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Abstract

We discuss the prospectives of discovering a non-minimal supersymmetric Higgs boson at the next
linear collider (NLC). The analysis includes the leading logarithmic radiative corrections.

The cancellation of quadratic divergences in the unrenormalized Green functions is one of
the main motivations of supersymmetry (SUSY). It stabilizes any mass scale under radiative
corrections and thus allows the existence of different mass scales such as the electroweak scale
[©(10% GeV)] and the Planck scale [O(10* GeV)]. The minimal supersymmetric standard
model (MSSM) is the most popular model of this kind due to its minimal particle content. Here,
the Higgs sector contains only two electroweak doublets with all the self couplings determined
by SUSY. While this model, with the Higgs sector determined by only two input, is very
desirable from an experimental point of view, it faces various problems if one tries to unify the
SU(3)c x SU(2)1, x U(1)y in a single simple gauge group. The minimal versions of such grand
unified theories (GUT) [1] predict the existence of two color-triplets, which are members of
the same representations as the Higgs doublets. These color triplets mediate baryon number
violating processes. Therefore, their masses have to be of the order of the GUT-scale, MquT,
in order to satisfy the constraints coming from the lower limit of the proton lifetime [2]. A
doublet-triplet mass splitting of the order of Mgyt can be achieved through the coupling to
the adjoint representation that breaks the GUT gauge symmetry. However, a sever fine-tuning,
known as the p problem of minimal SUSY-GUT models [3], is required in order to keep the

mass of the doublets, u, at the electroweak scale while moving the Higgs triplets to the GUT
scale.

The dynamical generation of the p term is the most economical attempt to solve this
problem [4]. Here one eliminates the explicit Higgs mass term of the su‘perpotential by imposing
a Z3 symmetry. It is replaced by an electroweak singlet (the so-called “sliding singlet”) whose
vacuum expectation value (VEV) is not fixed, but can adjust itself such that it cancels the mass
of the doublets coming from the coupling to the VEV of the adjoint representation. Therefore,
it is natural in this model for g to be of the order of the SUSY breaking sclae, Msysy.

Note, that such an extension of the MSSM enters the renormalization group equations




(RGE) of the gauge couplings only at the two-loop level

da; a:
hati.d zﬁfVMSSM =ﬂiIMSSM + id 2.2 (1)

dt @r3 "

where a; = 6/5,2,0 for 2 = 1,2,3 and t is the logarithm of the squared energy scale [5]. Hence,
the successful unification of the gauge coupling constants of the MSSM [6] will not be modified
significantly.

The Higgs sector of this next-to-minimal supersymmetric model (NMSSM) described above
has been studied at tree-level in ref. 7-9. Radiative corrections have also recently been presented
using an effective potential formalism [10] and renormalization group techniques [11]. These
corrections are quite significant and we shall include them in our analysis using the latter
approach. Thus, we will begin with a brief review of the renormalization group technique used

to obtain the leading log corrections.

Let ®; and ®; denote two complex Y = 1, SU(2), doublet scalar fields and let N denote
a SU(2)LxU(1)y complex singlet. We introduce the notation

P, = H N=—1-(H°+iA°) (2)
U@ +iAd)/VE) va R

The most general scalar potential that is invariant under the transformation N — exp(i8)N,

@1‘1’2 — exp(—iﬂ)‘b;q’z and the SU(2), xU(1)y gauge symmetry is given by

Vg = 30(9181)2 + 10o(8182)2 + A3(3181)(8182) + Aa (21 22)(2)81)
(VN [52(3181) +92(2}8)] + 312 [(8182) N2 + he.| +y(N*N)?,

(3)
Ve= 24, [(8182)N + he - Jrds [N +hec)

Vi = m2,81@; + m2,818; + my N*N,
The SU(2);, x U(1l)y gauge symmetry is broken by a non-zero vacuum expectation value of

a Higgs doublet. The CP invariant and U(1)gy gauge symmetry preserving minimum of the

potential can be written as

0 T
“‘“‘%(m)’ <¢2>=-—k(:2), ™ ==, (4)

where the v; can be chosen to be real. The VEVs have been normalized so that m2, = % ga(v3 +



v2). In the NMSSM the coupling constants at scales equal or above Msysy are given by

M= N2+ ), y= s,

de =1} + D), v =2, )
A3 = ;(93 —62), v =A%,

A= - 143, Y12 = —Ak*.

Three of the ten degrees of freedom of the original Higgs fields are eaten by the W* and Z as a
result of the spontaneous breaking of the gauge symmetry. The remaining seven physical Higgs
particles are: three CP-even scalars, H; (1 = 1,2,3; with mpg, < mg, < my,), two CP-odd
scalar, 4; (¢ = 1,2), and a charged Higgs pair (H*). The mass parameters m11, m22 and my
can be eliminated by imposing the minimization conditions. The resulting charged Higgs mass
is

mi, = Asz/(sgeg) — %/\4'02 (6)

and the neutral mass matrices are

z/(sgc v 0 Y120
M = Ag /(spcg) )42 ),
v sgepgv/z Y120 KAz — Sacay12v

tgz -z —38v
M%Io =Ag | -z t;lz —cgv (7)
—sgv  —cgv  sgcgvl/z
z\lcgvz (Az + A4)3,3va2 vz(y1cg + %spylz)
+ (As + )«4)spc,3v2 )\gsgvz v:c(ygs,g + %Cﬁyn) s

vz(y1c8 + %Sﬁy]_z) vz(y2sg + %cﬁylg) 2yz? + %— [3,9c[;y12v2 — K,A,;:D]

where we have already eliminated the Goldstone modes. For convenience we have introduced

the following abbreviations

AE:ﬁﬁ_“z_’ (8)

v :v%-{»'v%, tg =tanf = vy /vy, (9)

and sg = sin 3, ¢g = cos 8. We now obtain thevmass eigenstates and eigenvalues by diagonaliz-
ing the mass matrices in eq. (7). The main difference of eq. (5) to the corresponding conditions

in the MSSM is the dependence of A4 on the a priori arbitrary parameter . As a result, the
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Fig. 1 The CP-odd and CP-even Higgs masses as a function of tan 3 for four choices of mpg+ and ¢ = v.
All the soft SUSY breaking mass parameters are equal to Mgysy and we take & = 0.63,\ = 0.87 and
m; = 150.

lightest Higgs mass or even its upper limit are undetermined, similar to the SM. However, if we
require that the theory remains perturbative up to Mgyt we can constrain the allowed region
in the A-x plane. It was demonstrated in ref. 7 that the RGEs possess an infrared fixed point
at (A, k) ~ (0.87,0.63). This yields an upper limit of mpg, < 150 GeV if we use the tree-level
relations in eq. (5). However, it has been shown that the SUSY Higgs sector acquires large
radiative corrections due to an incomplete cancellation of the top and stop contributions to the
Higgs self energies [12;11;10]. These corrections can easily be included at the leading log level
in eq. (7) by using the running couplings evaluated at the electroweak scale. This was discussed
in detail in ref. 13 in the case of the MSSM and generalized to the NMSSM in ref. 11. This
approach assumes that all soft SUSY breaking terms can effectively be parameterized by one
common scale, Mgysy. This might seem oversimplified, but note that the Higgs phenomenology
depends on ) already at tree-level. However, since the only constraints on A come from RGE
arguments it is quite unclear, whether the accuracy of the result can indeed be significantly

improved by a more precise treatment of the SUSY threshold effects.

In fig. 1 we present the allowed region of CP-odd and CP-even Higgs masses as a function
of tan 8 for m; = 150 GeV and four choices of mp+. We have varied 0 < kA« <1 TeV and we
have fixed Ay by eq. (6) and (8). In fig. 2 we present the allowed region of Higgs masses as a

function of mp+ for /v = 0.4,1. We have varied kA, and Ay, as described above.
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Fig. 2 The Higgs masses as a function of mp+ for tan8 = 1.5 and /v = 0.4 (left) and 1 (right). All the
soft SUSY breaking mass parameters are equal to Msysy and we take £ = 0.63, A = 0.87 and m; = 150.

The phenomenologically interesting H;ZZ and H;A;Z couplings (: = 1,2,3 and j = 1,2)
are obtained by diagonalizing the mass matrices in eq. (10) and expressing the interaction
Lagrangian in terms of the mass eigenstates [8]. With these trilinear vertices at hand we readily
obtain the Higgs production rates o(ete™ — H;Z) and o(ete™ — H;A;). The coupling of the
the charged Higgs boson to the Z boson is determined by gauge invariance and thus the rate
o(ete™ — HYH™) is model independent.

In fig. 3 we present the region in the mg+-mpgo plane where a deviation of the SM (SM) can
be detected. We assume, that the analysis requires 50 events at the NLC with a CM energy of
V8 = 500 GeV and a luminosity of 10 fb~1. We have varied 0.5 < tanB < 5,0 < kA <1TeV,
200 GeV < Msysy <1 TeV and 0.1 < z/v < 10. Ay is again fixed by eq. (6) and (8). Here
a (+) denotes the region where a deviation from the SM can de detected in all the sets of
parameters under consideration. A (—) denotes the region where no deviation from the SM
can de detected for any choice of parameters under consideration and (0) denotes the region
where a deviation from the SM depends on the choice of parameters. As a deviation of the SM
counts the detection of two neutral Higgs bosons or one charged Higgs boson or a deviation of
o(ete™ — H;Z) by more than two standard deviation from the SM Higgs production rate.

We see that we can always detect a CP-even Higgs boson. In addition, for mg: < 180 GeV
we can always detect a deviation of the SM via ete™ — H* H~. However, whether a deviation

from the SM can be observed for mys+ 2 180 GeV depends on the choice of SUSY parameter,
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Fig. 3 The region in the mg+-m H? plane where a deviation of the SM can be detected always, sometimes or

not be detected (denoted by +, 0, —, respectively). We take m; = 150 GeV and vary all the SUSY parameter
as described in the text

except for large values of the lightest CP-even Higgs boson, mpg, 2 130 GeV where a detection
of SMis impossible for any choice of parameters. This can be understood as follows: for large
values of mygs+ < 300 GeV the second Higgs doublet decouples and is out of kinematic reach
of a 500 GeV collider. In this scenario the only chance of detecting a SM is if a large mixing
of the light Higgs doublet with the Higgs singlet causes a significant reduction of the Higgs
production rate. Such a mixing will decrease the mass of the lightest Higgs boson.

In conclusion we can say that a non-minimal SUSY Higgs boson will be detected at NLC
if we assume that 50 events are sufficient for the analysis and if we require that the theory
remains perturbative up to Mgyr. Futhermore, there is a good chance of detecting a deviation
from the SM via direct production of more than one Higgs boson, or by measuring the Higgs

production rate.
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