0
DO 	 200 I = 1, NSAMPL

DFX(I) = 0.000

IF(JUMP(I) .EO. 0) THEN

MXLOOP = MXLOOP + 1

L(MXLOOP) = I

ENDIF

200 CONTINUE

DO 300 I = 1, 4

DO 300 J = 1, MXLOOP

PE0001(J,I) P(L(J) ,1,1)

PE0005(J,I) P(L(J),I,5)

300 CONTINUE

http:scatterin.ti

178 CHAPTER 5. GRACE Fon A VECTOR COMPUTER

It is noted that the number of arguments of subroutine KINEM is different from
that for the scalar version .

(5) Calculation of amplitudes

I3y gathering the sampling points in the arrays PEnnnn () and PPROD 0, an effi
cient amplitude calculation is realized.

(G) Scatter the gathered points

To return the values of integrand to BASES, the gathered points should be scat
t.ered in the order of the given sampling points. For this purpose we use the list
vector L(i), prepared ill step (4).

DO 	 400 I = 1, MXLOOP
DFX(L(I))= ANSO(I)*YACOB(L(I))*ASPIN
ANSP(O) ANSP(O) + WGT(L(I))*DFX(L(I))
FX(L(I)) = FX(L(I)) + DFX(L(I))

400 CONTINUE

(7) Histogramming

To fill the histogram (scatter plot), the subroutine XVFILL (DVFILL) is called
as in the following way. The filling routines on the vector computer are different
from those on the scalar computer. The variables xC 1,1) and X(1, J) are arrays,
which should be defined somewhere in VBFNCT and should not be the gathered
variables. An array DFX is assumed to be the storage of the values of integrand
for the scattered points as defined in the step (6).

CALL XVFILL(ID#, NSAHPL, X(l,I), DFX)

CALL DVFILL(ID#, NSAHPL, X(l,I), X(l,]), DFX)

It is noted that the array DFX is cleared at the step (3). Then those sampling
points which are out of kinematical boundary contribute to the histogram with
weight zero.

Subroutines for Kinematics

GRACE generates the program source code for the amplitude squared but does not for
the kinematics part. Therefore the kinematics routine should be vectorized by oneself.
Vectorization of a program is quite simple. The statement

A = B + C

is vect.orized by rewriting as

DO 100 r = 1, L

A(I) B(I) + C(I)

100 CONTINUE

179 5.2. BASES ON A VECTOR COMPUTER

where L is the vector length. However, one should note the following points. Consider
an addition operator A,/) which operates on two n-dimensional vectors x, y ann returns
an n-dimensional vector z whose ith element has the value of the sum of tbe ith elements
of x and y:

z = AvCr, y), where Zi = Xi + Yi, for i = 1, ... , n.

The parallel operation for each element does not always give the correct result even
though the code is vec:torized. In the calculation of Xi = a + :Ci-2, for example, X3

should be determined before X5 = a + X3 is calculated. Thus there should be no mixing
between input and output data in a vectorized program.

In the source list 5.4, an example of KINEM for the process e+e- --+ Y,-V+Y¥-i is
shown, which is a vee tori zed code of that for the scalar machine given in section 3.3.

SUBROUTINE KINEM(NSAMPL, NEXTRN, PE, PP, YACOB, NREG, lREG, JUMP)

IMPLICIT REAL. S(A-H,O-Z)

INCLUDE (INCLVB)

INTEGER NEXTRN

REAL.S PE(NSIZE,4,NEXTRN), PP(NSIZE,NEXTRN,NEXTRN)

REAL.S YACOB(NSIZE)

INTEGER NREG(NSIZE), lREG

INTEGER JUMP(NSIZE)

COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA

• Masses and width of particles
COMMON /AMMASS/AMWB,AMZB,AMAB,AMXB,AMX3,AMPH,AMLU,AMNE,AMNM,AMNT,

&; AMLD,AMEL,AMMU,AMTA,AMQU,AMUQ,AMCQ,AMTQ,AMQD,AMDQ,
&; AMSQ,AMBQ,AMCP,AMCM,AMCZ,AMCA,AMGL

COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU,AGNE,AGNM,AGNT,
&; AGLD,AGEL,AGMU,AGTA,AGQU,AGUQ,AGCQ,AGTQ,AGQD,AGDQ,
&; AGSQ,AGBQ,AGCP,AGCM,AGCZ,AGCA,AGGL

COMMON / ENRGY / S,W,E,P,P1P2,FACT

COMMON / TRNSF / YACO,EPSP,AP,XLOG

COMMON / KCUTS / RMN,RMX,ETH

COMMON / ACUTS / DELCUT,DLTCSG,DLTCSO,CSMX,CSMN

COMMON / MASSi / EM,WM

COMMON / MASS2 / EM2,WM2

.---kinem-2
• Kinematics for the process
• e-(Pl) + e+(P2) ----) W-(Ql) + W+(Q2) + gamma(R)

•
• (1) Frame of reference :
• (a) Photon is along the z-axis.
• (b) Initial e+ is in the x-z plane.

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

180 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

* (2) Definition of variables :
* (a) Polar angle of e+ is CSG.
* (b) Photon energy is R.

.. (c) Polar angle of W+ is CSO and

.. azimuthal angle is PHI.

.. (d) Energies of W- and W+ are Ql0 and Q20.

* (e) Angle between e+ and W+ is CSTH.
* (3) Variable sequence : R ---) CSG ---) Q20 ---) PHI
*---

REAL*8 R(NSIZE), DR(NSIZE), CSG(NSIZE), SNG(NSIZE), Dl(NSIZE)
REAL*8 D2(NSIZE), ER(NSIZE), Q20MX(NSIZE),Q20MN(NSIZE)
REAL*8 DQ20(NSIZE),Q20(NSIZE), Ql0(NSIZE), Q2(NSIZE), Ql(NSIZE)
REAL*8 CSO(NSIZE), SNO(NSIZE), CSPHI(NSIZE),SNPHI(NSIZE)
REAL*8 CSTH(NSIZE),D3(NSIZE), D4(NSIZE), P1Q2(NSIZE)
REAL*8 P2Q2(NSIZE) ,Q1Q2(NSIZE),P1Ql(NSIZE), P2Ql(NSIZE)

*--------------------------- Entry point
NCNT = 0
DO 10 I = 1, NSAMPL

IF(IREG .LE. NREG(I)) THEN

JUMPO) = 0

ELSE

NCNT = NCNT + 1

JUMPO) = 1

ENDIF

10 CONTI NUE

IF(NCNT .GE. NSAMPL) RETURN
*===
*-- R

DO 100 I = 1, NSAMPL
IF (JUMP (I) .EQ. 0) THEN

RR RMX/RMN

R(I) RMN*RR**X(I,l)

DR(I) LOG(RR)/R(I)

ENDIF
100 CONTINUE

C--- CSG
DO 150 I = 1, NSAMPL

IF (JUMP (I) . EQ. 0) THEN
ZZZ EXP(2.DO*XLOG*(X(I,2) - 0.5DO))
CSG(I) (ZZZ - 1.DO)/(ZZZ + 1.DO)*AP
SNG(I) SQRT((1.DO - CSG(I))*(1.DO + CSG(I)))
D2K AP*(2.DO/(1.DO + ZZZ))
D1K ZZZ*D2K
Dl (I) RO)*P*D1K
D2(I) R(I)*P*D2K

ENDIF

150 CONTINUE

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

181 5.2. 	 BASES ON A VECTOR COMPUTER

C---QI0, Q20
DO 200 I = 1, NSAMPL

1F(JUMP(I) .EQ. 0) THEN

CSOMX 1.DO - DLTCSO

RCS02 (R(I)*CSOMX)**2

WR W - R(I)

ER(I) E - R(I)

U = WR**2 - RCS02

V W*WR*ER(I)

D RCS02*((W*ER(I)

SQD SQRT(D)

Q20MX (I) (V + SQD)/U

Q20MN (I) (V - SQD)/U

ENDIF

200 CONTINUE

DO 250 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN

A E - Q20MX(I)
B E - Q20MN(I)
CA Q20MX(I) - ER(I)
CB Q20MN(I) - ER(I)
RX B*CA/(CB*A)
DQ20(I) = LOG(RX)/(S*R(I)
ZZZ = A/CA*RX**X(I,3)
XXX = R(I)*ZZZ/(1.DO + ZZZ
Q20(1) E - XXX
Q2(I) = SQRT« Q20(I) - WM)*(Q20(1) + WM))
QI0(I) = W - Q20(I) - R(I)
Ql(I) = SQRT« QI0(I) - WM)*(QI0(I) + WM))

ENDIF

250 CONTINUE

DO 300 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN

IF(Q20(I) .LT. ETH .OR. QI0(I) .LT. ETH) THEN

JUMP(r) = 1

ENDIF

ENDIF

300 CONTINUE

C--- CSO

DPHI = 2.DO*PI
DO 350 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN
CSO(I) (W*(E - R(I) - Q20(I)) + R(I)*Q20(I))

/(Q2(I)*R(I))
SNO(I) SQRT« 1.DO - CSO(1))*(1.00 + CSO(I)))

C--- PHI
CSPHI(1) COS(DPHI*X(I,4))
SNPHI(I) = SIN(DPHI*X(I,4))

ENOIF

350 CONTINUE

Source list 5.4 An example of a. vectorized code of KINEM

continue to the next page

182 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

C--- CSTH
DO 400 I = 1, NSAMPL

1F(JUMP(1) .EQ. 0) THEN
CSTH(1) = CSO(1)*CSG(1) + SNo(1)*SNG(1)*CSPH1(1)
1F(CSTH(1) .GT. CSMX .OR. CSTH(1) .LT. CSMN) THEN

JUMP(I) = 1
END1F

END1F
400 CONTINUE

C--- CS01
DO 450 I = 1, NSAMPL

1F(JUMP(1) .EQ. 0) THEN

CS01 = - (R(1) + Q2(1)*CSo(1))/Q1(1)

1F(CS01 .GT. 1.DO - DLTCSo) THEN

JUMP(I) = 1
END1F

END1F
450 CONTINUE

C--
DO 500 I = 1, NSAMPL

1F(JUMP(1) .EQ. 0) THEN
CSQ - (R(1)*CSG(1) + Q2(1)*CSTH(1))/Ql(1)
1F(CSQ .GT. CSMX .oR . CSQ . LT. CSMN) THEN

JUMP(I) = 1
END1F

END1F
500 CONTINUE

DO 550 I = 1, NSAMPL
1F(JUMP(1) .EQ. 0) THEN

COSDEL = (Q20(1)*Ql0(1) - W*(Q20(1)+Ql0(1))+ E*W + WM2)
Ii: /(Q2(1)*Q1(1))

1F(CoSDEL. GT. DELCUT) THEN
JUMP(I) = 1

END1F
END1F

550 CONTINUE

C--- invariants
DO 600 I = 1, NSAMPL

1F(JUMP(1) .EQ. 0) THEN
EPSQ = WM2/(Q20(1) + Q2(1))

D3(I) = R(1)*E/ER(1)*(EPSQ + Q2(1)*(1.DO + CSO(1)))

D4(I) = R(1)*(EPSQ + Q2(1)*(1.DO - CSO(1)))
P1Q20) = E*Q20(1) + P*Q2(1)*CSTH(1)

P2Q2(I) = E*Q20(1) - P*Q2(1)*CSTH(1)

Q1Q2(I) = W*(E - R(1)) - WM2

P1Ql (I) = EH2 + P1P2 - Dl(1) - P1Q2(1)

P2Ql0) = EM2 + P1P2 - D2(1) - P2Q2(1)

END1F

600 CONTINUE

Source list 5.4 An example of a vectorized code of K1NEM

continue to the next page

183 5.2. BASES ON A VECTOR COMPUTER

*===

• Table of four momenta .

• PE(I, J) : 	 I = 1 -) X, 2 -) Y, .. . 4 -) energy, of J-th particle.
DO 	 650 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN

2: EL+ INITIAL LANTIP

PEer,1,2) P.SNG(I)
PE(I,2,2) 0.000
PE(I,3,2) p.CSG(I)
PE(I,4,2) E

1 : EL- INITIAL LPRTCL
PE(I,l,1) -PE(I,1,2)
PE(I, 2,1) -PE(I,2,2)
PE(I ,3, 1) -PE(I,3,2)
PE(I,4,1) PE(I,4,2)

ENDIF

650 CONTINUE

DO 700 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN

3 : WB+ FINAL LPR'rCL
PE(I,1,3) Q2(I).SNO(I).CSPHI(I)
PEO,2,3) Q2(I).SNO(I)+SNPHI(I)
PE(I,3,3) Q2(I)+CSO(I)
PE(I,4,3) Q200)

+ 	 5: AB FINAL LPRTCL
PE(I,1,5) 0.000
PE(I,2,5) 0.000
PEer, 3 ,5) R(I)
PEer,4,5) R(I)

ENDIF

700 CONTINUE

DO 750 I = 1, NSAMPL

IF(JUMP(I) .EQ. 0) THEN

+ 	 4: WB- FINAL LANTIP
PE(I,1,4) PE(I,1,1)+PE(I,1,2)-PE(I,l,5)-PE(I,l,3)
PE(I,2,4) PE(I,2,l)+PE(I,2,2)-PE(I,2,5)-PE(I,2,3)
PE(I,3,4) PE(I,3,1)+PE(I,3,2)-PE(I,3,5)-PE(I,3,3)
PE(I,4,4) = Ql0(I)

ENDIF

750 CONTINUE

Source list 5.4 An example of a vectorized code of KINEH

continue to the next page

184 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

C-- --------- invariants
* PP(I,J) = inner product between PE(* , I) and PE(*,J)

DO 800 I = 1, NSAMPL
IF(JUMP(I) .EQ. 0) THEN

PP (I , 1 , 1) EM2

PP(I,1,2) P1P2

PP(I,1,3) P1Q2(I)

PP(I,1,4) P1Ql(I)

PP(I ,1, 5) = Dl(I)

PP(I,2,1) = P1P2

PP(I,2,2) EM2

PP(I,2,3) = P2Q2(I)

PP(I,2,4) = P2Ql(I)

PP(I,2,5) = D2(I)

ENDIF

800 CONTINUE

DO 850 I = 1, NSAMPL

IF(JUMP(I) . EQ . 0) THEN

PP(I , 3 , 1) = P1Q2(I)

PP(I,3,2) = P2Q2(I)

PP(I,3,3) = WM2

PP(I,3,4)= Q1Q2(I)

PP(I,3,5) = D4(I)

PP(I,4,1) P1Q1(I)

PP(I,4,2) P2Ql (I)

PP(I,4,3) Q1Q2(I)

PP(I,4,4) = WM2

PP(I,4,5) = D3(I)

PP(I,5,1) = Dl(I)

PP(I,5,2) = D2(I)

PP(I,5,3) = D4(I)

PP(I,5,4) = D3(I)

PP(I,5,5) = O.ODO

ENDIF
850 CONTINUE

C----------------------------------- - --------- - ----------- Jacobian
DO 900 I = 1, NSAMPL

IF(.lUHP(I) .EQ. 0) THEN
YACOB(I) FACT*DR(I)*(YACO*Dl(I)*D2(I))

*(DQ20(I)*D3(I)*D4(I))*DPHI/2 .DO
ENDIF

900 CONTINUE

RETURN

END

Source list 5.4 An example of a vecto rized code of KINEM

5.3. 	 EVENT GENER.4.TION 185

The structure of this example is as follows:

(1) 	The number of sampling point NSAMPL is given III the arguments of subroutine
KINEM. The arguments NREG and JUMP are now arrays.

(2) 	 The variables, used several times in this program, like R, DR etc., are !lOW arrays
to keep their val ues.

(3) 	At the beginning, the array JUMP(i) is initializeo to be "0", when the condition
IREG ~ NREG (i) is satisfied. Otherwise, JUMP (i) is set to ''1'' .

(4) 	 The kinematics is calculated only for those sampling points, each of which has
JUMP(i) = o.

(5) 	 \-\Then the i-th sampling point is out of the ki!lematical boundary, then the value
of JUMP (i) is set equal to "1".

DO 300 I = 1, NSAMPL
IF(JUMP(I) .EQ. 0) THEN

IF(Q200) .LT. ETH .OR. Ql0(I) .LT . ETH) THEN
JUMP O) = 1

ENDIF
ENDIF

300 	CONTINUE

(6) At last, the four momenta of external particles PEnnnn() and their inner prod
ucts PP () are cal ulated only for the JUMP (i) = 0 sampling points.

5.3 Event generation

For a long time authors have never tried 0 develop a vector version of SPRING due to
such a prej udice that t he vector computer is not suitable for the Monte Carlo ev nt
generation. One reasoD, why we dar to make it, is to shorten the execution time
of t he event generat ion . Another is the following. W hen we genera te four vectors of
very compti a ted process, a t first we integra te the diffe rential cross section by BASES

on the vector computer, at second copy the probability information from the vector
computer to the scalar computer, and then generate four vector by SPRING on the
scalar computer. This procedure is not only complicated, but we also have to have
two kinds of subprograms FUNC and VBFNCT. This situation makes easily a problem of
inconsistency between FUNC and VBFNCT . W hen a vector version of SPRING is available,
we are free from such problems.

5 .3 .1 Event generation alg orith m on a vector computer

In figure 5.3 the algorithm of event generation on a vector computer is shown, where the
NSIZE objects of array IC(i), i == 1, NSIZE, are considered, each of which corresponds

186 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

to a candidate of generating event. Here, the number NSIZE is identical to that in the

include file INCLVS and is the vector length or the length of the inner most do-loop.

Suppose we have int.egrated a distribution function by BASES to generate events and

have written the probability information on a output file.

Then ,

(1) Sample NSIZE hypercubes according to the probability information and store the
hypercube numbers in the array IC.

(2) Sample NSIZE sampling points, where each point belongs to each sampled hyper
cube.

(3) 	Calculate the numerical values of the distribution function at these sampling
points.

(4) 	 Generate NSIZE uniform random numbers, store them in a array RX(), test the
values of distribution function by them, and set those hypercube numbers equal
to zero whose sampling points are accepted by the test.

The test condition is :

DO 100 I = 1, NSIZE
IF(FX(I)/FMX(IC(I)) .LT. RX(I)) THEN

IC(l) = a
ENDIF

100 CONTINUE

where FX(i) and FMX(IC(i» are the numerical value of the distribution func
tion for the hypercube of i-th object and the maximum value for the object,
respecti vely.

(5) 	Write four vectors of those events on a output file, whose hypercube numbers
were set equal to zero in the step (4).

(6) Only 	the accepted sampling points are filled into the histograms in the subpro
gram VSHUPD by using the flag array Ie (i).

(7) Sample 	hypercubes only for those objects whose hypercube numbers were set to
zero in the step (4) and store the new hypercube numbers into them.

(8) 	Go to (2) unless the number of generated events exceeds the given number.

In this algorithm almost all calculation can be fully vectorized.

187 5 . .3. EVENT GENERATION

(1) Sample NSIZE hypercubes and store them in the array IC(i)

(2) Sample a sampling point in eacll hypercube

X(i) =

(3) Calculate the value of function at each point by a vectorized program

FX(i) = IF Nsm;.l IF NsrlE·t FNSUE

(4) Test and the HC number of accepted sampling point is set to zero.

IC(i) =

(5) Calculate four vectors only for those sampling points

with zero HC numbers (accepted points) and output them on a file .

(6) Only the accepted points are filled into the histograms in VSHUPD.

(7) Sample new hypercubes only for the objects with zero ICs'

Fig. 5.3 Algorithm of the event generation on a vector computer

188 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Fig. 5.4 Program structure of the vector SPRING50

The program structure of the vector version SPRING is shown in figure 5.4, where
the subprograms in the whi te box are generated by GRACE.

In the vector version the subprogram VSMAIN controls program flow as follows:

(A) 	 Initialization
The su bprograms BSREAD. USERIN. SPINIT and SHRSET are called, whose spec

189 5.3. 	 EVENT GENERATION

ifications are identical to those for the scalar version.

(B) 	Event generation loop
The event generation loop is controlled by the routine VSPRNG, whose algorithm
is described above. The four vector of generated events are to be calculated in
SPEVNT only for those points, and to be written on a file , whose flag IC is zero
(i.e. only the acC(' pted points arc writ ten) . In VSHUPD , only the accepted points
a re automatically filled into th e histograms by using the flag array IC(i).

() Termination of process by print.iug the general information and histograms e/.c.

5.3.2 Subroutine t o be prepared

T he specifications of t he subprogra ms US ERIN and VBFNCT a rc identical to those for
the v ctor BASES. The subprograms SPINIT and SPTERM are also identical to th e scalar
version. The difference a.ppears only in the su bprogram SPEVNT. In the scalar version
SPEVNT ha.'3 no argumen t , but the vector version of SPEVNT ha.'3 the a rray as an argument.

An example is shown in t he so urce list 5.5 where the polar ang! distribution of
the photon in tb . process e+e- ---; W+W- , is fill ing into an additional histogram. Its
fUDction is exactly identical to t hat of the example in subsection 3.6.3. T he argument
is the Bag array Ie and its size NSAMPL. We can see that only the i-th point of array
VEC(i ,*, *) is fi lled into the histogram, wbos flag IC(i) is equal to zero.

The output from the vector SPRING is exactly identical to that from the scalar
version.

SUBROUTINE SPEVNT(NSAKPL. IC

IMPLICIT REAL.8 (A- H, O- Z)

I NTEGER IC (NSAMPL)

*
PARAMETER (NGRAPH = 28 . NEXTRN = 5, LAG = 72)

INCLUDE (INCLVS)

COMMON ! SP4VEC! VEC(NSIZE.4 . NEXTRN)

COMMON ! AHCNST ! PI. PI2 . RAD. GEVPB, ALPHA

DIMENSION PP (NSIZE),TH(NSIZE)

DO 100 I = 1, NSAMPL

IF(IC(I) .EQ. 0) THEN

PP(I) SQRT«VEC(I,1.1)**2+VEC(I.2 , l)**2+VEC(I.3 . 1) ••2)

*(VEC(I,1.5) **2+VEC(I.2 , 5)**2+VEC(I,3.5) **2)

ENDIF

100 CONTINUE

Source lis t 5.5 An example of SPEVNT for the vector version
continue to the n ext page

190 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

DO 200 I = 1, NSAMPL
IF(IC(I) .EO. 0) THEN

CS =(VEC(I,1 , 1).VEC(I,1,5)+VEC(I,2,1).VEC(I,2,5)
+VEC(I,3,1).VEC(I.3,5))/PP(I)

TH(I) = ACOS(CS).180 . DO/PI
ENDIF

200 CONTINUE

CALL XVFILL (5, NSAMPL. TH. PP)

RETURN

END

Source list 5.5 An example of SPEVNT for the vector version

IIXXXXG JOB CLASS=M,REGION=4096K,MSGLEVEL=1
IIJOBPROC DD DSN=Mxxx.GRACE.Vyymmdd.PROGS,DISP=SHR
II EXEC #GRACEV
11·---
II. PARTICLE TABLE
II.GENFGR.INTBL DD DSN=Mxxx.GRACE.Vyymmdd.DATA(PTCLTBLO),DISP=SHR
11·---
II. INPUT DATA
IIGENFGR.SYSIN DD DSN=Mxxx.GRACE.Vyymmdd.DATA(D5120),DISP=SHR
II DD DSN=Mxxx .GRACE.Vyymmdd.DATA(DEND),DISP=SHR
11·---
I I. OUTPUT DATA OF CREATED GRAPHS
II.GENFGR .OUTDS DD DSN=userid. ~ .D5120.DATA,
II. DISP=(NEW,CATLG),UNIT=SYSDA,SPACE=(TRK,(2,2),RLSE).
II. DCB=(RECFM=FB.LRECL=80,BLKSIZE=3120)
11·---
I I. CREATE FILE FOR OUTPUT FORTRAN SOURCE CODE

IICREATE . NEWDS DD DSN=userid.~.D5120.FORT77,

II DISP=(NEW,CATLG).UNIT=SYSDA.SPACE=(TRK.(4,4,4»,

II DCB=(RECFM=FB,LRECL=80.BLKSIZE=3120)

11·---
II. CREATE FORTRAN SOURCE CODE

IIGENFORT . FT05FOOl DD •

userid . ~ . D5120 . FORT77

4,5000
I·
II

Source Jist 5.6 JCL for the graph generation and vector source generation

5.4. 	 RUNNING ON HlTAC 5820/80 191

5.4 Running on HITAC 8820/80

Jn this section, we describe how to execute the integratioll and event gcneratioll jobs
on a vector computer, i.e., HITAC S820/80.

Graph generation and source code generation

The source code generation program for the vector computer is installed, for the time
being, ouly on FACOM at KEK. There a re two differeut points betweell the JCLs' for
the scalar and vector machines.

(1) 	 EXEC #GRACEV will generate the source code for a vector processor.

(2) 	 There arc additional inputs, that is, the dimension (NDIM) and the Dumber of calls
(NCALL). These parameters will determine the vector length (Sec section 5.2).

Generation of library

In order to w py the generated file from FACOM to HITAC, user should

(1) 	 convert a sequential file from the generated partitioned file on FACOM (See
'MLIB.UTILITY.CNTL(POTOPS)'),

(2) get a file from FAC OM using ftp on HITAC, and

(3) 	convert the sequential file to a partitioned file on HITAC.

User should edit a member #GENLIB.

IITIIOHCL JOB CMD=NO,TlHE=2,REGION=(4096K,5M),NOTIFY=TIlO
11* Mxxx. GRACE. Vyymmdd
II*MAIN PAGES=99999
II EXEC F7E2HCL,
II PARM.FORT='HAP,OPT(3) ,DCOM,CDMARY,NOS,NOOPLIST,NAME' ,
II PARM.LKED='LET,NCAL,EX=EA,LD=ANY'
IIFORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
IIFORT.SYSIN DD DSN=#KEKD.WWG . VECTOR.FORT(AMPARM),DISP=SHR
II DD DSN=#KEKD.WWG . VECTOR.FORT(AMPTBL),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(AMPSUM),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(AMPORD),DISP=SHR

Source list 5.7 JCL for making the library for amplitude calculation

continue to the next page

192 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

II DD DSN=#KEKD.WWG . VECTDR.FDRT(AM0001),DISP=SHR
II DD DSN=#KEKD .WWG.VECTOR.FDRT(AM0002),DISP=SHR
II DD DSN=#KEKD .WWG.VECTOR .FORT(AM0003),DISP=SHR
II DD DSN =#KEKD.WWG.VECTDR . FORT(AM0004) , DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FDRT(AM0005),DISP=SHR
II DD DSN=#KEKD.WWG.VECTDR.FDRT(AM0006),DISP=SHR

II DD DSN=#KEKD .WWG.VECTDR.FDRT (AM0023),DISP=SHR
II DD DSN=#KEKD . WWG.VECTDR.FDRT(AM0024),DISP=SHR
II DD DSN=#KEKD.WWG.VECTDR.FDRT(AM0025),DISP=SHR
II DD DSN=#KEKD.WWG . VECTOR.FDRT(AH0026),DISP=SHR
II DD DSN=#KEKD.WWG.VECTDR.FDRT(AM0027) , DISP=SHR
II DD DSN=#KEKD.WWG . VECTOR.FDRT(AM0028) ,DISP=SHR
II·
II DD DSN=#KEKD .GRACE.VECTDR .FDRT(SMINIT),DISP=SHR
II DD DSN=#KEKD . GRACE. VECTDR.FDRT(SMEXTF),DISP=SHR
II DD DSN=#KEKD.GRACE . VECTDR .FORT(SMEXTV) ,DI SP=SHR
II DD DSN=#KEKD. GRACE .VECTOR .FORT(SMPRPD) ,DI SP=SHR
II DD DSN=#KEKD.GRACE. VECTDR.FORT(SMI NTF),DISP=SHR
II DD DSN=#KEKD. GRACE . VECTOR .FORT(SMI NTV) ,DISP=SHR
II DD DSN=#KEKD.GRACE. VECTOR.FORT(SMCONF) ,DISP=SHR
II DD DSN=#KEKD .GRACE . VECTDR .FORT(SHCONV), DISP=SHR
II DD DSN=#KEKD.GRACE.VECTOR .FORT(SKCONS), DISP=SHR
II DD DSN=#KEKD.GRACE.VECTOR.FDRT (SMFFS),DISP=SHR
II DD OSN=#KEKD .GRACE . VECTOR.FORT(SMFFV),DISP=SHR
II DD DSN=#KEKD .GRACE. VECTOR.FORT(SHGGG),DISP=SHR
II DO DSN=#KEKD.GRACE.VECTDR .FORT(SKGGGG) , OISP=SHR
II DD DSN=#KEKD .GRACE.VECTOR. FORT(SMSSS) ,OISP=SHR
l/ DD DSN=#KEKO . GRACE . VECTDR . FORT (SHSSSS) ,DISP~SHR

II DD DSN=#KEKD.GRACE.VECTOR.FORT(SMSSV),DISP=SHR
II DD DSN=#KEKD .GRACE.VECTOR.FORT(SHSSVV) ,OISP=SHR
II DO OSN=#KEKD.GRACE.VECTOR.FORT(SKVVV),DISP=SHR
II DD DSN=#KEKD. GRACE. VECTOR.FDRT (SHVVVV),DISP=SHR
II DD DSN=#KEKD .GRACE.VECTOR.FORT(SHSVV),DISP=SHR
II·
II DD DSN=#KEKD.GRACE.VECTOR . FDRT(SPLTQ) ,DISP=SHR
II DD DSN=#KEKD.GRACE.VECTDR .FDRT(PHASEQ),DISP=SHR
II DD DSN=#KEKD .GRACE.VECTOR . FORT(POLA),DISP=SHR
II DD DSN=#KEKD .GRACE.VECTOR.FORT(FFS),DISP=SHR
II DD DSN=#KEKD . GRACE.VECTOR.FORT(FFSO),DISP=SHR
II DD DSN=#KEKD.GRACE . VECTOR.FORT(FFV),DISP=SHR
II DD DSN=#KEKD.GRACE.VECTOR.FORT(FFVO),DISP=SHR
II DD DSN=#KEKD . GRACE.VECTOR.FORT(SSV),DISP=SHR
II DD DSN=#KEKD.GRACE.VECTOR .FDRT(VVVV),DISP=SHR
II DD DSN=#KEKD . GRACE . VECTDR .FORT(VVS),DISP=SHR
IILKED.SYSLMDD DD DSN=#KEKD . ~.WWG.VECTOR.LOAD ,

II DISP=(RNW ,CATLG ,DELETE) ,
I I SPACE=(CYL, (2,1 , 50))

So urce list 5.7 JCL for making the libra ry fo r amplitude calculation

193 5.4. RUNNING ON HITAC 5820/80

Notice:
In order to estimate th e required memory size roughly, user may calcula te the size

of array "AG" which is included in common /AMGRPH/ . As seen in member "INCLl",
the size is NSIZE x LAG x NGRAPH . III our example of the process e+e- ----> W+W- l' ,
these parameters are NSIZE = 302, LAG = 72 and NGRAPH = 28, then the size of this
array becomes 16 x 302 x 72 x 28 = 9741312 bytes. III the real case, this program
requires about 14 Mbytes.

\Vhen user changes the number of calls (NCALL), user should recreate the upper
library. O therwise the warning or fat.al messages are seell.

Te t of the ge n e rat d source o de

A member #TESTV, which is a JCL for a testing program, is automatically generated.
T his J CL is to execute the main program TESTV which is used to check the genera ted
amplitudes a t a point in the phase space. T he user is recommended to confirm the
gauge invariance and Lorentz frame independence before starting the integration by
BASES.

IIT110TEST JOB CMD=NO,CLASS=1,REG10N=(4096K,5M) ,NOT1FY=T110
11* MTAK .GRACE . Vyymmdd
II *MAI N PAGES=99999
II EXEC F7E2HCLG,
II PARM.FORT=' RAP,OPT(3) ,DCOM,COMARY,NOOPLIST' ,
II PARH . LKED='EX=EA , LD=ANY'
IIFORT.SYSL1B DD DSN=#KEKD.WWG. VECTOR.FORT,DISP=SHR
IIFORT.SYSI N DD DSN=#KEKD. WWG .VECTOR.FORT(TESTV),DISP=SHR
II DD DSN=#KEKD . WWG.VECTOR .FORT (USERI N) ,DISP=SHR
II DD DSN=#KEKD . WWG.VECTOR.FORT(VBFNCT) . DISP=SHR
II DD DSN=#KEKD . WWG .VECTOR.FORT(USROUT).DISP=SHR
11* DD DSN=#KEKD . WWG .VECTOR .FORT(SETMAS) , DlSP=SHR
II DD DSN=#KEKD. WWG.VECTOR . FORT(K INIT) , DISP=SHR
II DD DSN=#KEKD . WWG. VECTOR.FORT(KINEM),DISP=SHR
II DD DSN=#KEKD . GRACE.PROGS(BDUMMY),DISP=SHR
IILKED.SYSLIB DD
II DD DSN=#KEKD .C . WWG.VECTOR. LOAD,DISP=SHR
II

Source list 5.8 JCL for the gauge invariance test

Numerical integration by the vector BASES

JCL for the numerical integration is generated in a member #INTV. By this JCL one
can perform phase space integration with BASES. Don't forget to fix the filenames of
kinematics.

194 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

IITII0WWA JOB CMD=NO,CLASS=I,REGION=(4096K,5M),NOTIFY=TII0
II. MTAK.GRACE.Vyymmdd
II.MAIN PAGES=99999
II EXEC F7E2HCLG,
II PARM.FORT='HAP,OPT(3) ,DCOM,COMARY,NOS,NOOPLIST',
II PARM.LKED='EX=EA,LD=ANY'
IIFORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
IIFORT.SYSIN DD DSN=#KEKD.WWG.VECTOR .FORT(MAINVB),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(USERIN) ,DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR . FORT(VBFNCT),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(USROUT) ,DISP=SHR
II. DD DSN=#KEKD. WWG.VECTOR.FORT(SETMAS),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(KINIT),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(KINEM),DISP=SHR
II DD DSN=#KEKD.BASES50.VECTOR.FORT(DVFILL) ,DISP=SHR
II DD DSN=#KEKD . BASES50.VECTOR.FORT(XVFILL) ,DISP=SHR
II DD DSN=#KEKD.BASES50.VECTOR.FORT(VSHUPD),DISP=SHR
IILKED.SYSLIB DD
II DD DSN=#KEKD.~.WWG . VECTOR.LOAD,DISP=SHR
II DD DSN=#KEKD.BASES50 . VECTOR.LOAD,DISP=SHR
IIGO.SYSIN DD •

1,1 LOOP MIN AND MAX

-4 Print Flag

o Flag
9.9 CPU TIME IN MINUITS

I·
IIGO . FT23FOOl DD DUMMY

II.GO.FT23FOOl DD DSN=userid.PROCESS.DATA,DISP=(NEW,CATLG,DELETE),

II. SPACE=(TRK,(5,5),RLSE),
II. DCB=(RECFM=VBS,BLKSIZE=23476)

Source list 5.9 JCL for the numerical integration

Format of the output is described in section 3.5.6.

If user will execute the event generation, userid. PROCESS. DATA is required.

Event generation

JCL for the event generation on HITAC 820/20 is as follows:

IITII0SP JOB CMD=NO,CLASS=I,REGION=(4096K,5M),NOTIFY=TII0
II. MTAK.GRACE.Vyymmdd

II.MAIN PAGES=99999

II EXEC F7E2HCLG,

II PARM.FORT='HAP,OPT(3),DCOM,COMARY,NOOPLIST',

II PARM.LKED='EX=EA,LD=ANY'

Source list 5.10 JCL for the event generation
continue to the next page

195 5.4 . RUNNING O.N HITAC 5820/80

IIFORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
IIFORT.SYSIN DD DSN=#KEKD.WWG.VECTOR.FoRT(MAINVS) ,DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(USERIN),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(VBFNCT),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(USROUT),DISP=SHR
11* DD DSN=#KEKD.WWG.VECTOR.FORT(SETMAS),DISP=SHR
II DD DSN=#KEKD.WWG.VECTOR.FORT(KINIT) ,DISP=SHR
II DD DSN=#KEKD . WWG.VECTOR.FORT(KINEM) ,DISP=SHR
II DD DSN=#KEKD.WWG.VECToR.FoRT(SPINIT) ,DISP=SHR
II DD DSN=#KEKD . WWG. VECTOR . FoRT(SPEVNT) ,DISP=SHR
II DD DSN=#KEKD.WWG.VECToR.FoRT(SPTERM),DISP=SHR
II DD DSN=#KEKD . BASES50.VECToR.FoRT(DVFILL) ,DISP=SHR
II DD DSN=#KEKD.BASES50.VECTOR . FORT(XVFILL),DISP=SHR
II DD DSN=#KEKD.BASES50.VECTOR.FORT(VSHUPD),DISP=SHR
IILKED.SYSLIB DD
II DD DSN=#KEKD.~.WWG.VECToR.LoAD,DISP=SHR
II DD DSN=#KEKD.BASES50.VECTOR.LOAD,DISP=SHR
IIGo.SYSIN DD *

10000 Number of events
1.0 CPU Time in Minutes

1*
IIGO.FT23F001 DD DSN=userid.PRoCESS.DATA,DISP=SHR,LABEL=(, "IN)

Source list 5.10 JCL for the event generation

Chapter 6

Definition of the model

In chapter 2, we have described the Lagrangian of the standard model which our
calculation based on. Here we summarize the Feynman rules of the models. These
rules are given to GRACE through a model definition file. We also describ e the structure
and format of the file.

6. 1 Feynman rules

6 .1.1 P articles

We use names of particles as shown in table 6.l. T here are two types of particle
names in GRACE. Two character name is used to define external particles, to generate
FORTRAN variables. This kind of names is defined in the model definition file, and
these names can be changed . In order to identify special particles, predefined integer
numbers(particle id) are assigned . GRACE recognizes through particle id which part icle
name corresponds to a special particle.

In the description of Feynman rules, 'l/Jn represents any fermion as a generic name.
Similarly, 'l/J[and 'l/Ji are generic names representing upper and lower component of a
SU(2) doublet fermion.

Throughout this section, fields in a vertex description represents incom ing fields
with incoming momenta to the vertex. That is , 1fJ'l/Ji W: represents a vertex which
corresponds to < OIT .Lint 1fJ 'l/J;W: 10 >. The normalization of propagators and vertices
are given in chapter 2.

196

197 6.1. FEYNMAN RULES

fieJd meaning name lfl
GRACE

particle
id

W
It
+, Wit

ZO
It

W boson
Z boson

WB
ZB

2
4

Ait photon AB 1

GIL gluon GL 8
X+, X- charged Goldstone boson XB 42

X3 neutral Goldstone boson X3 41
¢ Higgs boson PH 31
e - electron EL 0

V e electroll neutrino NE 0

J1
- muon MU 0

vit muon neutrino NM 0
T

- tau lept.on TA 0

V T tau neu trino NT 0
any lepton LU 0
any neutrino LD 0

u 'u-quark UO 0
d d-quark DO 0
s s-quark SO 0
c c-quark CO 0
b b-quark BO 0
t t-quark TQ 0

any up type quark QU 0
any down type quark QD 0

cA ghost for A boson CA 11
c+ ghost for W boson CP 12
c - ghost for W boson CM 13
cZ ghost for Z boson CZ 14

cG ghost for gluon CG 18

Table 6.1 Particle names

6.1.2 Propagators

Propagators in electroweak theory are given by:

1 kltk v

W+ - - < - - W- k2 . M2 [_gltV + (1 - QW) k2· M2 1It v - - u: + w + u. - Qw W

Z+ - - < - - Z-
It v

198 CHAPTER 6. DEFINITION OF THE MODEL

k2. A,,2
- - lE + O'U" 11'1 W

1

X3 - - < - - X3

k2· A ,,2
- - lE + O'Zl1'1Z

1

¢--<--¢

k2· 2- - u: + m. H

'l/J - -<--;[J
-

1
c+ - - < - - c

. M2-"k2
- 1.f. + O'w W

1
c- - - < - - c+

k2· A ,,2
- - 1.f. + O'W11'1W

1 cZ~ - - < -
k2· A ,,2- - u: + O'Z11'lZ

1
CAc4 - - < - -e - if

k2· 2-1.f.+ m f

1

6.1.3 Vector-vector-vector vertex

Vertex of three vector bosons in electroweak theory takes the following form for vector
fields V;(k), Vj(p) and V-y3(q):

CVVV[(k - p)-ygO:{J + (p - q)o:g{J-y + (q - k){Jg-yo:]

where, coupling constant CVVV is given by:

vertex CVVV

eMw
W;(k) W;(p) Z-y(q) CZWW

=e

Three gluon vertex in QeD for G~(k), Gt(p) and G~(q):

CQCD (-irbc
) [(k - P)-ygo:{J + (p - q)o:g{J-y + (q - k){Jg-yo:]

199 0.1 . FEYNMAN RULES

6.1.4 Vector-vector-vector-vector vertex

Vert.ex of four vect.or bOSOllS ill electroweak takes the followin g form for vector fields
V;(k), lIJ(p), V;(q) and Vo

4(T):

where, coupling constant CVVVV is:

vert.ex CVVVV

CWWAA

w- W+ Z A CWWZA'" {J l' 0

CWWZZ

W-W-W+ W + CWWWW'" fJ l' 6 M 2 M2z- IV

Four gluon vertex in QeD for G~(k), G~(p), G~(q)andGi(T) is given by:

-CQCD2 [(Jaccfbde - r def cbe)g"'fJ g1'O + (Jaberde - r def bce)g"'1'g{Jo

+ (Jrlce fdbe - fabe f cde)g",og1' fJl

6.1.5 Fermion-fe rmion-vecto r vertex

Vertex of two fermion s and a vector in electroweak takes the following form for fermion
fields 'IjJ, if; and vector fi eld V",:

1 - 1'5 1 + 1'5
CVFF(1)-Y"'-2- + CVFF(2)-Y"'-2

where, coupling constant CVFF is given by (neglecting mixing matrix) :

vertex CVFF

eMz t
CWFF(l, 1) = J Uli

2(M~ - M~)
{

CWFF(2 , 1) = 0

200 CHAPTER 6. DEFINITION OF THE MODEL

CWFF(l, 2) = CONJG(CWFF(l, 1))
1[;; 1/JJ W; { CWFF(2,2) = CONJG(CWFF(2, 1))

CAFF(l) = eQn
{ CAFF(2) = eQn

When mixing among quarks are incorporated, more vertices appear into to model.
Fermion-gluon vertex is given by:

6.1.6 Scalar-scalar-vector vertex

Vertex of two scalars and a vector in electroweak takes the following form for scalar
fields Sl(p), S2(q) and vector a field V;:

CVSS(p - q)a

where, coupling constant CVSS is given by:

vertex CVSS

X-(p) ¢(q) W: CWXP(l)
ieMz

2JM~ - M3;

X+(p) ¢(q) W; CWXP(2) = -CONJG(CWXP(l))

X- (p) X3(q) W: CWX3(l)
eMz

2JM2 -Z M2W

201 6.1. FEYNMAN RULES

CWX3(2) = -CONJG (CWX3 (1))

e(M~ - 2Ml~/)
CZXX

2Mw /Ml - M~

CAXX =-e

ieM~
CZ3P

6 .1 .7 Scalar-vector-vector vertex

Vertex of a scalar and two vectors in electroweak takes the following form for a scalar
field 5, and vector fields VCl') Vf:l:

CSVVgaf:l

where, coupling constant CSVV is given by:

vertex CSVV

eMwMz
~ w-w+
'I-' a f:l CPWW

/M~ - M~

CPZZ
Mw /Ml- M~

CXWZ(1) = ieJM1- M~

CXWZ(2) = CONJG (CXWZ (l))

CXWA(l) = -ieMw

CXWA(2) = CONJG (CXWA (l))

202 CHAPTER 6. DEFINITION OF THE MODEL

6.1.8 Scalar-scalar-vector-vector vertex

Vertex of two scalars and two vectors in electroweak theory takes the following form
for scalar fields 5, 5 and vector fields Vo-, Vf1:

CSSVVgo-{J

where, coupling constant CSSVV is given by:

vert.ex CSSVV

e2 M2
<P <P W; W{J+ CPPWW = z

2(Mi- Mal)

e2 M4z
<P <P Zo- Z{J CPPZZ =

2M?v(Mi- M?v)

ie2Mz
<PX- W: Z{J CPXWZ(l) =2MW

<PX+ W; Z{J CPXWZ(2) = CONJG(CPXWZ(l))

- ie2Mz
<PX- W: A{J CPXWA(1) =

2JM1- M'tv

<PX+ W; Aa CPXWA(2) = CONJG(CPXWA(l))

e2M2z
X3X3 W; W; C33WW = 2(Mi - M?v)

e2M4zX3 X3 Zo- Z{J C33ZZ = 2M?v(M1- M~)

e2Mz
X3X- W: Zj3 C3XWZ(1) =2MW

X3 X+ W; Zj3 C3XWZ(2) = CONJG(C3XWZ(1))

-e2Mz
X3X- W: A{J C3XWA(1)

2JM'i - M'tv

X3 X+ W; A{J C3XWA(2) = CONJG(C3XWA(1))

203 6.1. FEYNMAN RULES

- + W-vV+X X a- II

CXXAA = 2e 2

c2 (2M&, - Ml)
CXXAZ

MwJAf'i - Mfv

6.1.9 Scalar-scalar-scalar vertex

Vertex of three scalars in electroweak theory is constant factor:

CSSS

where, CSSS is given by:

vertex CSSS

CPXX

CP33
2MwJM1- Mfv

cppp

6.1.10 Scalar-scalar-scalar-scalar vertex

Vertex of four scalars in electroweak theory is constant factor:

CSSSS

where, coupling constant CSSSS is given by:

vertex CSSSS

204 CHAPTER 6. DEFINITION OF THE MODEL

CXX33

6.1.11 Fermion-fermion-scalar vertex

Vertex of two fermions and a vector boson in electroweak theory takes the following
form for fermion fields 'l/J, tjj and scalar field S:

1 - '"\- 1 + 15
CSFF(1)--' ;) + CSFF(2)-

2 2

where, coupling constant CSFF is given by:

vertex CSFF

_ iemIMz t
CXFF(1, 1) - V U/i

Mw 2(M1- Mfv)

_ - iemiMZ t
CXFF(2, 1) - V U1i

Mw 2(M~ - Mfv)

CXFF(1, 2) = CONJG(CXFF(2, 1))
{ CXFF(2,2) = CONJG(CXFF(1, 1))

-em Mz
CPFF(1) = n

2:Hw VM1- Mfv

- em MzCPFF(2) = n

'L\/wVM1- Mfv

205 6.2. 	 FILE FORMAT OF MODEL DEFINITION

C3FU(1) = iem[Mz

2Mw J M'i - M&,

C3FU(2) = - iemfMz
2MwJM'i - M&,

C3FU(1) = - iemiMZ

2Alw/M'i - M&,

C3FU(2) = iemJvfz

2MwfM'i - M&,

6.2 File format of model definition

The default models used in GRACE are defined in the file

"$ (GRACEDIR) /data/particle. table".

This table includes QED, electroweak and QeD Feynman rules described in the pre
vious section . Although this table does not include quark mixing, extention is straight
forward for the case with quark mixing.

We provide another model definition file

"$(GRACEDIR)/data/particle.tableO".

In this table the interactions are omitted, which give rise to very small contributions
proportional to m;. Particularly, this may give negative cross section for polarized
process. For example, e+e-X3 vertex is omitted since whose coupling constant is pro
portional to m;.

We show the structure of this kind of file in Fig.6.1.
The meaning of each line is defined by the first letter in the line.

(1) 	 When the first letter is "*", then the line is comment line.
The first line of a file is used as the title line to distinguish this file from others.
Thus the first line of a file must be a comment line.

(2) 	 The file is composed of the following three parts:

1) definition of particles

2) definition of interaction vertices

3) definition of default values of masses and widths of particles.

4) definition of default values of coupling constants.

The line which begins with the letter "E" is used to specify the end of each part.
The rest of the line should be blanks.

206 CHAPTER 6_ DEFINITION OF THE MODEL

.PTCLTBL Electro-Weak and QCD, no Cabbibo mixing, with Scalar

• 	Particle Block (---- definition of particles

•
• 	 Particles Fermion Charge Spin.2 Type Color

WB 0 1 2 2 W Boson
ZB 0 0 2 4 1 Z Boson

E 	 (---- end of definition
*********** ** ••***********•• *****.- •• *********************.**********
.. 	 Vertex Block (---- definition of vertex
..

VERTEX TABLE EORD WORD CORD NAME• 	 LEGS
• 	 Gauge-boson Three-verti ces

3 ZB WB WB 0 0 CZWW
3 AB WB WB 0 0 CAWW

3 WB NE EL 0 1 0 CWEL(2,2)

3 WB NM MU 0 1 0 CWMU(2,2)

E 	 (---- end of definition

••****** •••*****.*************************************••** ••*********
.. Mass (---- set the constant parameters

AMWB 80.0DO
AMZB 91 _1DO

particle masses

•
.. Width

AGWB O.ODO
AGZB O.ODO

total decay width of particle
E

• 	 Coupling constants
C---

AMWB2
AMZB2 = AMZB*AMZB

set the parameters used at the vertex
* VVV

CZWW
CAWW

CWL (1,1) GWFL

CWL (2,1) GWFR

CWL (1,2) CONJG(CWL (1,1»

CWL (2,2) CONJG(CWL (2,1»

CWEL(1,1) GWFL

definition of coupling

Fig. 6 .1 Structure of Particle table

207 6.2. 	 FILE FORMAT OF MODEL DEFINITION

(3) 	 Other lines are llsed to describe properties of particles or vertices. These lines
should begin with blank character.

In the following su l)sections, we describe the specification of the first two parts of
the file, i.e., definition of particles and int.eraction vertices.

The Jast two parts are used to define default values of parameters, such as value
of particles masses or value of coupling constants. Since these parameters are not
independent, and many of t.hem are calculated from independent parameters. These
parts are written in the form of FORTRAN code, by which parameters are calculated.
Actually in the generated code, third and fourth part is copied to the subroutines
SETMAS and AMPARM, respectively (See section 3.2). Subroutine USERIN calls SETMAS and
AMP ARM in this order at the beginning of the calculatioll of amplitudes. Default values of
masses and widths are defined in the subroutine SETMAS and value of coupling const.ants
are calculated in t.he subrout.ine AMPARM by using parameters defined ill SETMAS. One
can change the values of masses and widths before calling AMP ARM in the subroutine
USERIN.

6.2.1 Definit ion of part icles

Particles which participate into the process are defined III this table. The general
format is as follows;

1) 	 One line is reserved for one particle.

2) 	 The properties of the particle should be written from the second column and each
property must be separated by at least one blank.

The items of particle property are described below (item number is counted from left
to right on a line).

1) 	Name of particles
The name should be two characters (one character is not allowed). In the
generated FORTRAN code, the mass of the particle is expressed by attaching
"AM" in front of the name and the total decay width is given by the prefix "AG".

2) 	 Fermion N umber
If the particle is not fermion then O. Otherwise it is positive integer, which is
common to fermions with same conserving fermion number.

3) 	Electric charge
Assign "(charge) - 2 x (baryon number)", where charge is the electric charge in
the unit of positron charge e.

4) 	 twice of spin

Assign twice of the intrinsic spin of the particle.

208 CHAPTER 6. DEFINITION OF THE MODEL

5) 	 particle-id
In order to specify special particles, ideutifying number is assigued to these par
ticles as shown iu the above table. To other particles, 0 is j'l,ssigned.

6) 	 Color

The QCD color dimension of particles (singlet: 1, triplet:3, octet:8, ...) .

After the sixth item, characters are treated as commeuts.

6.2.2 Definition of vertices

The general format is as follows;

1) One liue is reserved for one kind of vertex.

2) 	 The properties of the vertex should be written from the second column and each
property must be separated by at least one blank.

The items of vertex property are described below (item number is counted from left to
right on aline).

1) 	 number of particles connected with the vertex.

2) 	 Names of particles connected with the vertex.
List the names of all the particles, defined in the definition of particles, with the
spacing at least one blank. When the same kind of particles appear more than
once, repeat the name same times of its appearance.

3) 	The order of QED interaction(EDRDER).

This is equal to the power of the coupling constant e in the given process.

4) 	 The order of electroweak interaction (WDRDER).
In our definition of interactions of electroweak theory, all the couplings contains
the charge e. Thus this WDRDER is equal to the power of e in the process.

5) 	 The order of QCD interaction(CDRDER). It is allowed to give this item together
with EORDER and/or WORDER specification.

6) 	 The name of the variable corresponding to coupling constant used in the gener
ated FORTRAN code (within 6 characters) .
The name defined here is regarded as complex variable in the generated FOR
TRAN source code.
A variable may be an array. There are left- and right handed coupling constants
in fermion-boson vertices. These two constants are stored in a array with two
components as an example of {;i'I/J;Zc< vertex shown in the previous section . When
coupling constant of a vertex is different from one of its charge conjugated vertex,
as ~±¢W'f vertex, it is stored as an element of array with its charge conjugated
value.

Chapter 7

Libraries for the am plitude
calculation

These libraries are developed for calculation of scattering amplitudes. GRACE generates
FORT RAN source code which call subroutines in these libraries.

First we fix our notations.

1. 	 Feynman rules

Feynman rules ar given in chapter 2 and 6.

2. 	 Four moment um
Momentum is expressed by REAL*8 P(4) whose 4-th component is the energy of
the particle.

3. Spinor

The spinor is normalized as

1 + h'Y5'u(p,h)u(p,h) = (p+m) ,
2

1 + h'Y5'
v(p, h)v(P, h) = (p - m) 2 '

where helicity h = ±1 and spacial components of spin vector s is proportional to
three momentum of the particle, since we consider helicity states.

4. 	 Polarization vector
The normalization of the polarization vector of vector particle, follows the defi
nition given in chapter 2:

209

210 	 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

5. 	 Spin component
The components of spin and polarization vector are specified by the followiug
num bering of the index,

Fermion o (helicity -i) , 1 (helicity +1)

Vector boson : 0, 1 (transverse), 2 (longitudinal)

6. 	 Gauge parameters
By generated FORTRAN code, Olle can calculate the amplitude in general co
variant gauge. The gauge parameter which appears in both of polarization vector
and the denominator of propagator of vector boson is defined by the array

CO MM ON /SMGAUG/AGAUGE(O:4)
REAL*8 AGAUGE.

The element of this array is controlled by the integer va riable

COMMON /SMGAUS/IGAUOO, IGAUAB, IGAUWB, IGAUZB, IGAUGL .

Each of variables IGAUAB, IGAUWB, IGAtJZB, IGAUGL takes 1, 2, 3, 4, corre
sponding to, "f, W ±, zO and gl-uon , respectively. The values of gauge parameters
arc stored in AGAUGE(1) ... AGAUGE(4). The default val ues are gi en by sub
rou tine AMPARM. If one wants to use uni tary gauge, set corresponding variables
of IGAUAB, IGAUWB, IGAUZB, IGAUGL to O. In t his case irrelevant graphs are
automatically dropped.

7.1 Generated FORTRAN source code

We describe an outline of method of calculation of amplit ude by generated code (see
also section 3.2).

1. 	At t he first stage the external lines ar processed .
The subroutine SHEXTF is called for each fermion and SMEXTV £01' vector parti
cle . They construct tables of information about external lines necessary for t he
succeeding calculation.

2. 	 Define internal momenta.
Internal momenta are defined as linear combinations of external momenta and
denominator of the propagators are calculated.

3. 	 Next internal lines are processed.
In the method of CHANEL, numerator of propagators are decomposed as bi-linear
form of on-shell wave functions. For this purpose, the su broutine SMINTF is called
for the numerator of the propagator of each fermion and SMINTV for that of vector
particle.

7.1. GENERATED FORTR.AN SO RCE CODE 	 211

4. 	 T hen the vertex is calculated.

According to the kind of vertex, the followillg subroutine is called:

SMFFV Fermion-fermion-vector
SMFFS F rmion-fermion-scalar
SMVVV Vec tor-vector- vector
SMSVV Scalar-vector-vect.or
SMSSV Scalar-scalar-vector
SMSSS ScalaT-scalar-scalar
SMVVVV V cetor-vcc to r -vector-vec tor
SMSSVV Scalar-scalar-vect.or- vector
SMSSSS Scalar-scalar-scalar-scalar
SMGGG Gl uon-gl uon-gluon
SMGGGG Gl uon-gluon-glnon-gluon

Values of coupling constants used by them are given in the chapt.er G. The result
of calculation of ver tex amplitude is stored in a a ble for each helicity states.
This table is composed of two arrays LT (informa tion about the size this table)
and AV (values of a,mplitude).

5 . 	Connect the v rtices by intern al lines.
Since vertices are connected by propagators in the Feynman graph, table of am
plitudes for vertices are connected by summing over indices int roduced when
propagators are decomposed. T he following subroutines are called to connecting
tables of amplitudes.

SMCONF connec t. by a fermion propagator

SMCONV connect by a veet r propagator

SMCONS connect by a scala r propagator

6. 	 Ordering of particles in the table of amplitude
Intennediate resu lts appear as connected tables of vertex amplitudes. They are
connected again and again until amplitude of whole Feynman graph is obtained.
Sine propagators to be connected is specified by the position in the t able, knowl
edge about t he ordering convention of part icles in t he table is necessary to check
the validity of generat ,Q source code.

When an amplitude of a vertex is calculated by calling the corresponding sub
routine, the orderin g of particles in the table is represented by the name of t he
subrout ine and ordering of arguments of the subroutine called. For example, in
the subroutine SMFFV the amplitude table is arranged in the order of F (ferm ion),
F (fermion) and V(vector). Ordering of two fermions are determined by th e order
ing of the arguments . T he exact. description of ordering in the vertex calculation
is given in the description of each subroutine .

W hen two particles are taken from two tables and cOllnected, the resultant or
dering of particles in the table is obtained by merging two sequence of ordered

http:chapt.er
http:Scalar-vector-vect.or
http:FORTR.AN

212 	 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

particles omitting the connected particles. For example, suppose one has tables of
am pli tudes (particle-l, particle-2, particle-3) and (partic]e-4, particle-3, particle
5). T hen the particle-3 can be connected and the resultant amplitude has a table
(particle-l , particle-2, particle-A, particle-5). The final form of the table corre
sponds to the Feynman graph. How~ver it is possible that the ordering of the
external particles in the tables are different graph to graph. Before amplitudes
are summed over graphs, s tandardization of the ordering is necessary. For this
purpose su brou tine AMPORD is applied to the resultant table of amplitude for each
graph.

7. 	 After summing over all diagrams, the helicity amplitudes is squared . If neces
sary, spin states are summed furt her. It is done by subroutine AMPSUM, which is
included ill the generated code.

7.2 Interface routine s t o CHANEL

7.2.1 External particle

Before calculation of vertex amplitude, t ables of information about external and inter
nal particles are prepared.

External fermion

External fermion line has its own table used for calculating vertex amplitude. It is
obtained by:

CALL SMEXTF(IO, AM, PE, PS, CE)

INTEGER IO input
REAL*8 AM input
REAL*8 PE(4) input
REAL*8 PS (4 . 2) output
COMPLEX*16 CE (2,2) output

1. 	 The variable 10 takes th value 1, if the input spin or is u or v, and 2, if u or v.

2. 	 AM means the mass of fermion.

3. 	 PE is an array of four-momentum.

4. 	 The ou tpu t varia bles PS r CE are used in SMFFV and SMFFS.

5. 	 At the same time another variable used in SMFFV, SMFFS and SMCOMF.

213 7.2. INTERFACE ROUTINES TO CHANEL

REAL*8 EW(l)

EW(l) = (1 for particle, -1 for anti-particle)

is also defined in tb e generated code.

External vector boson

External vector particles a lso have corresponding tables:

CALL SMEXTV(LP, AM, PE, EP, EW, IGAUG)

INTEGER
REAL*8
REAL*8
REAL*8
REAL*8
INTEGER

LP
AM
PE(4)
EP(4,LP)
EW (LP)
IGAUG

input
input
input
output
output
input

1. 	 LP is the freedom of polarization vector.
It is 2 for AJ.L ' G J.L and 3 for Wi, Zw

Here AJ.L, GJ.L, W; and ZJ.L represent photon , gluon, W± a nd ZO bosons.

2. 	 AM is the mass of par t icle.

3. 	 PE is an array of four-momentum.

4. 	The output variable EP is tbe table of the polarization vectors. The first index
indicates the components of four-vector and the second index classifies 1, 2 :
transverse, 3 : longitudinal polarization vector.

5. 	 The output variable EW is used in SMCONV .

6. 	 IGAUG is used to select the gauge.
If it is 0, then unitary gauge, otherwise general covariant gauge. The value of
gauge parameter is taken from a component AGAUGE(IGAUG) of array defined as
REAL*8 AGAUGE (0: 4) in the common block /SMGAUG/ .

7 .2 .2 Numerator of propagator

Fermion propagator

The following subroutine calculates a table for numerator of fermion propagator.

214

1.

2.

3.

4.

5.

AM is the mass of particle.

PE is an array of four-momentum.

VM is the square of four-momentum. Sometimes numerical cancellation appears in

the direct calcula tion of this quantity by PE(O)**2 - PE(1)**2 - PE(2)**2
PE(3) **2. In the generated code, this is calculated from inner products between
external momenta.

EW is used in SMFFV, SMFFS and SMCOMF.

The output variables PS, CE are used in SMFFV and SMFFS.

CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

CALL SMINTF(AM,

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
CDMPLEX*16

PE, VM, EW, PS, CE)

AM
PE(4)
VM
EW(2)
PS(4,3)
CE(2,4)

input
input
input
output
output
output

Numerator o f vector boson propagator

Internal vector particles also have corresponding tables:

CALL SMINTV(LP, AM, PE, EP, EW, VM, IGAUG)

INTEGER LP input
REAL*8 AM input
REAL*8 PE(4) input
REAL*8 EP(4 , LP) output
REAL*8 EW(LP) output
REAL*8 VM input
INTEGER IGAUG input

1. LP is the freedom of polarization vector.
It is 3 for All' GIL and 4 for W;, ZIl·

Here All' GIL' W; and Zil represent photon, gluon, W± and ZO bosons.

2. AM is the mass of particle.

3. PE is an array of four-momentum.

215 7.2. INTERFACE ROUTIXES TO CHANEL

4. 	 The output variable EP is the tablr. of the polarization vectors. The first index
indicates the components of four-vector and the second index classifies 1, 2 :
transverse, 3 : lon gi tudinal, 4 : virtual polarization vector.

5. 	 Th l:' output variable EW is used in SMCOMV.

6. 	 VM is the square of fonr-momentum. Sometimes numerical cancellation appears in
till:' direct calcula tioll of this quantity by PE(O)**2 - PE(1)**2 - PE(2)**2
PE(3)**2. In the ge nerated code, this is calculated from inner products between
external momellt.a.

7. 	 I GAUG is used to select the gauge.
If it is 0, then ullitary gauge, otherwise geIleral covariant gauge. The value of
gauge parameter is taken from a component AGAUGE(IGAUG) of array defined as
REAL*8 AGAUGE (0: 4) in the common block /SMGAUG/.

7.2.3 D enominator of propagator

T h is subroutine calculates the denominator of the propagator.

CALL SMPRPD (APROP, AMOMQ. AMASSQ, AMAG)

COMPLEX* 16 APROP input/output
REAL*8 AMOMQ input
REAL*8 AMASSQ input
REAL*8 AMAG input

1. 	 APROP is the produc t of denominators of propagators. T his subroutines calculates

APROP = (denominator of a propaga tor)* APROP.

2. 	 AMOMQ is the square of four-moment um. Sometimes numerical cancellation ap
pears in the direct calculation of this quantity by P(O) **2 - P(1) **2 - P(2)**2
- P(3) **2. In the generated code, this is calculated from inner products between
external momenta.

3. 	AMAS SQ is the square of mass of the particle.

4. 	 AMAG is the product of mass and width of the particle.

216 CHAPTER 7. LIBRARlES FOR THE AMPLITUDE CALCULATION

7.2.4 Vertices

Fermion-fermion-vector coupling

This calculates the fermion-fermion-vector vertex

where U represents a spinor n or v. It returns the results for all combinations of helicity
and polarizat ion states (See section 6.1.5).

CALL SMFFV(Ll, L2, LV, EW1, EW2, AM1, AM2, CPL, CE1, CE2,
& PS1, PS2, EP, LT, AV)

INTEGER Ll, L2 	 input
INTEGER LV 	 input
REAL*8 EWl (Ll/2) input
REAL*8 EW2(L2/2) input
REAL*8 AM1, AM2 input
COMPLEX*16 CPL(2) 	 input
COMPLEX*16 CE1(2,Ll) input
COMPLEX*16 CE2(2,L2) input
REAL*8 PS1(4,Ll/2+l) input
REAL*8 PS2(4,L2/2+l) input
REAL*8 EP(4,LV) input
INTEGER LT(O:3) output
COMPLEX*16 AV(O:Ll*L2*LV-l) output

1. 	 Ll, L2 imply the freedom of fermion for U I , U2 , respectively.
It takes 2 for external line and 4 for internal line.

2. 	 LV is, like LP in SMEXTV or SMINTV, the freedom of the polarization vector.

external line 2 for AIL' GIL and 3 for Wi, Zw

internal line 3 for AIL' GIL and 4 for Wi, Zw

3. 	 The variables EW1, EW2 take the value EW created in SMINTF for internal line and
(1) 	for particle or (-1) for anti-particle in the external line.

4. 	 AMi, AM2 are masses of fermions.

5. 	 CPL(!) , CPL(2) represent left-handed(CL), right-handed(CR) coupling constant,
respecti vely.

6. 	 CE1, CE2 is CE created in SMINTF or SMEXTF.

7. 	 PSi, PS2 is PS created in SMINTF or SMEXTF.

217 7.2. 	 INTERFACE ROUTINES TO CHANEL

8. 	 EP represents the polarization vector of vector boson alld IS th e same olle a.<;

created ill SMEXTV or SMINTV.

9. 	 AV the final result of amplit.ude(table).

The ordering of iudex ill th e table is VJ (p J) ,V 2(P2) , vector.

10. 	 LT is the data which represent. tbe structure of the table AV and used in SMCONF,

SMCONV and AMPORD .

Fermion-fermion-scalar coupling

This calculates fermioll -fermiolJ-scal ar verLex

where U represents a spinor u or v . It stores the results for all the combinations of
helicity and polarization (See section 6.1.11).

CALL SMFFS(Ll, L2, EW1, EW2, AM1, AM2, CPL, CE1, CE2,
& PS1, PS2, LT, AV)

INTEGER Ll, L2 input
REAL*8 EWl (Ll/2) input
REAL*8 EW2(L2/2) input
REAL*8 AM1, AM2 input
COMPLEX*16 CPL(2) input
COMPLEX*16 CE1(2,Ll) input
COMPLEX*16 CE2(2,L2) input
REAL*8 PS1(4,Ll/2+1) input
REAL*8 PS2(4,L2/2+l) input
INTEGER LT(O:3) output
COMPLEX*16 AV(O:Ll*L2-1) output

1. 	 L1, L2 are freedom of fermion corresponding to VI, V2 , respectively.
It takes 2 for external line and 4 for internal line.

2. 	 EWi, EW2 is EW created in SMINTF for external line and (1) for particle or (-1) for
anti-particle for internal line.

3. 	 AMi . AM2 are masses of fermions.

4. 	 CPL(1), CPL(2) represent left-handed (Cd, right-handed ('Il) coupling con
stants, respectively.

5 . 	CEi, CE2 is CE created in SMINTF or SMEXTF.

218 CHAPTER 7. LIBRARlES FOR THE AMPLITUDE CALCULATION

6. 	PS 1, PS2 is PS created in SMINTF or SMEXTF.

7. 	 AV is the table of amplitude. The ordering of the index in the table is U1(PI),
UZ(P2), scalar.

8. 	 LT is the data which represents the structure of th e table AV and used in SMCONF,
SMCONV and AMPORD.

Vector-vector-vecto r coupling

This calculates 3-point vertex of vector bosons,

(See section 6.1.3) .

CALL SMVVV(Ll,L2,L3, Kl,K2,K3, CPL,
& Pl,P2,P3, E1,E2,E3, LT,AV)

INTEGER Ll, L2, L3 input
INTEGER Kl, K2, K3 input
COMPLEX*16 CPL input
REAL*8 Pl(4),P2(4),P3(4) input
REAL*8 E1(4, L1) input
REAL*8 E2(4,L2) input
REAL*8 E3(4,L3) input
INTEGER LT(O :3) output
COMPLEX*16 AV(O ;L1*L2*L3-1) output

1. 	 L1, L2, L3 is, like LP in SMINTV or SMINTV, the freedom of polarization vector.

2. 	 Kl, K2, K3 denote the direction of the momentum.
If momentum is incoming to vertex, then it takes 1, otherwise -l.

3. 	CPL is coupling constant C.

4. 	 Pl, P2, P3 a re momenta of particles.

5. 	 El, E2 I E3 are equal to EP created in SMEXTV or SMINTV and represent the vector
of polarization vector.

6. 	 AV is the resultant table of amplitude. The ordering of the index in the table is
the same as that of the arguments, namely the order of vector-I, vector-2 and
vector-3.

7. 	LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

219 7.2. INTERFACE ROUTINES TO CHANEl

Gluon-gl uon-gluon coupling

This calculate gluon 3-point vertex

CALL SMGGG(L1,L2,L3, K1,K2,K3, CPL,
P1,P2,P3, £1,£2,£3, LT,AV)

This is the same as SMVVV .

1. 	 L1, L2, L3 is, like LP created ill SMINTV the freedom of polarization vector.

2 	 Ki, K2, K3 denote the directioll of momentum.

If momentum is coming into tbe vertex, then it takes I, otherwise -1.

3. 	CPL is the coupling constant C

4. 	 Pi, P2, P3 are momenta of particles.

5. E1, E2, E3 is the polarization vector of vector boson and equal to EP created in
SMI NTV.

6. 	 AV is the table of tbe resultant am.plitude. The ordering of the index of the table
is the same as the arguments, vector-I, vector-2 and vector-3.

7. 	 LT is the data whicb represents the structure of the table AV and is used in SMCONV

and AMPORD.

Scalar-vector-vector coup ling

T his calculates scalar-vector2 vertex C (E2.E3) (See section 6.1.7).

CALL SMSVV(L2, L3, CPL, E2, E3, LT, AV)

INTEGER L2, L3 input

COMPLEX*16 CPL input

R£AL*8 E1 (4 ,L2) input

REAL*8 E2(4,L3) input

INTEGER LT(O:3) output

COMPLEX*16 AV(O:L2*L3-1) output

1. L2, L3 are, like LP in SMINTV, the freedom of the polarization vector.

220 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

2. 	 CPL is the coupling constant C.

3. 	 E2, E3 are polarization vectors of vector boson and are equal to EP created in
SMEXTV or SMINTV.

4. 	 AV is the table of resultant amplitude. The ordering of index in the table is the
same as the arguments, scalar, vector-2 and vector-3.

5. 	 LT is the data which represents the structure of the table AV and used in SMCONV,
SMCONS and AMPORD.

Scalar-scalar-vector coupling

This calculates scalar2-vector vertex C((Pl - P2).f3) (See section 6.1.6).

CALL SMSSV(L3, Kl, K2, CPL, Pl, P2, E3, LT, AV)

INTEGER
INTEGER
COMPLEX*16
REAL*8
REAL*8
INTEGER
COMPLEX*16

L3
Kl, K2
CPL
P1(4) ,P2(4)
E3(4,L3)
LT(0:3)
AV(0:L3-l)

input

input

input

input

input

output

output

1. 	L3 is, like LP in SMINTV, the freedom of polarization vector.

2. 	 K1, K2 denotes the direction of momentum of scalar.
If momentum is coming into the vertex, it takes 1 and otherwise -1.

3. 	CPL is the coupling constant C.

4. 	 P1, P2 are momenta of scalar.

5. 	 E3 is polarization vector of vector boson and equal to EP created in SMINTV.

6. 	 AV is the table of resultant amplitude. The order of index in the table is the same
as the arguments, scalar-I, scalar-2 and vector.

7. 	 LT is the data which represents the structure of the table AV and is used in SMCONV,

SMCONS and AMPORD.

221 7.2. INTERFACE ROUTI1I,lES TO CHANEL

Scalar- calar-scalar coupling

This calculates scalar3 vertex C (See section 6.1.9).

CALL SMSSS(CPL, LT, AV)

COMPLEX*16 CPL input
INTEGER LT(0:3) input
COMPLEX*16 AV(O:O) output

1. 	 CPL is the coupling COllstant C .

2. 	 AV is the table of resultant amplitude. The order of index of the table is irrelevant.

3. 	LT is the data which represen ts the structure of the table AV and is used in SMCONS

and AMPORD.

Vector-vector-vector-vector coupling

T his calculates vector4 vert. 'x

(See sec tion 6.1.4).

CALL SMVVVV(Ll , L2 ,L3,L4,CPL,El,E2,E3,E4,LT,AV)

INTEGER L1, L2, L3, L4 input
COMPLEX*16 CPL input
REAL*8 El(4,L1) input
REAL*8 E2(4,L2) input
REAL*8 E3(4,L3) input
REAL*8 E4(4 , L4) input
INTEGER LT(0 : 4) output
COMPLEX*16 AV(0:Ll*L2*L3*L4-1) output

1. 	 L1, L2, L3, L4 is, like LP in SMINTV, the freedom of polarization vector.

2. 	CPL is the coupling constant C .

3. 	 E1, E2, E3, E4 is the polarization vector of vector boson and equal to EP created
in SMINTV.

4. 	 AV is the table of resultant amplitude. The ordering of index in the table is the
same as the arguments 1, 2, 3 and 4.

5. 	 LT is the data which represents the structure of the ta.ble AV and is used in SMCONV

a nd AMPORD.

222 CHAPTER 7. LIBRARlES FOR THE AMPLITUDE CALCULATION

Gluon-gluon-gluon-gluon coupling

This is similar to the 4-point vertex of heavy vector boson, but it calculates ollly the
coefficient of the single term of color factor

CALL SMGGGGCL1,L2,L3,L4,CPL,El,E2,E3,E4,LT,AV)

Arguments are the same as SMVVVV.

l. 	L1, L2, L3, L4 are, like LP created inSMINTV, the freedom of polarization vector.

2. 	 CPL is the coupling constant C.

3. 	 El, E2, E3, E4 is the polarization vector of vector boson and equal to EP created
in SMINTV.

4. 	 AV is the table of the resultant amplitude. The ordering of the indices of the table
is the same as the arguments , I, 2, 3 and 4.

5. 	 LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

Scalar-scalar-vector-vector coupling

This calculates scalar2-vector2 vertex C(E3.E4) (See section 6.l.8).

CALL SMSSVVCL3,L4,CPL,E3,E4,LT,AV)

INTEGER L3, L4 input
CDMPLEX*16 CPL input
REAL*8 E3(4,L3) input
REAL*8 E4(4,L4) input
INTEGER LT(0:4) output
CDMPLEX*16 AV(O: 13*L4-1) output

l. 	L3, L4 is, like LP created in SMINTV, the freedom of polarization vector.

2. 	 CPL is the cou piing cons tan t C .

3. E3, 	 E4 is the polarization vector of vector boson and equal to EP created III

SMINTV.

223 7.2. INTERFACE ROUTINES TO CHANEL

4. 	 AV is the table of resultant amplitude. The ordering of the index is the same as
the argumen t.s, scalar-I, scalar- 2, vector-3 and vect.or-4.

5. 	 LT is the dat.a which represents the structure of the table AV and is used in SMCONV,

SMCONS and AMPORD.

Scalar-scalar-scalar-scalar coupling

This calculates scalar4 vertex C (See sectioll 6.1.10).

CALL SMSSSS(CPL, LT, AV)

COMPLEX*16 CPL input

INTEGER LT(O:4) input

COMPLEX*16 AV(O:O) output

1. 	 CPL is the coupling constant C.

2. 	 AV is the table of resultant amplitude.

3. 	 LT is the data which represent the structure of the table AV and is used in SMCONS

and AMPORD. T he ordering of the index in the table is irrelevant.

7.2.5 Connecting amplitude

The amplitude of a part of a given diagram, which is constructed by connecting smaller
amplitudes by internal lines. The latter amplitudes are obtained by either calculating
vert ex or using the following subrou tines. Called subroutines depend on the kinds
of internal lines; for fermion line call SMCONF, for vector boson SMCONV and for scalar
SMCONS .

CALL SMCONF(LTi,LT2,LPi.LP2.EW.AV1.AV2.LT.AV)
CALL SMCONV(LTi.LT2.LPi.LP2.EW. AV1.AV2.LT.AV)
CALL SMCONS(LTi.LT2.LPi.LP2.AV1.AV2.LT.AV)

INTEGER LT1(O:*). LT2(O:*) input

COMPLEX*16 AViCO: *) • AV2(O:*) input

INTEGER LPi. LP2 input

REAL*8 EW(*) input

INTEGER LT(O: number if indices) input

COMPLEX*16 AV(O: freedom of index -1 output

1. AV1. AV2 are tables of resultant amplitude.

http:SMCONS(LTi.LT2.LPi.LP2.AV1.AV2.LT.AV
http:AV1.AV2.LT.AV
http:SMCONV(LTi.LT2.LPi.LP2.EW
http:SMCONF(LTi,LT2,LPi.LP2.EW.AV1.AV2.LT.AV

224 CHAPTER 7. LIBRARlES FOR THE AMPLITUDE CALCULATION

2. 	 LTl, LT2 represent the structure of the table AV.

3. 	 LP1, LP2 indicate which particles in LTl, LT2 arc connected, respectively.

4. 	 EW is identical with EW created in SMINTF, SMINTV.

5. 	 AV is the table of resultant amplitude.

6. 	 LT is the data which represents the structure of the table AV and is used in SMCONx
or AMPORD. The ordering of the indices is the same as that of LT1, LT2 omitting
the particles to be connected .

7.2. 6 Check consistency of generated code

This subroutine checks consistency between generated code and library by comparing
version numbers.

CALL SMINIT(NV, NS)

INTEGER NV input
INTEGER NS input

1. NV, NS are version and sub-version number of grace system, by which source
code is generated.

7.3. PROGRAM PACKAGE CHANEL 	 225

7.3 P rogram package CHANEL

7.3.1 Decomposition of propagator

Polarization vector

This sets components of polarization vectors.

CALL POLA(I, A, AM, P, EP, EM)

INTEGER I input
REAL*8 A input

REAL*8 AM input
REAL*8 P(4) input
REAL*8 EP(4) output

REAL*8 EM(4) output

1. 	 the expressions for rectangular poli'.rization basis are presented in Eq.(2.l63).

2. 	 I : polarization state of vector boson .

3. 	 A : gauge parameter of vector boson. A 2:: 100 gives the unitary gauge propagator
for massive vector boson.

4. 	 AM : mass of vector boson.

5. 	 P(4): momentum of vector boson.

6. 	 EP (4) polariza t ion vector for state 1.

7. 	 EM(4) weight factor, which are presented in Eq. (2. 164).

Decomposition of four mome nt um

This decomposes the momentum of a massive fermion to two light-like vectors according
to Eq.(2.140).

CALL SPLTQ(AM , P, P2, Pi)

REAL*8 AM input
REAL*8 P(4) input
REAL*8 Pi(4), P2(4) output

1. 	 AM : mass of fermion.

2. 	 P(4) : momentum of fermion.

3. 	 P1(4) ,P2(4) : decomposed light-like vectors.

226 CHAPTER 7. LIIJRARlES FOR THE AMPLITUDE CALCULATION

Phase factors of fermion

This calculates phase factors of the massive fermion presented III Eqs. (2 .145) and
(2.146) .

CALL PHASEQ(I,P,C)

INTEGER I input
REAL*8 P(4) input
COMPLEX*16 C(2) output

1. I : 1=1 for c±(p) and 1=2 for complex conjugate of c±(p).

2. P(4) momentum of massive fermion.

3. C(2) calculated phase factors .

Split four momentum of internal fermion

This decomposes momentum of internal fermion with mass m into a light-like vector
and time-like vector with moment um square m 2 .

CALL SPLT(AM, P, Sl, S2, Pl, P2)

REAL*8 AM input
REAL*8 P(4) input
REAL*8 Sl, S2 output
REAL*8 P1(4) , P2(4) output

1. AM : mass of internal fermion.

2. P(4) : momentum of internal fermion .

3. Sl, S2 : sign factors for the decomposed vectors.

4. P1(4) ,P2(4) : decomposed four vectors.

7.3.2 Vertices

Vector-massless fermion vertex

This calculates vertex amplitudes for the vector boson-massless fermions vertex pre
sented in Eq.(2.135).

227 7.3. PROGRAM PACKAGE CHANEL

CALL FFVO(Pl,P2,P,AALL)

REAL*8 P1(4) , P2(4) input
REAL*8 P(4) input
COMPLEX*16 AALL(2) output

1. 	 the explicit expressions for specified ko are presented in Eq.(2.138).

2. 	 P1(4) ,P2(4) : momenta of mCl.-ssless ferrnions.

3. 	 P(4) : polarizatioll vector of vector boson coupled to fermion.

4. 	 AALL(2) : calculated results of vertex amplitudes.

Vector-fermion vertex

This calculates vertex amplitude for the vector boson-massive fermions vertex presented
in Eq.(2.148).

CALL FFV(L,II,I, AAM, AM, AL,AR,CC,C,Ql,Q2,Pl,P2,Q,AALL)

I NTEGER
INTEGER
REAL*8
REAL*8
COMPLEX*16
REAL*8
REAL*8
REAL*8
COMPLEX*16

L

I, II

AM, AAM

AL, AR

C(2) , CC(2)

P1(4), P2(4)

Q1(4), Q2(4)

Q(4)

AALL(4,2,2)

input
input
input
input
input
input
input
input
output

1. L : polarization state of vector boson.

2. 	 I, II : indices to specify fermion or antifermion state, where I(II)=3 for fermion
and I(II)=l for antifermion, respectively.

3. 	AM, AAM : masses of fermions.

4. 	 AL, AR : coupling constants for vertex.

5. 	 C(2) ,CC(2) : phase factors for massive fermions.

6. 	 Pi (4) ,P2(4) ,Qi (4) ,Q2(4) : light-like vectors decomposed by subroutine SPLTQ.

7. 	 Q(4) : polarization vector of vector boson.

8. 	AALL(4,2,2) : calculated results of vertex amplitudes for all possible helicity
states.

228 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

Scalar-massless fermion vertex

This calculates vertex amplitudes for scalar boson-massless fermiolls vertex presented
in Eq.(2.1S1).

CALL FFSO(P1, P2, AALL)

REAL*8 P1(4), P2(4) input
COMPLEX*16 AALL(2) output

1. 	 Pi (4) ,P2(4) : momenta of massless fermions.

2. 	 AALL(2) : calculated results of vertex amplitudes.

Scalar-fermion ver tex

This calculates vertex amplitudes for scalar boson-massive fermions vertex presented
in Eq.(2.1S0) .

CALL FFS(II,I,AAM,AM,AL,AR,CC, C, Ql ,Q2,Pl,P2 , AALL)

INTEGER I, II input

REAL* 8 AM, AAM input
REAL*8 AL, AR input
COMPLEX*16 C, CC input
REAL*8 P1(4) , P2(4) input
REAL*8 Q1(4) . Q2(4) input
COMPLEX*16 AALL (2 , 2) output

1. 	 I, II : indices to specify fermion or antifermion state, where I(II)=3 for fermion
and I(II)=l for anti fermion, respectively.

2. 	 AM. AAM : masses of fermions.

3. 	AL, AR : coupling constants for vertex.

4. 	 C(2) ,CC(2) : phase factors for massive fermions .

S. 	P1(4), P2(4), Q1(4), Q2(4) : light-like vectors decomposed by subroutine SPLTQ.

6. 	 AALL(2, 2) : calculated results of vertex amplitudes for all possible helicity states.

229 7.3. PROGRAM PACKAGE CHANEL

T hree vector vertex

This calculates vertex amplitude for three vector bosoD vertex, present.ed ill Eq. (2 .155).

CALL VVV(GG,Pi,P2,P3,EPi,EP2,EP3,AALL)

REAL*8 GG input

REAL*8 Pi (4), P2(4) input

REAL*8 P3(4) input

REAL*8 EPi(4), EP2(4) input

REAL*8 EP3(4) input
REAL*8 AALL output

1. the momenta of particles with vertices are takell to flow in.

2. GG : coupling constant for vertex.

3. P1(4) ,P2(4) ,P3(4) : momenta of the vector bosons.

4. EP1(4) ,EP2(4) ,EP3(4) : polarization vectors of vector bosons.

5. AALL : calculated result of vert x ampli tude for given polarization s tates .

Four vector ver ex

This calculates vertex amplitudes for four vector boson vertex, presented ill Eq.(2.156).

CALL VVVV(GG,EPi,EP2,EP3,EP4,AALL)

REAL*8 GG input
REAL*8 EP1(4), EP2(4) input
REAL* 8 EP3(4) , EP4(4) input
REAL*8 AALL output

1. the momenta of particles with vertices are taken to flow in.

2. GG : coupling constant for vertex.

3. EP1(4) ,EP2(4) ,EP3(4) ,EP4(4) :polarization vectors of vector bosons.

4. AALL : calculated result of vertex amplitude for given polarization states.

http:present.ed

230 CHAPTER 7. LIBRARIES Fon THE AMPLITUDE CALCULATION

Scalar-vector-vector vertex

This calculates vertex amplitudes for vector bosons-scalar boson vertex, presented in
Eq.(2.158) .

CALL VVS(GG,EP1,EP2,AALL)

REAL*8 GG input

REAL*8 EP1(4), EP2(4) input

REAL*8 AALL output

1. 	 the momenta of particles with vertex are taken to flow in. This subroutine can
be used for VV SS vertex.

2. 	 GG : coupling constant for vertex.

3. 	 EPl (4) , EP2 (4) : polarization vectors of vector bOSOllS.

4. 	 AALL : calculated result of vertex amplitude for given polarization states.

Scalar-scalar-vector vertex

This calculates vertex amplitudes for vector boson-scalar bosons vertex, presented in
Eq.(2.157).

CALL SSV(GG,Pl,P2,EP,AALL)

REAL*8 GG input

REAL*8 Pl(4), P2(4) input

REAL*8 EP(4) input

REAL*8 AALL output

1. 	 GG : coupling constant for vertex.

2. 	P1(4) ,P2(4) : momenta of vector bosons.

3. 	 EP(4) : polarization vector of vector boson.

4. 	 AALL : calculated result of vertex amplitude for given polarization states.

231 7.3. PROGRAM PACKAGE CHANEL

7.3.3 Effective vertices

Four fermion vertex

This calculate fermioll-fermioIl-interactions mediated by a vect.or boson.

CALL FFFF(N, AJM1, AJM2, EM, AALL)

INTEGER N input
CoMPLEX*16 AJM1(4,2,2) input
CoMPLEX*16 AJM2(4,2,2) input
REAL*8 EM(4) input
CoMPLEX*16 AALL(2,2,2,2) output

l. 	N : no . of polarization states for intermediated vector bosoll.

2. 	 AJMl(4,2,2), AJM2 (4,2,2) : vertex amplitudes for fermion-fermion-vector bo
son vertices calculated by subroutine FFV.

3. 	 EM(4) : weight factors to reconstruct the numerator of the vector boson propa
gator calculated by su brou tine POLA.

4. 	 AALL (2 . 2 . 2,2) : calculated results for all possible helicity states for fermions.

Fermion-fermion-vector-vector vertex

This calculate fermion-fermion going to vector boson pair mediated by a vector boson.

CALL FFVV(N, AJMF, AJMV, EM, AALL)

INTEGER N input
CoMPLEX*16 AJMF(4,2,2) input
CoMPLEX*16 AJMV(4,4,4) input
REAL*8 EM(4) input
COMPLEX *16 AALL(2,2,4,4) output

l. 	N : no. of polarization states for intermediated vector boson.

2. 	 AJMF(4,2,2) : vertex amplitude for fermion-fermion-vector boson vertex calcu
lated by subroutine FFV.

3. 	 AJMV(4,4,4) : vertex amplitude for three vector boson vertex calculated by
su brou tine VVV.

232 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

4. 	 EM(4) : weight factors to reconstruct the numerat.or of the vector boson propa
gator calculated by subroutine POLA.

5. 	 AALL(2,2,4,4) : calculated results for all possible llelicity and polarization
stat.es.

http:numerat.or

Appendix A

Lists of subprograms and common
blocks

\iVh en the user combines his own subprograms with generated source programs of
integrat ion aud evell t gen eration, t,he user should be careful Dot to use the names of
subprograms and named common block, hecause the program does not work when the
user uses t he same names as predefined ones in this sys tem.

The lis t of the names of subprograms gCll ra ted or internally used, is shown in List
A.I and the list of the names of common block genera ted or internally used , is shown
in List A .2.

AMnnnn BSDATE BSlJN IX FFV SHUPDT SMINIV SPLTQ XHGRID
AMP ARM BSDSUM BSUSRI FFVO SMCONF SMPRPD SPMAIN XH INIT
AMPORD BSGDEF BSUT IM FUNC SMCONS SMSSS SPRING XHORDR
AMPSUM BS INIT BSWRIT KINEM SMCONV SMSSSS SPTERM XHPLoT
AMPTBL BSISUM DHFILL KI NTT SMEXTF SMSSV SSV XHRNGE
BASES BSLIST DHINIT PHASEQ SMEXTV SMSSVV USERIN XHSAVE
BHINIT BSMAlN DHPLOT POL SMFFS SMSVV USROUT XHSCLE
BHPLOT BSoRDR DRLOoP POLA SMFFV SMVVV VVS
BHRSET BSPRNT DRN SETMAS SMGGG SMVVVV VVV
BHSAVE BSREAD DRNSET SHCLER SMGGGG SPEVNT VVVV
BHSUM BSTCNV FFS SHPLDT SMINIF SPINIT XHCHCK
BSCAST BSTIME FFSO SHRSET SMI NIT SPLT XHFILL

List A.I A list of the names of subprograms

AMnnnn means the corresponding subroutines to the nnnn-th graph. When 28 graphs
are generated, then nnnn varies from 0001 to 0028 .

233

234 Appendix

AMCNST
AMCPLC
AMEXTR
AMGMMA
AMGRPH

AMMASS
AMREG
AMSLCT
AMSPIN
AMWORI

AMWORK
BASED
BASE1
BASE2
BASE3

BASE4
BASE5
BASE6
BDATE
BSCNTL

BSRSLT
BSWORK
BTIME
LOOPD
LOOPl

NINFO
PLOTB
PLOTH
RANDM
SMATBL

SMDBGG
SMEXTP
SMGAUG
SMGAUS
SP4VEC

SPRNGl
XHCNTL

List A.2 A list of names of named common block

Appendix B

Index of subroutines

In the following index, Hw mark "(v)" is for vector version.

AMnnnn calculates amplitude of the nnnn-th graph, 78, 87, 165(v), 169(v)
AMP ARM defines of coupling constants and others, 78, 82, 165(v)
AMPORD arranges amplitudes, 78, 88
AMPSUM s ums matrix elements over the helicity states, 78, 165(v)
AMPTBL calls AMnnnn to calculate amplitudes, 78, 85, 165(v), 167(v)
BHINIT initiali zes the numbers of histograms and scatter plots, 111, 120
DHFILL fills scatter plots, 115, 121
DHINIT initializes scatter plots, 111, 121
DVFILL fill s scatter plots, 178(v)
FFFF calculates four fermion vertex, 231
FFS calculates scalar-fermion vertex, 228
FFSO calculates scalar-massless fermion vertex, 228
FFV calculates vector-fermion vertex, 227
FFVO calculates vec tor-massless fermion vertex, 226
FFVV calculates fermion-fermion-vector-vector vertex, 231
FUNC calculates the numerical values of differential cross section, 78, 114, 134
INCLl defines the common variables for masses, amplitude tables etc, 78, 83, 165(v),

166(v)
INCL2 defines the work space for AMPTBL, 78, 165(v)
INCLH defines the number of histograms and scatter plots, 78, 109, 165(v), 166(v)
INCLVB defines the common for integration variables etc, 165(v), 166(v), 172(v), 176(v)
INCLVS defines the vector length, 165(v), 166(v), 172(v)
KINEM derives particle four momenta from the integration variables, 78, 93, 165(v),

179(v)
KINIT initializes kinematics, 78, 90, 165(v), 166(v), 171(v)

235

236

MAINBS
MAINSP
MAINVB
MAINVS
PHASEQ
POLA
SETMAS
SMCONF
SMCONS
SMCONV
SMEXTF
SMEXTV
SMFFS
SMFFV
SMGGG
SMGGGG
SMINIT
SMINTF
SMINTV
SMPRPD
SMSSS
SMSSSS
SMSSV
SMSSVV
SMSVV
SMVVV
SMVVVV
SPEVNT
SPI NIT
SPLT
SPLTQ
SPTERM
SSV
TEST
TESTV

USERIN
USROUT
VBFNCT

VVS
VVV

VVVV

XHFILL
XHINIT
XVFILL

Appendix

is the main program for the integration, 78 , 108

is the main program for the event generation, 78, 132

is the main program for the integration for vector computer, 165(v), 171(v)
is main program for the event generation for vector computer, 166(v)
calculates phase factors of the massive fermion, 226

calculat.es polarization vector , 225

defines of masses and decay widths of particles, 69, 78, 79 , 165(v)

connects by a fermion propagator, 87, 223

connects by a scalar propagator , 223

connects by a vector propagat.or, 87, 223

calculates external fermion, 86, 212

calcula.tes external vector boson, 86, 213

calcula.tes fermion-fermion-scalar vertex coupling, 217

calculates fermion-fermion-vector vertex coupling, 87, 216

calculates gluon-gluon-gluon vertex coupling, 219

calculates gluon-gluon-gluon-gluon vertex coupling, 2 22

checks the version of library, 82 , 224

calcula tes numerator of fermion propagator, 87, 213

calculates numerator of vector boson propagator, 87, 214

calculates multiply denominator of propagator , 87, 215

calculates sca.lar-scalar-s alar vertex coupling, 221

calculates scalar-scalar-scalar-scalar ver tex coupling, 223

calcula.tes scalar-scalar-vector vertex coupling, 220

calculates sca1ar-scalar-vector-vector vertex coupling, 222

calcula tes scalar-vector-v ctor vertex coupling, 219

calculates vector-vector-vector vertex coupling, 87, 218

calculates vector-vector-vector-vector vertex coupling, 221

saves four vectors in the event generat ion, 78, 135, 166(v) , 189(v)

initia lizes routine for the event generation, 78, 135, 166(v), 189(v)

splits four momentum to massless ones, 226

splits four moment um, 225

is called at t he termination in t he event generation, 78, 136, 166(v), 189(v)

calculates scalar-scalar-vector vertex, 230

works as the main program for tes ting gauge invariance, 78, 99

works as the main progra m for testing gauge invariance for vector comput.er,
165(v), 193 (v)
initializes BASES and user's parameters, 78, 90, 109, 165(v), 166(v), 171(v)

prints the ampli t ude summary table, 78, 106, 165(v), 171(v)

calculates the numerical val ues of differential cross section for vector computer,
165(v), 166(v), 173(v)
calculates scalar-vector-vector vertex, 230

calculates three vector vertex, 229

calculates four vector vertex, 229

fill s his tograms, 115 , 121

initializes histograms, 111, 121

fills histogram for vector computer , 178(v)

http:comput.er
http:propagat.or
http:calculat.es

Appendix C

N otice

• 	 Get ting system and information
Any request on the system should bemailedtograce@minami.kek.jp.

• 	 Changing Lagrangian
GRACE system has almost no freedom to change Lagrangian except for deleting
particles or interactions. For introduction of a new type of interactioIl, OIlC must
prepare a FORTRAN subroutine, which calcul ates helicity amplitudes of the ver
tex in a similar way to CHANEL library. MOf(~over, modifica t ions of the FORTRAN
source code generator is necessary in order to include corresponding subroutine
calls in the generated code .

• 	 Testing generated code
There are several possibi lities that the generated FORTRAN code produces false
result (sec section 2.6 p.53 and chapt ·.r 3 p.70, 94, 99). Espe ially one must pay
attention to llumerical cancellation. It is desi rable to compare wi th the result of
calculation in q uadru pl(~ precision.

• 	 Gauge parameter
The way of specifying the ga uge parameter in the generated FORTRAN code is
slightly different from one in CHANEL li brary. Unitary gauge is selected ill CHANEL
library when gauge parameter is set to a grea ter value than 100. However, in the
generated code, uni tary gauge is selected by another variable (see s ction 3.2.1),
with which denomina tors of propagators are correctly calculated and irrelevant
graphs are omitted from the calculation.

• 	 Decay width
Since gauge invariance and gauge cancellation is violated by non-zero value of de
cay width of particles, unexpectedly large value of cross section may be obtained
at higher energy (see section 2.6) .

237

mailto:bemailedtograce@minami.kek.jp

238 Appendix

• Strong coupling constant
Strong coupling constant. CKs(Q'l) should be supplied ill kinern even if it is takell
to be constant(see sectioll 2,3,3),

• Quark mixing matrix
III the present versioIl of GRACE, the mixing matrix is unity(see section 2.3.2),

• Numerical instability
''''hen the considered process COil tains a virtual photon exchanged ill the (
channel, such as peripheral diagrams in c+c- ---> e+e - IL+ 11.- or e+e- ---> e+e-l'

and the phase space allows extremely slIlall values to the virtual photon mass,
serious instability will t.ake place in the numerical calculation(see section 2.6).

• Convergence behavior of numerical integration
The accuracy of each iteration must be stable in the integration step. When the
integration variables does not. suit for the integrand, it. is unstable or fluctuate
iteration by iteration and jumps suddenly to a big value in the worst case (see
sections 2,6 and 3.5.6).

• Event generation
If the number trial distribution has a long tail, the efficiency of event generation
is poor(see 3.6.4).

Bibliography

[1] K Aoki et al. , Suppl. hog. Theor. Phvs. 73 , 1982.

[21 T. l\lut.a, "FollIlddtions of QUillltuIll ChroHlodynalllic;s" , World Scientific, 1987.

[3] T. I\aneko , ill "New Computing Techniques in Physics Research", ed. D. Perret
G allix and \11/. Wojcik, p.555, 1990, Edition du C RS, Paris,
T. Kan eko and H. Tanaka, in ".Proc. of the Second Workshop on JLC", ed. S.
Kawabata, p.250, 1991, KE K Proceeding 91-10,
T. Kaneko et al., in "New COllJputing Techniques in Physics Hesearch IF', ed. D.
Perret-G allix, p.G59, 1992, Edition du CI\RS , Paris .

[4] H. Tanaka, Comput. Phys. CowmuIl . 58(1990)153.

[5] H. Tanaka, T . Kaneko and Y. Shimizu, Comput. Phys. Commun. 64(1991)149.

[6] S. Kawabata, Comput. Phys. Commun. 41 (1986)127.

[7] See for example,
F . Harary, "Graph Theory", Addison-Wesley, Reading, Massachusetts, 1972.

For enumeration of various classes of graphs,

F. Harary and E.M. Palmer, "Grapbical Enumeration", Academic Press, New

York, 1973.

For computer algorithms,

A.V. Aho, J.E. Hopcroft and J.D. Ullman, "The Design and analysis of Computer

Algori thms", Addison-Wesley, Reading, Massachusetts, 1972;

L. Kucera, "Combinatorial Algorithms", Adam Hilger, Bristol, 1990.

[8] J.Fujimoto et al., Suppl. Prog. Theor. Pbys. 100, 1991.

[9] T . Kaneko and S. Kawabata, Comput. Pbys. Commun. 55 (1989) 141.

239

