
_,,1\\\,)\0

f>,1.\ \j \ 1 \f!Jf!J~
DESY 99-105

99
, Rome Preprint 1'255/

IFUP-TH 34/99 \..:)f\~f'\'lI.
\,,",,,Bicocca:-FT_99-17

August 1999

proposal {or a 'l\1.ulti-TftoPS LGT CotUputing Project
v
\) ,
>-..
'n
~

F. Aglietti et atA
t ,

...,,,., .._.....

i .. 0_ <

\
, ,. "''' <If "' .. ~

lSSN 0418-9833

ISSN 0418-9833 DESY 99-105
Ro. me . t ••I>· I,)r:r:/(j(j1eprm. .<Jt).}

IFUP-TH 34/99
Bicocca.-F'1'-09- 17

August 1999

PROPOSAL FOR A MULTI-TFLOPS LGT COMPUTING
PROJECT

F. Aglietti, A. Bartoloni, C. Battista, N. Cabibbo, M. Cosimi,
A. Lonardo, A. Michelotti, F. 	Rapuano, D. Rossetti,

M. Torelli, P. Vicini
Dipartiment.o dj Fisica, Ulliversita. di Roma 'La Sapienza' alld
INFN, Sezione di Roma, P.le A. Moro 2, 1-00185 Roma, Italy.

R. Alfieri, R. Di Renzo, E. Onofri
Dipart.imento di Fisica, Universita. di Parma, and

INFN, Sezione collegata di 	Panna, Parco A.rea delle Sciellze, 1-43100 Parma,
Italy.

I. D' Auria, W. Errico, G. Magazzu, F. Schifano, R. Tripiccione
INFN, Sezione di risa, Via Livornese 1291, 1-56010 San Piero a Grado (Italy).

P. Deriso, R. Petrollzio
Dipartimento di Fisica, Universita. di Roma 11 'Tor Vergata' and

INFN, Sezione di Roma 11, Via della Ricerca Scientifica, 1 - 00133 Roma

C. Destri, G. Marchesini
Dipartimento di fisica, Universita. di Milano-Bicocca and

INFN, Sezione di Milano, Via Celoria 16, 1-20100 Milano, Italy

W. 	Friebel, U. Gensch, A. Kretzschmann, H. Leich, S. Menschikov,
N. Paschedag, G. Sacco, U. Schwendicke, H. Simma, R. Sommer,

K. Sulanke, P. Wegner
DESY, Platallenallee 6, D-15738 Zeuthen, Germany.

A. Fucci, B. Martin
CERN, CH-1211 Geneva 23.

E. Panizzi
Dipartimento di lngegneria Elettrica, Universita. de l' Aquila and

INFN, Sezione di Roma, P.le A. Moro 2,1-00185 Roma, Italy.

ABSTRACT

In the next five years Lattice Gauge Theory (LGT) simulations will be
mainly focused 011 fuJI QeD studies on lattices of int.ermediate size and on
quenched QCD simulations Oil very large lattices at large (3, with emphasis
on b-physics. This program requires computing power in the order of tens of
TFlops, sustained for periods of the order of one year, along with the flexibility
needed to handle effectively also smaller lattices. In this letter of intent, we
propose to develop a computer architecture suitable for these problems, to be
implemented in terms of sma)] scale PC-based systems and of large scale systems
based on custom processors. The cOlllmon feature of both implementations is a
LGT-optimized high-bandwidth communication network.

2

1 Introduction

The APE group has been involved for more t.han one decade in t.he develop
ment of high performance parallel processors for Lat.tice Gauge Theory (LGT)
[1] ,[2]. The scient.ific achievements of all gellt'rat.ions of Apg machines have iJeen
recognized world wide. A P Emilie. t.he last ill the series[3], is now ill the filial
stage of development, and physics progra.ms a.re running on prototype systems.
Although APEmille will sizeably increase a.vailable computing power at INFN
and DESY, LGT simulations will eventua.lly require multi Tflops performance,
which is beyond the range of A PElllilie. \Ve believe that this is the right. til1le
to launch a new project. aiming t.o provide computing power of the order of
several Tflops within three or four years frol1l HOW.

This document is a let.t.er of intent/proposal for such a project, provisionally
called apeNEXT.

This paper is structured as follows. In section two we discuss the general
physics requirements motivat.ing our proposal. III section three we outline t.he
technological scenario shaping the Hew project. Section four provides an archi
tectural outline, whereas section five describes the organization of the project..
Sections six and seven discuss timescale and costs.

2 Physics Requirements

In the definition of the new LQCD engine project we keep a clear focus OIl a.
very limited number of (broad) physics simulation areas, that set the physics
requirements for the new project.

The translation of physics requirements int.o machine parameters requires
certain assumptions about the algorithms to be used. We base our consider
ations on tested algorit.illTIs such as SSOR-preconditioned BiCGstab and Hy
brid Monte Carlo, for Wilson fermions with improved action [4J. New theoreti
cal developments (domain wall fermioIls, Wilson-Dirac operators satisfying the
Ginsparg-Wilson relation, ...) are likely to be implemented in a way which is
very similar to the standard Dirac operator.

We expect that in the years 2003-2006, large production LQCD simulations
will be mainly focused on the following lines:

• 	 full QCD simulations (including dynamical fermions) on lattices with sizes
of the order of 483 x 96 (a physical system of L = 2 ... 4 1m and a =
0.1 ... 0.05 1m). Dynamic quark masses should also decrease as much as

3

http:let.t.er
http:progra.ms

possible with a reasonable target corresponding to m7r/mp of about 0.~)5
(although it is not realistic to expect that both goals are obtained in t.he
same simulation) .

• 	 simulations in the quenched approxillla.tion on very large lattices (1003 x
100-;-.200) and large/3 (L = 1.5 .. ·~·()fTTl a.nd a = O.t ... 0.02fm) for the
study of b physics with as little ext.ra.pola.tion as possible in the mass of
the heavy quark.

The first item is heavily CPt; lilllit.ed, sillce one has to solve the Dirac
equation repeatedly during the updatillg process. The second item is basically
memory limited, due to very large lattice si7-e. In both cases, our target is a
resolution about two-times better than currently possible (implying, as discussed
later on, an increase in computing power of two orders of magnitude).

As a guideline to define a new LQCD engine for these classes of problems,
we require that:

1. 	 The node-topology and communication network is optimized for the lattice
si7-es required in full QCD simulations. Since for many problems of LQCD
it is important to perform a finite-si7-e scaling analysys, the new machine
must perform efficiently not only on large but also on comparatively small
lattices, eg., in full QCD one may think of NI x NT lattices with NT, =
8, 16,20, ... , 32 and 48, and N L ~ NT ~ 2NT,.

2. 	 The communication network has enough bandwidth to handle the large
degree of data exchange between neighbouring sites (and hence com
pute nodes) needed in LGT computations. The interconnect architecture
should support the natural (APE-like) programming model with direct
remote data access [6]. This approach minimizes software and memory
overhead (and coding effort) for pre-loading of remote data.

3. 	The processing nodes sustain high performance on the execution of the
arithmetic and control operations which are relevant for the codes (or
at least their basic kernels) of full-QCD algorithms, in particular double
precision floating point arithmetics, memory access to field variables of
composed data structures, local and global program-flow control, etc.

4. 	 Memory size, disk space and disk-bandwidth match each other and are well
suited to the problems we want to study. This means that all compute
intensive kernels must not be slowed significantly because required data is
not available in main memory. We must keep all data in physical memory
as long as possible. In all cases in which this is not possible (e.g., for light
fermion propagators on very large lattices) we must be able to temporarily
store on (and retrieve from) disk with large enough bandwidth.

4

http:lilllit.ed

These requirements shape the global architecture of the machine:

1. 	 We consider architectures based 011 t.hree dimensional grids of processors,
with nearest neighbour dat.a-lillks. Heasonable sizes of the mesh of pro
CCS::;07'S that. will be used for the Silllllli.~t.ioll of large lat.tices are sOlllewlwr{'
in the range 83 ... 123 ... 163 1I0des. where a physical lattice of 483 x 96
points can be readily mapped. For tillit.e size analsys 011 small lattices, a

63mesh of 43 ... processors is envisa.ged.

The size of the processor mesh dict.ates a lower bound on the comnlUnica
tion bandwitdh bet.weell neighbourillg processors. We define by p the ratio
of local memory accesses (transfers between processor and its memory)
over remote memory accesses (transfers between neighbour processors),
which depends on the lattice size aud the algorithm. Under the assump
tion of balanced local bandwidth (i.e., processors are able to access enough
data in local memory to sustain their potentia.l perforlllallce, see Ia.ter for
details), bandwidt.h for remote comnlUuications must. not. be lower than
1/p local bandwidth. Estimates of the required ratio for a naive imple
mentation of the Dirac operator using Wilson fermions are given ill table
1 for a sublattice of N~ x NT physical points per processor (note that, to
first approximation, p :: 2N5)'

Linear lattice size p
3:3 5.8
43 7.8
63 11.6
83 15.5

Table 1: Local vs remote memory access patterns: p is the ratio of memory
accesses to local memory over memory accesses to neighbour nodes ill a silllple
implementation of the solver for the Dirac operator. p is estimated as a function
of the linear size of the sub-lattice mapped onto each processor.

2. 	 To discuss memory-size requirements in more details, one has to distin
guish between the case of full QeD simulations and calculations in the
quenched approximation.

In full QeD simulations, by far the largest amount of time is spent in the
updating process. In this case, our on-line memory has to be large enough
to allow for the implementation of efficient algorithms. State-of-the-art
update algorithms need a large number of auxiliary fields on each lattice
site. We use as unity the amount of memory taken by one fermion field (24
data words, corresponding to 192 bytes in double precision. We will call

5

Uab(X, iJ) gauge fields 72 W 3 feq
S~f(x, 0) fermion propagator 288 W 12 feq
V)~ (x) (pseudo-) fermion field 24 W 1 feq

(cr· F)~~(x) Pauli term for improvement 72 W 3 feq

Table 2: Data structures used in Lat.t.ice QC D and corresponding memory re
quirements (in words and fermion equivalt'llt. st.orage) per lattice point. Greek in
dices rUll from 1 to 4 and lat.in indeces frOI1l I t.o 3. The first three entries are gen
eral complex matrices, while t.he Pauli t.erm is hermitian: (cr· F)~~ [(cr· F)~:]*.

this quantity a fermion equivalent. - /eq - in the following). A generous
estimate, leaving space for more sophisticated, presumably more memory
intensive algorithms, is about::: 200/eq per site.

On the other hand, ill the case of the quenched approximation, the up
dating process may be neglected for both computing power and memory
requirements (less than 10/eq per lattice site are needed). Jnstead, we have
to consider the memory requirement originating from the measurement of
a heavy-light form-factor. The database needed for such a calculation
consists of one gauge field configuration, one Pauli term, Nl + Nit fermion
propagators (Nh and Nl are the numbers of heavy and light fermions)
each replicated for the number of momenta and operator insertions used
and for each lattice site (typical cases, being N1£ = Nl = 4, 3 momellta
and one operator insertion). Quenched QeD will be used essentially for
heavy quark phenomenology. Here the real problem is the extrapolation
to the b quark mass. To be safe one should have a physical cutoff much
larger than the masses that enter the simulation. Then large lattices, of
the order of 1004 , are necessary.

We summarize our memory requirements in table 2 (where the size of the
relevant data structures are presented) and in table 3, where actual mem
ory sizes are collected, under the assumptions of using double precision
1 throughout. From the first two lines of table 3, we see that we cannot
expect to keep the whole data-base in physical memory when large lattices
are considered. However, if only two propagators at the time are kept in
memory, for ease of programming, while the others are either recalculated
(the heavy ones) or stored and reloaded from disk (the light ones), memory
requirements reduce sharply (third line in the table).

We conclude that, by judiciously swapping data to disks, a memory size
of the order of ~ 1Tbyte is a nice compromise for both our case studies.

IThe necessit.y of double precision arithmetic in full or large scale quenched QeD has been
investigated in t.he literature [5] and will not be discussed here.

6

Alternatively, one might cOllsider two melllory options: a small memory
machine (~ 500Gbyte) for full QeD and a large memory version (I -;
2Tbyte) for quenched studies.

Case upda.t.iIlg measurement
small lattice. full QeD

large lattice, quenched QeD
large lattice + disk

..tOOG
:WO(;
200(;

1.41'
13.T
1.8T

Table 3: Total memory requirements for the case studies discussed in the text.
The line labelled + disk refers to the case in which two propagators only are
kept in memory (all others being swapped onto disk or re-computed).

3. 	 Fast input-output is mandatory, as obvious from the previous point, for
studies on large lattices. As a rule of t.humb, we may want to load or
store one (large lattice) propagator (~ 250 Gbytes) in little more than one
minute. This requires a global bandwidth of the order of 2-3 Gbytes/sec.

Permanent storage of full QeD configurations is also required due to the
computing effort needed. This is a storage-density (as opposed to band
width) problem that, given the sizes involved, does not appear to be crit
ical. In the case of large lattices ill quenched QeD the strategy of COIll

puting on the fly without saving configurations is the best. Only the filial
correlation functiolls are saved and this means at most. a few tens of M B
per configuration.

Processing performance is strictly speaking not a clear-cut requirement: the
more is available, the better. We can estimate how much is enough, however,
by extrapolating the present state of the art. A sustained performance of 300
GFlops (with perhaps 40% efficiency) is now heavily used for full QeD simula
tions on lattices of size 243 x 48 [i1. If we assume a critical slowing down where
computer time grows like a-7

, we would like to have a sustained performance
two orders of magnitude higher if we want to halve a.

An ambitious target for our project is therefore a total installed performance
in the order of 10 ... 30TFlops. From the point of view of physics requirements,
it is not important that this computing power be sustained on a single system.
Several smaller machines can perform equally well (or perhaps better), as long
as each of them is able to handle large enough lattices.

Also, we must envisage the operation of some lower performance (and cor
respondinlgy smaller memory) machines, where small lattices are handled and

7

3

algorithms, programs and physical parameters are tuned before a large calcula
tion is moved onto a large production machine.

Technological Scenarios

Standard off-the-shelf processors have increased in performance by one order
of magnitude in the last 8-10 years, with (L remarkable improvement in the
efficiency of floating point computations. Benchmarks with LGT kernels care
fully coded in standard high-level languages indicate that up to about 30% of
the peak performance can be reached for local lattices with realistic sizes (i.e.
exceeding the cache size)[8].

This progress is roughly matched by improvements made by the dedicated
processors of the A PE family. The latter have today about one half of the peak
performance of a commercially available high-end processor, with similar figures
holding in the early 90's. On the other hand dedicated processors, such as those
of the APE family, have a sustained efficiency of the order of 60% for LGT
kernels [9], a factor two better than off-the-shelf components.

1f we extrapolate from the APEmille experience, we luay expect that a lIew
generation custom processor, using 0.18j..t silicon technology, has a clock fre
quency a factor 3 higher (about 200 Mhz). The most used floating point oper
ation in almost all LGT kernels is the normal operation a x b + c, performed
on complex double precision values, equivalent to 8 Flop. This gives a peak
performance of at least 1.6 Gflops per processor, again comparable (within a
factor two) with trends of reasonably priced off-the-shelf processing boards (e.g.,
a dual processor PC running at 800 Mhz) .

A bandwidth with local memory of the order of 3Gbyte / sec is needed to
keep such a processor busy.

This value results from the observation that typical LGT kernes have a
value of about R =:: 4 for the ratio R of the number of floating point opera
tions performed over the number of data words accessed during the computa
tion(assumillg that double precision is used throughout). The required band
width is in line with forecasts made for high-end PC memory systems using
either new generation SDRAM at 100 Mhz, active on hoth clock edges (with
a data bus of 128 bits, exactly one complex operand), or more sophisticated
RAMBUS interfaces.

These basic considerations lead us to the conclusion that if we consider single
node perfonnance only there is no clear-cut choice between a custom processor
or a commercial sytem of the PC class. A choice must be therefore based on

8

problems related to the assembly of complete systems.

We believe that a custom architecture is superior for very large (?:. 500nodes)
systems for the following reasons:

• 	 lower power consumption by olle on1t'r of magnitude.

• 	 significantly more compact mechallical design.

• 	 better scalability once the basic units a.re operat.ing (reliability and soft
ware issues of large systems).

• easier interfacing with 	the necessary custom remote COl1nllunication net
work and the host system.

• 	 better control of tedmological aspects and less dependence on changing
commercial trends during the realization of the project.

On the other hand, we see several advantages st.emming froIll the use of
PC-derived systems for smaller machines:

• 	 limited hardware development effort.

• 	 standard software is readily available for major parts of the compiler and
the operating system.

• 	 short lead time to commission a prototype system.

An important architectural feature with technological implications is syn
chronization between processors. Regardless of the technological choice made
for the processor, we think that no real advantage is gained by departing from
the Single Instruction Multiple Data (SlMD) or Single Program Multiple Data
(SPMD) programming style used in previous generation APE machines. At the
hardware level, APE processors of all previous generations have been hardware
synchronized with an accuracy of a fraction of clock cycle. Although logically
very neat, this is rapidly becoming impossible, for clock frequencies higher than
100 Mhz and across physical scales of several meters. We intend to follow au
approach in which independent processors, while running at the same frequency,
are only loosely synchronized. Logical synchronization will have to be enforced
by some form of software-controlled barrier.

We now consider remote communications which, in our opinion, is the most
serious technological problem of the project.

9

4

Let us assume a nominal performance figure of 1.6 Gflops per processor (a
good guess, as discussed above, for custom or PC-derived nodes), along with
R = 4, and p = 8. Under these assumptions, we need an inter-processor com
munication bandwidth of about 400 Mhyt.es/sec. \Ve estimate that careful (alld
painful) programming efforts. maxil1lizinf,!; the overlap between communication
and calculation and minimizillg the allloullt of data to be transferred, is not
able to reduce this figure by more than a fact.or of 0(2 - 4). Communications
are needed between nearest.-neighbours (alld possibly,· along L-shaped paths,
between next-to-nearest. neighbours) in a :)-d array of processors, where each
processor has 6 direct links to its nearest. lIeighbours.

These communication requirements are a challenge for both kinds of pro
cessing nodes. Indeed, although several commercial technologies with the right
order-of-magnitude bandwidt.h have been developed recently, they are typically
too expensive and poorly optimized for regular 3-d arrays. They also have large
startup latencies, badly adversing performance, and often put a formidable COll

trol burden on the host processor.

We think that a solution optimized for our specific needs can be worked out
at the signalling level by appropiately using established technologies (remember
that we only need short-distance point-to-point links). At the interface level,
a simple light-weight protocol suitable for our communication patterns call be
developed and, adapted with little effort both to a PC-based or a custom node.

Architecture Outline

In this section, we outline a possible architecture, scalable from about 100 Gflops
to about 5 Tflops peak performance for a standalone machine. Just one such
high-end machine would offer a ten-fold increase in peak performance with re
spect to currently available systems. Several (5 to 10) high-end machines, work
ing together with a comparatively larger number of low-end systems, would allow
to complete the physics program outlined in previous paragraphs.

Our architecture has two different implementations, which share a common
programming environment and a common interconnection network. Oue imple
mentation with PC-based processing nodes is suitable for small systems (say
up to 6 x 6 x 6 processors, or ::; 500Gjlops) with a possibly wider and more
exploratory appication profile. The other implementation is based on an evo
lution of the traditional APE architecture and is optimized for large systems
(say ~ 1TFlops), for which PC's become difficult to manage and maintain, as
already mentioned.

In both cases we propose the following structure:

10

• 	 a three dimensional array of processing nodes, linked together by nearest.
neighbour links. Each node is a complete and independent processor. All
nodes execute the same program and are loosely synchronized, i.e., they
are start.ed at approximat.ely the same time and proceed at approximat.ely
the same pace. They synchronize ollly when requested by the logical con
sistency of the program (e.g., before exchanging data). This mechanism
is similar t.o the cOllcept. of ifall iustruct.ion ofAPE100 and API·~miJJe .

• 	 Remote communicat.ions use 1"I1"O-ba.sed asynchronous connect.ions be
tween neighbouring nodes. The SL'vlDjSp:vrn programming paradigm a
la. APE does not require complex handshaking protocols, since transmit
ting nodes may a.ssume t.hat the receiving part.ner is a.lways ready to receive
the incoming message.

This simple mechanism (still to be st.udied in details) brings several archi
tectural advantages:

1. 	 It allows to use for t.he remote communications a programming style
which is very similar to APE100/ APEmille. The later has in fact.
the very convenient feature that. no explicit. distinction between local
and remote memory accesses is required.

2. 	 It can be easily modified to allow hidden data transfers (data are
moved on the links while the processing node is performing calcula
tions).

3. 	It drastically simplifies the global hardware synchronization logic of
the system.

• 	 The communication interface is an independent component. As discussed,
the communication interface is based on FIFOs, allowing "elastic" connec
tions between nodes. This novel feature has to be carefully simulated, but
no serious problem is anticipated here. The real challenge in this area is
a fast, yet che~p and reliable2 dat.a-link. Using p ~ 8, we need links of
400Mbyte/sec (or multiples thereof). Similar links are now used, in con
figurations not optimized for LGT, in several kinds of LAN stretching on
small physical distances (often called SAN, for System Area Net.works).
The Myrinet link (now an IEEE standard) is one such example. The eval
uation of the appropriate technology is the most important R&D activit.y
of the project.

We now discuss the specific features of the two OptiOIlS, starting with the
PC-based system.

2Note that due to the asynchronous operation of the machine. requirements on the bit.-error
rate of the communication system are less demanding than in previous APE generat.ions, since
it allows for repetition of transfers with minor performance loss.

11

http:start.ed

• 	 Based on preliminary tests, at the moment, the best choice for the nodes
is a dual-processor Pentium-II or Pentium-Ill based system. This may
change in the future, according to the rapid evolution of this market.

• 	 Each (dual-processor) node should talk t.o its neighbours through a PCI
board that handles all six links stemming out. of the node. By using master
PCI capabilities, a transfer rate frolll network to processor in the order of
100 Mbyte/sec can be achieved.

• 	 Double size (64 bit.) PCl interface will increase the available speed by a
factor two. If double speed and double size PCI busses become available
(and if they do so at a reasonable price-performance ratio), we will be able
to better exploit our target link speed of 400 Mbytes/sec .

• 	 Note however t.hat we do not depend on the long term availability of the
PCI interface, since we can hook our system to any other (equally or better
performing) 1/0 bus or directly COHnect our cormnunicatiou interface to
the memory bus.

The implementation for a large system, on the other hand, is based 011 the
assembly of from about 1000 to about 4000 fully independent custom Bodes .

• 	 Each processor runs at about 200 Mhz clock. The processor merges the
functions of the control (T1000) and floating-point (JI000) processors of
APEmille on a single chip. It has its own data memory and program
memory. We still need to evaluate whether data and program memory
are independent banks (as in APEmille) or if they use the same physi
cal chips. In the latter case some form of instruction-cache is needed on
the processor. The basic floating point instruction is the complex nor
mal operation, so peak performance is 1.6 Gflops (double precision). As
already remarked, this requires a memory bandwidth of 3.2 Gbyte/sec
(R = 4). Memory size per node depends on the number of processors
(the total memory has to be larger than a minimum value, as discussed
in section 2), but is likely to be in the range 256 Mbyte - 1 Gbyte per
node. The actual choice may be heavily affected by cost factors. We are
studying the possibility to increase performance by factors 2 ... 4, by us
ing some form of vector processing, in which several normal operations
are performed concurrently. This is probably not too serious a challenge
for processor development. The real problem is the need to increase local
(and also remote) bandwidth by a corresponding factor .

• 	 The processor array will probably have between 8 x 8 x 16 = 1024 and
12 x 12 x 24 = 3456 nodes, depending on peak performance of each proces
sor. We assemble nodes 011 processing boards, similar to APEmille. r~ach

12

processor is more compact t.han in previous generations, and glue logic is
almost complet.ely absent..

One key technological advant.age of this implement.ation is compact.ness.
We expect to place fr011l 10 to 30 processors per board, interconnected
according to an appropriat.e topology. Select.ing t.he best topology is 311

optimization issue, t.o be discussed a.t. a lat.er st.age of the project.

• 	 The node (and the net.work) should support. not .only data transfers be
tween memory and regist,er (as available on APEIOO and APEmille), but
also register t.o register. This call be used t.o reduce bandwidt.h request.s
by splitting a complex computation on more nodes, each node using local
data as much as possible .

• 	 A host system analogous to the one used in APEmil1e is a possible choice
for the new machine. Based on networked Linux PC's and the CPCl bus,
it is mechanically compact and reliable. gach PC will be in charge of
several boards. The act.ual number of boards connected to each PC is
dictated by the bandwidth available on the PCI bus to move data fr01ll
APg to disk and vice-versa. For the sake of definiteness, assume a system
distributed on 100 boards, with a total bandwidth of 2 Gbytes/sec (that is
20 Mbytes/sec per board). In this case, up to 4 boards can be handled by
present generation CPCI CPU's. Higher performance PCI busses (double
size and/or double speed) may allow to increase the number of boards
connected to each PC. The host PC's will be networked with the most
appropriate technology available in due time.

• 	 We note that it is a relatively easy task to design the (fully self-contained)
processing node(s) in such a way that they can be connected to a standard
PCI desk-top PC. This possibility is very appealing for program debugging
and small scale application. We plan to pursue this design characteristic.

An important point in the global project is the availability of a common pro
gramming environment for the two types of machines. What we want is basically
one (or two) programming languages available on both implementations. It is
also highly desirable that programming tricks to increase performance have a
large degree of commonality between the two environments. We think that. this
target is not unrealistic as long as the well-tested SIMD/SPMD programming
style of APEIOO/ APEmille is adhered to. In practice, we can eitller extend a
TAOmille compiler to the PC syst.em or develop a (limited) C/C++ or Fortran
compiler for the custom machine (or, even better, perform both tasks).

13

5 Project Organization

This section describes a very sketchy part.it.ion of the project in individual t.asks.
A detailed task definition, a share of resp01lsibilit.ies and an identification of the
critical paths will be performed lat.er 011 (\ot.e that at this point in time, we are
discussing with several institut.ions t.he possibilit.y that t.hey join the project.).

In APEmiHe, an important. role in t.ht' coordination of the project has been
played by the existence of a complet.e a1ld det.a.iled model of the syst.em, based
on a VHDL description. We want. to use t.his approach also in the new project.
All collaborating institutions should maint.ain the VII DL-based simulat.ion en
vironment for both machine implementations. This virtual machine is the key
tool needed to allow all collaborators to:

• 	 understand and improve the global archit.ecture.

• 	 develop application programs and estimate performances.

• 	 debug (and cross debug) both the global architect.ure and specific element.s
of the machines.

Once the global architecture is roughly outlined and understood, specific
development tasks must be considered. At this point in time, we identify at
least the following broad areas of development:

L 	 Development of the signalling level of the communication network, and of
a basic transmission protocol.

2. 	 Development of the interface hardware between communication network
and PC-system.

3. Development of the custom processor.

4. Development of the interface hardware between the custom processor and
the communication network.

5. 	 Development of the board housing the custom processor.

6. 	 Development of the mechanics/power-supply/backjJlane/cooling-system as
sembly for the custom machine.

7. 	 Development of the mechanics for the PC-based machine.

8. 	 Development of the programming environment common to both machines.

14

6

O. 	 Development of the interface software between the custom processors. a.nd
the network of host PC's.

10. Development of soft.ware drivers and system level software for the PC's.

Project Timescale

We want to follow a fast project schedule. made possible by the logical simplicity
of the project and by the fact that a number of import.ant. components are either
similar to APEmille or readily available from commercial sources.

We define a development and protot.yping roadmap, divided ill three phases,
namely,

• 	 R&D phase. In this phase, the following tasks must be performed:

detailed analysis of the logical structure. of the machine (with em
phasis 011 the synchronization issues),

logical design of the network.

evaluation and test of the remote link technology.

At the end of this phase, the following items should be ready:

- a VIIDL simulation model of (at least a portioll of) the global ma
chine.

a simple programming environment to exercise the simulator wit.h
real life program kernels.

-	 a preliminary hardware design.

- one (or more) experimental test-benches to evaluate the best COIll

munication link. Some of these test benches are obviously going to
be PC based.

• 	 Prototype phase. In this phase, we develop and build prototypes of all
components of the system. At the end of this phase, we should have:

- The prototype mechanical/power supply system for the custom ma
chine.

A prototype host setup.

A prototype processing board.

A first iteration of the network processor, with interfaces both fOl'
the PC's and for the custom system.

15

7

A custom node version pluggable inside a PC.

A small PC-based machiue, using the network processors.

A reasonably complet.e software ellvironment. .

• 	 Early production phase. During t.his phase, final versions of the main
hardware component.s should be built. At. t.he end of this phase, we should
have both a large scale protot.ype syst.(:>IIl, coming close to the threshold of
1 TFlops peak performance and a rea.sonably large PC-based system (say,
128 PC's)

We estimate that each of t.he t.hree phases can be about one year long,
starting from late 1999. At the end of the year 2002, we could move to a
production stage in which one or more large systems are assembled.

Cost Estimates

Cost estimates are divided in development costs and production costs for t.he
early production phases. We also quote very preliminary forecasts for the costs
of a full scale production. All our figures do Hot cover basic costs, such as travel
expenses and the like .

• 	 Development Costs The bulk of costs here is associated with the de
velopment costs for V LSI components, printed circuits and mechanical
systems. Estimates are given in the following table (in Euro).

V LSI development 600K
Mechanics dev. 150K
Printed Circuits 200K
Grand Total 950K

Table 4: Preliminary estimate of development cost.s for the key elements of the
project .

• 	 Early production Costs In the following we collect estimates, based on
our experience with APEmille of the costs (in Euro) for the early produc
tion phase of a custom based machine, defined in the previous section,
with a limited amount of disk space.

ror the PC based system, we estimate a cost of 300 I{ EUTO, assuming
that the cost of one PC board (::: 2000Eu'ro) remains constant in time.

16

600 procs @ 200 Euro
300 Gbyte memory @ 1.5 Euro/MB
4 Crat.es @ 10000 Euro
50 Boards @ 5000 Eul'O
10 PC's @ 2500 Euro
2 Tbyt.e Disk ttl} 20KElIro

1201(
450K
40K

250K
25K
40K

Grand Tot.a.I 925K

Table 5: Preliminary estimates of costs for the key items of a large protot.ype
system using custom processors

• 	 Full Production Cost Forecasts For definiteness, we consider cost.s
for a system with 2000 nodes and 512 Mbytes memory per node. vVe
include about 50 PC's and 30 Tbytes of disk space. Costs are showll in
the following table (in Euro). The actual price break-up is of course very

2000 procs @ 100 Euro
1Tbyte memory @ 1 EUI'o/Mil
t6 Crates @ 10000 Euro
160 Boards @ 4000
50 PC's @ 2000 Euro
30 Tbyte Disk @ 15KEuro

200K
1000K

160K
640K
lOOK
450K

Grand Total 2.550 M

Table 6: Preliminary forecast of the production costs of a large system.
Such a system would deliver 2: 3.2T flops, leading to an estimate of ~
O.8Euro / Iv! flops.

approximate. Using the figures in the table the impact of memory on
global costs is very high. We remark however that prices for items like
memory and disks are very volatile. Accurate estimates will have to be
revised in due course. Considering that each processor has 1.6 Gflops top
performance, we arrive at a final cost estimate of ~ 0.8Euro/M flops.

The comparable figure for PC based systems (we assume that a 2 Gflops
PC node costs 2000 Euros) is of the order of 1 Euro/M flops. As already
remarked, the two technologies (in their respective optimal range of per
formance) have very similar price/performance figures.

17

8

,.

Conclusions

This document describes the physics motiva.tions and basic architecture of a lIext
generation LGT computer project. We t.hillk that. the well-tested SIMD /SPM D
architecture of the previous APE gellerat.ion is st.ill the best choice for a LGT
focused high performance engine. At t.IH.> ellgineering level, this architecture
can be best implemented in two different. ways, according to the size of the
target machine, using either high-densit.y simplified processors (for large scale
machines) or traditional off-the-shelf PC boards (for small scale machines). In
both cases, a dedicated (hence high performance and cheap) communication
network is needed. We plan to work heavily on the development of such a
network (largely common for both implementations) and to build both types of
machines.

References

[1] 	 N. Christ, "Proceedings of Lattice99", Nucl. Phys. 13 (Proc. Supp!.), ill press.

[2] 	 A. 13artololl1 et aL, IntI. Journal of High Speed Computing, 5 (1993) 637.

[3] 	 R. Tripiccione "APEmille", Parallel Computing, in press.

[4] 	 See for example: P. de F'orcrand, Nucl. Phys. 13 (Proc.Suppl.) 47 (l996) 228;
A. Frommer, Nucl. Phys. B (Proc.Suppl.) 53 (1997) 120; K ..Jansen, Nucl.
Phys. 13 (Proc.SuppI.) 53 (1997) 127, and references therein.

[5] 	 R. G. Edwards, 1. Horvath and A. D. Kennedy, Nucl. Phys. 8484 (L997)
375; B. Bunk, S; Elser, R. Frezzotti and K. Jansen, CERN preprint,
CERN-TH/98-127, hep-lat/9805026j K. Jallsen and C. Liu, Nucl. Phys. B
(Proc.Suppl.) 53 (1997) 974;

[6] 	 TAO Reference Manual, (E. Panizzi and V. Ghisalberti Eds.), 1994.

[7] 	 S. Aoki et aI., HEP-LAT /9903001.

[8] 	 II. Simma, "PC's for MultLTFlops LGT Compute Ellgines'?", Proceedings
of the Workshop PC-NETS, INFN/TC-99/09.

[9] 	 A. Bartoloni et al., Nucl. Phys. B (Proc. Suppl.) 63 (1998) 991.

18

