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Abstract 

In this thesis physical processes are investigated which affect the proton beam size and lifetime in 
HERA. Among these are the effect of the nonlinear persistent-current field errors, the beam-beam 
interaction, and various multiple scattering processes. 
In the HERA proton ring persistent-current field errors may strongly limit the dynamic aperture at 
injection energy. Techniques of particle tracking and tracking data analysis are described, which allow 
to estimate and to correct the harmful effect of the measured multipole errors. Special emphasis is 
put on Lyapunov exponent methods and map tracking. 
An additional reduction of the dynamic aperture is observed if the betatron tune is harmonically 
modulated. A tune modulation is for instance caused by magnet power supply ripple. The magnitude 
of actual modulation amplitudes is estimated and existing theories of the impact of tune modulation 
on high-order resonances are further developed. Resonance parameters for a typical working point 
are evaluated by differential-algebra and normal-form procedures. Subsequently, amplitude-dependent 
emittance growth rates are derived for the HERA proton ring at injection energy. 
At 820 GeV, the beam-beam interaction limits the luminosity and the beam lifetime. The theory 
of tune modulation proposed can likewise be applied in the presence of beam-beam forces, for which 
the resonance parameters are calculated analytically. Again predictions of emittance growth rates are 
obtained. 
Furthermore, the emittance growth and the beam lifetime caused by multiple proton-electron scat­
tering and by residual gas scattering are estimated, the latter for several vacuum chamber geometries 
and including coupling. 
The importance of the different processes is compared, both at 40 Ge V and at 820 Ge V, and viewed in 
relation to other phenomena that may influence the beam emittance and lifetime, such as intra-beam 
scattering. 



Kurzfassung 
In dieser Arbeit werden physikalische Prozesse untersucht, die zu einer Beschr3.n.kung der Strahllebens­
dauer und zu einem Anwachsen der Strahl- oder Einteilchen-Emittanz im HERA-Protonen-Ring fiihren 
konnen. Zu dies en gehoren der Einflufi der nichtlinearen Feldfehler in den supraleitenden Magneten, 
die Strahl-Strahl-Wechselwirkung sowie verschledene Vielfachstreuprozesse. 
Feldfehler der supraleitenden Magnete bestimmen die dynamische Apertur bei Injektionsenergie. Die 
erwartete Apertur lifit sich mit Hilfe von speziellen Simulationsprogrammen ermitteln, die die Bahn 
eines einzelnen Teilchens im Speicherring iiber viele Umlaufe hinweg verfolgen. Ein Hauptproblem 
bei dieser Vorgehensweise ist der grofie Bedarf an Rechenzeit. Diese kann verkiirzt werden, entweder 
indem man das Modell des Beschleunigers vereinfacht oder indem man die Auswertung der Simula­
tionsdaten so verfeinert, daB aus dem Verhalten einer Trajektorie iiber eine kleine Zeitdauer bereits 
auf potentielle Instabiliat und spateren Teilchenverlust geschlossen werden kann. Zum ersten Ansatz 
gehort der Versuch, das Beschleuniger-Modell durch eine Taylor-Reihe zu ersetzen, zum zweiten die 
Ermittlung des Lyapunov-Exponenten, der ein MaB fUr die Chaotizitat einer Trajektorie darstellt. 
Eine harmonische Modulation der Betatronfrequenz fiihrt zu einer merklichen, zusatzlichen Verkleine­
rung der dynamischen Apertur. Frequenzanderungen dieser Art werden beispielsweise durch Strom­
schwankungen der Magnet-Netzgerate verursacht. Die Grofienordnung der zu erwartenden Modula­
tionsamplituden wird abgeschatzt und es wird eine Theorie vorgestellt, die den Einflufi von Frequenz­
Modulationen auf Resonanzen hoherer Ordnung quantitativ beschreibt. Diese Theorie wird auf den 
HERA-Protonen-Ring mit nichtlinearen Feldfehlem bei Injektionsenergie angewandt. Benotigt wer­
den hierzu bestimmte Parameter der Resonanzen hoher Ordung, die mit differentieller Algebra und 
Normalform-Transformationen ermittelt werden. Unter Verwendung der Resonanzparameter werden 
Emittanzanwachsraten als Funktion der Teilchenamplitude vorhergesagt. 
Wahrend des Luminositatsbetriebes bei einer Protonenenergie von 820 Ge V erweist sich die Strahl­
Strahl-Wechselwirkung als der dominierende Prozefi, der die Protonenstrahllebensdauer beschrinkt. 
Unter der plausiblen Annahme, daB auch hier eine harmonische Modulation der Betatronfrequenz den 
Effekt der reinen Strahl-Strahl-Wechselwirkung deutlich verstarkt, lifit sich dieselbe Theorie wie ftir 
die nichtlinearen Magnetfelder bei 40 Ge V anwenden. In diesem Fall werden die Resonanzparameter 
anaiytisch berechnet. Wiederum werden amplitudenabhangige Anwachsraten der Emittanz bestimmt. 
Des weiteren werden zwei Vielfachstreuprozesse naher untersucht, und zwar Coulomb-Streuung zwi­
schen Protonen und Elektronen und zwischen Protonen und dem Restgas. Die Restgasstreuung wird, 
ausgehend von einer Fokker-Planck-Gleichung, fUr verschiedene Vakuumkammergeometrien und unter 
Beriicksichtigung von Kopplung behandelt. Das entsprechende Protonen-Emittanzwachstum wird 
berechnet. 
Die verschledenen betrachteten Prozesse bei Injektionsenergie und bei Luminositatsbetrieb werden 
hinsichtlich ihrer Bedeutung miteinander und mit anderen Effekten verglichen, welche die Strahlgrofie 
und Strahllebensdauer beeinflussen. 
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List of Commonly Used Symbols 

position-independent transverse amplitude 
running average transverse amplitude 
fine structure constant or exponent in the diffusion coefficient 
or phase of the tune modulation 
horizontal or vertical acceptance 
normal-form transformation 
impact parameter 
magnetic field 
beta function 
velocity of light or parameter in the diffusion coefficient 
diffusion coefficient or dispersion function 
relative average amplitude error per turn 
computed from the first N turns 
total width of a resonance island 

diffusion rate in the chaotic region 

global emittance growth rate 

locally averaged emittance growth rate 

relative momentum deviation 
horizontal displacement of the beams at the interaction point 
total transverse emittance of a single trajectory (= Ez +Ez:) 

horizontal emittance of a single trajectory 
vertical emittance of a single trajectory 
beam emittance corresponding to 86% of the distribution (or to 20') 
relative energy deviation (= .dE/E) 
revolution frequency 
detuning term 
relativistic gamma factor (= E / ( moc2

)) 

driving term of a resonance or Planck's constant 
Hamiltonian 
action variable or electric current 
value of action variable at the resonance 
action variable 
subscript or integer in the resonance condition kQz + lQz: = p. 
ratio of modulation frequency Qm and island tune QI 
superscript or integer in the resonance condition kQz + lQ z: = p. 
Lyapunov exponent or separation constant 
truncated Taylor map 
superscript or integer in the resonance condition nQ = p. 



normalized Taylor map 
momentum or integer in the resonance condition kQ:r; + IQ% == p. 
angle variable, phase function of betatron oscillations 
amplitude of tune modulation or four-momentum transfer 
betatron tune 
island tune 
frequency of tune modulation in units of the revolution frequency !"'f!V 
shielding factor 

r aperture or transverse amplitude 
(f standard deviation of the beam distribution 

or longitudinal distance from the bunch center 
T temperature or coefficient in a Taylor expansion 
8 scattering angle or azimuth angle around the machine 
w relative width of the stochastic layer 
X horizontal coordinate 
x' horizontal angle 

e chromaticity 

e beam-beam tune shift 
y either horizontal or vertical coordinate 
y' either horizontal or vertical angle 
z vertical coordinate 
Zl vertical angle 

Poisson bracket operator 



Chapter 1 


Introduction 

1.1 Motivation 

The HERA proton ring at DESY in Hamburg is the second large superconducting storage ring 
that has come into operation. It was expected, and it has been partly verified in the first years 
of its operation, that the beam lifetime and performance of this storage ring will be limited 
by single particle nonlinear beam dynamics and not by collective effects. In this respect, two 
unique features distinguish HERA from all other operating colliders. 

Firstly, the persistent-current nonlinear field errors, the time-dependence of which proved to 
be harmful in the first superconducting accelerator, the Fermilab Tevatron, are potentially more 
dangerous for HERA due to the larger ratio of the maximum dipole field to the field at injection 
Bma.:I:/ Bin; which is about 20 as compared to 6 for the Tevatron. At the injection energy of 40 
GeV the relative size of the nonlinear field errors is significantly increased. In addition the size 
of the injected beam is also larger. Therefore the impact of the persistent-current induced field 
errors on the dynamic aperture was a question of considerable concern. 

Consequently, strong effort has been devoted to detailed magnet measurements [1], a ded­
icated local correction scheme [2], comprehensive simulation studies [3, 4], a reference magnet 
system allowing a permanent control of the time dependence of the dipole and sextupole field 
errors, and to the invention of special magnet 'massage' cycles to achieve reproducibility. Fol­
lowing this recipe it has proved possible to inject a proton beam into HERA with a reasonable 
lifetime of about ten hours [5]. Nevertheless there is evidence for a dynamic aperture limitation 
inside the physical aperture. 

Secondly, HERA is the first collider in which two beams with different particles and not 
necessarily equal beam sizes are stored in two separated rings and brought into collision. Pre­
liminary experience suggests that the forces induced by the electron beam may strongly affect 
the proton beam lifetime [6]. 

In this thesis several aspects of amplitude growth resulting from nonlinear dynamics, i. e. 
from the persistent-current field errors and from the beam-beam interaction, are discussed, with 
special emphasis on the effect of an additional external tune modulation. 

A second class of processes causing amplitude growth are multiple scattering phenomena. 
The protons suffer small angle Coulomb scattering by atoms of the residual gas, by electrons of 
the opposite bunch and by other protons in the same bunch. The first two effects are analysed 
in detail, partly stimulated by the suspicion that multiple proton-gas scattering might have 
been the origin of an unexplained lifetime limitation in spring 1991. 
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1.2 Outline 

The structure of this thesis is as follows. 
Chapter 2 is concerned with new tracking methods and tracking data analysis. The tech­

niques described are employed in the evaluation of the dynamic aperture of the HERA proton 

nng. 
In chapter 3, a theory of the effect of tune modulation in a nonlinear Hamiltonian system 

is developed. A criterion for the onset of chaos is derived in terms of island tune, resonance 
order, modulation amplitude and modulation frequency. The relative harmfulness of different 
modulation frequencies on the beam dynamics is quantified by a sensitivity function r which 
measures the chaotic fraction of phase space. Moreover, an approximate expression for the 
amplitude growth rate caused by tune modulation is presented. The theory outlined can be 
applied to analyse the effect of the persistent-current field errors as well as the beam-beam 
interaction. 

In chapter 4, the frequency-dependent tune-modulation amplitudes due to power supply 
ripple are estimated both at 40 GeV and at 820 GeV. 

The dynamic aperture of the HERA proton ring at injection energy is calculated in chap­
ter 5, from a simulation of particle motion taking into account the multipole contents of each 
individual magnet. The inclusion of tune modulation leads to a further reduction of the ac­
ceptance. To understand the effect of tune modulation quantitatively, the island parameters of 
high-order resonances are extracted for three typical working points, making use of differential 
algebra and normal-form methods. Subsequently, the chaotic fraction of phase space and the 
expected amplitude growth rates are evaluated. The analytically predicted dynamic acceptance 
is in quantitive agreement with the tracking results. Its value and the calculated transverse 
diffusion rates can be compared with the acceptance and the diffusion coefficient measured in 
the proton ring. 

In chapter 6, the influence of tune modulation on the beam-beam interaction is discussed. 
Again the general theory, as developed in chapter 3, provides an estimate for the diffusion rate, 
which is strongly dependent on the resonance order. 

Chapter 7 addresses another aspect of the beam-beam interaction in HERA. The amplitude 
growth due to multiple proton-electron scattering is calculated to determine if this effect is 
important and should be taken into account in simulation studies of the beam-beam interaction. 

Stimulated by the lifetime limitation observed in the first commissioning run of the proton 
ring the effect of residual gas scattering is analysed in detail in chapter 8. The lifetime caused by 
multiple gas scattering is deduced for several operating and boundary conditions starting from 
a Fokker-Planck equation. It is compared with the beam loss rate due to nuclear interactions. 

In chapter 9, the amplitude growth rates for the different processes under investigation are 
compared and viewed in relation to other phenomena that affect the beam size and lifetime, 
such as intra-beam scattering. 

Finally the'results are summarized and some conclusions are drawn in chapter 10. 
In appendix A, an overview is presented of differential algebra and differential-algebra based 

normal-form algorithms. Both mathematical~ tools considerably facilitate the postprocessing 
analysis of tracking results, provide a substantial increase in computing speed and, even more 
important, permit an analytical treatment of the beam dynamics as a supplement to numerical 
multi-turn-tracking. 
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Chapter 2 

Particle Tracking Methods 

2.1 Introduction 

The dynamic aperture is defined as the border in phase space inside which particle motion is 
stable for a sufficiently large number of turns around the storage ring. For superconducting 
hadron colliders the aperture can be strongly limited at injection energy due to the field errors 
caused by persistent currents in the magnets. In HERA the minimum time needed to inject 210 
bunches is about 20 minutes, corresponding to 6 . 107 turns. Tracking studies with the present 
computer systems fall short of this number of revolutions by almost a factor 100. There are 
two possible approaches to overcome this problem: 

• 	 The tracking data for a smaller number of turns are analysed in such a way as to detect 
potentially unstable trajectories, which may result in a particle loss after a much longer 
time period. A promising approach of this category is based on a calculation of Lyapunov 
exponents and the determination of the border between regular and chaotic motion, which 
can be viewed as a good estimate value for the actual dynamic acceptance. Here 103 -104 

turns are usually sufficient to yield fairly accurate results. 

• 	 The employed model of the accelerator is simplified. For instance the complete storage 
ring can be replaced by a Taylor map representation [11]. Such a Taylor map can easily be 
extracted from a standard tracking code with the methods of differential algebra [12]. In 
order to avoid artificial emittance growth in the simulation [13], the Taylor map must' be 
modified by some symplectification scheme, for instance by performing a kick factorization 
[14]. Following this approach a gain in computational speed by a factor 10-20 is possible. 
It is evident that the Taylor map tracking can also be analysed with respect to chaotic 
motion, thereby further reducing the required computing time. 

In the following the two approaches are discussed in more detail. 

2.2 Lyapunov Exponent 

A sensitive measure of local instabilities in phase space is the Lyapunov exponent which char­
acterizes the rate of divergence of initially close trajectories. For regular motion the distance d 
in phase space between two tracks grows linearly with the number of turns N, when averaged 
over long periods of time 

d(N) <X N. 
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Chaotic motion is characterized by an exponential growth of this distance 

d( N) <X eAN 
, 

where .A is called Lyapunov exponent (see for instance [17]). Its formal definition reads 

lim lim ~ In d(N) . (2.1) 
N-oo d(O)-O N d(O) 

and is independent of the measure of d, i. e. the value of .A does not depend on the choice of 
metric for the phase space [8]. It should be noted that the Lyapunov exponent .A is zero for a 
regular trajectory. 

A general particle trajectory is described by the six canonical coordinates z,pz,z,p:z;,u,1} 
[7]. Here z and z are the horizontal and vertical displacement from the design orbit, U is 
the longitudinal distance from the bunch center and 1} the relative energy deviation. The 
canonically conjugate momenta to z and z are denoted by pz and pz.. In linear approximation 
the six-dimensional phase space coordinates after N turns are related to the initial values 
through the N-turn Jacobian matrix IN, 

J - 8(z,z,u,Pz,P:z;,1})N (2.2)
N = 8(z, z, U,Pz,P:z;, 1})o . 

The limit of vanishing initial distance d(O) -+ 0 in (2.1) can be performed exactly [8], leading 
to an alternative expression in which the Lyapunov exponent is given in terms of the largest 
eigenvalue EVN,max of the Jacobian matrix IN: 

(2.3) 


The modulus of the largest eigenvalue EVN,max shows the same behavior as a function of N as 
the distance d(N). That means, for a regular trajectory a linear increase with the number of 
turns is observed, and for chaotic motion the eigenvalue increases exponentially. 

At this point it is appropriate to review some basic concepts of accelerator physics [9, 10]. 
The equations of motion can be solved exactly for a model of the storage ring consisting only 
of dipoles, quadrupoles and drift spaces, hereafter referred to as 'linear storage ring'. Without 
coupling between the three planes of motion a particle performs a betatron oscillation of the 
form 

(2.4) 


where y denotes either the horizontal or the vertical displacement with respect to the reference 
orbit and the coordinate s is the path length along that orbit. The linear storage ring is 
completely characterized by the beta function Py(s), which is a periodic function 

(2.5) 


C being the circumference of the ring. This function does not only describe the s-periodic part 
of the oscillation amplitude in (2.4), but it also determines the derivative of the phase function 
</>y(s) 

d¢y(s) __I_ 
(2.6)

ds - {3y(s)" 
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Hence the number of betatron oscillations per turn, called Q-value or tune, is given by 

(2.7) 


One of the two constants of integration fy and <Pyo in (2.4), namely the initial phase <pyO, is of 
no particular importance. The second, fy, describes the s-independent part of the oscillation 
amplitude. At a fixed value of s the particle trajectory is restricted to an ellipse in the y_py_ 
plane, whose area F is related to fy by 

(2.8) 

The quantity fy is called single-particle emittance and is quoted in units of mm mrad. 
In a linear storage ring the single-particle emittance fy defined by (2.4) or (2.8) is a constant 

of motion. The real storage ring is not linear and the actual particle trajectories deviate from 
the solution (2.4). Nevertheless, because this deviation is small over short periods of time, it is 
still a fruitful concept to use the linear solution as a parametrization in the tracking analysis. 
In the presence of nonlinearities, fy calculated according to (2.4) does not stay constant, but 
can increase (or decrease) slowly as a function of time. Because the divergence from the linear 
solution depends strongly on the starting value of fy itself, the particles inside a bunch will 
suffer different changes of f y • In general, the increase of the average value of fy over the beam 
distribution differs strongly from the increase experienced by a particle, say, at one or at two 
standard deviations. 

The emittance fy of a single trajectory, used throughout this thesis, is defined by (2.4) 
and should be understood simply as a measure of the squared horizontal or vertical oscillation 
amplitude normalized such as to be independent of the position around the ring. Very often 
we will quote the sum f = fz + f,:, called the total transverse emittance. 

Occasionally also the two-sigma beam emittance is referred to, which is the emittance of a 
particle trajectory enclosing 86% of the beam in phase space. The two-sigma beam emittance 
will be denoted by the symbol € and is to be distinguished from the single-particle emittance f 
defined before, which refers to an arbitrary trajectory. 

In the case of a linear storage ring the difference of the phase <py between two nearby 
trajectories as a function of the number of turns is a constant, because the local phase advance 
is given by 1/{3y( s) for all particles. In a nonlinear system the phase advance depends on the 
amplitude, and the phase distance l<Py,l - <py,21 grows at least linearly in time. 

The use of the Lyapunov method in the postprocessing analysis of tracking data rests on 
the following observations and hypotheses: 

1. 	The divergence between two particles, as observed in cartesian coordinates, is mainly an 
information on the phase distance and not on the amplitude evclution. It is therefore 
advantageous to consider only the phase separation (l Ly=z,z(<py, 1 - <py, 2)2)! , respectively 
its three-dimensional generalization, instead of the strongly oscillating cartesian distance 
between two trajectories. 

2. The eigenvalue behavior and the phase divergence are almost identical (Fig. 2.1 a, band 
2.2 a, b). This implies that two-particle-tracking already gives very accurate results and 
that a sufficiently small initial distance had been chosen, the limitation in this quantity 
being given by rounding errors. 
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3. 	Considerable improvement can be achieved by investigating the phase distance in a suit­
ably 'normalized' coordinate frame, in which all phase space deformations up to a specific 
order have been removed. For regular motion the distance between two particles in the 
normalized coordinates evolves almost free of any disturbing oscillations (Fig. 2.1 b, c), 
whereas for strongly chaotic trajectories the transformation to new coordinates has virtu­
ally no effect (Fig. 2.2 b, c). The increased sensitivity for detecting barely chaotic particles 

by 	this method is documented in Fig. 2.3. 

4. 	Particles with positive Lyapunov exponents experience an emittance growth on a longer 
time scale. Hence an exponential phase separation indicates a long-term amplitude in­
crease and possible final particle loss. This is the main reason for the use of Lyapunov 
exponents in tracking studies and has been confirmed for all cases under consideration. 

An example is shown in Fig. 2.4. 

2.3 Map Tracking 

2.3.1 Tracking with Truncated Taylor Maps 

Truncated Taylor maps, which expand the change in the phase space coordinates during one 
turn around the accelerator in terms of the initial coordinates, provide a promising alternative 
to element-by-element tracking, hereafter also called direct tracking. A Taylor map represen­
tation of a storage ring is obtained from a conventional tracking code by use of an automatic 
differentiation technique named 'differential algebra' or, briefly, 'DA' [12] (see appendix A). 
The purpose of map tracking is to increase the computing speed by a significant factor and to 
access turn numbers which are beyond the capacity of direct tracking. The applicability of map 
tracking is determined by two conditions. The order of the Taylor map has to be high enough 
to reproduce the correct dynamic aperture. Simultaneously it has to be so small that the map 
tracking is still faster than direct tracking. For HERA, a 12th order map requires about the 
same amount of computing time as direct tracking. 

Let us assume that a Taylor map description of the following form has been extracted from 
a conventional tracking code like SIXTRACK [19] 

(2.9) 


where the subscripts j or k denote the components of the phase space coordinate vector v= 
(x, Z, (7', Pz, Pz, .,,) and the superscripts i or f refer to the initial and final coordinates, respectively. 

For the comparison of map tracking and direct tracking it is useful to introduce the notion 
of a normalized transverse amplitude azz . This is defined in the following way. We construct a 
linear transformation A 2 , which brings the linear part of the map M (2.9) into a particularly 
simple form [23]. The transformation is written as 

M -	 = A2MA2-1 , (2.10) 

where the new map has been called M. In the 'hansformed coordinate frame the Taylor expan­
sion reads 

-J 	_ T-1 -i T-2 -i -i - M- (::-i)
Vj 	- jkVk + jklk2 vkl vk2 + ... = j • (2.11)v 

The linear part jl of the transformed map is a rotation in each plane of motion 

(2.12) 
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where (Y,py) denotes t~e position and momentum in either one of the three degrees of free­
dom. In the ne,! coordinate frame the motion is linearly decoupled. Furthermore the linear 
transformation Tl is independent of the beta function. If we define a horizontal and a vertical 
amplitude a:r:,z by 

and (2.13) 
the total transverse amplitude a:r:z is given by 

(2.14) 

For an ideal accelerator without linear coupling between the three degrees of freedom the 
transverse amplitude can be written in terms of the transverse emittance as 

(without linear coupling). (2.15) 

A convenient measure for the deviation between direct tracking and map tracking is the 
average relative amplitude error per turn (5a:r:z/ a:r:z)N. Denoting the average value over the 
first N turns by brackets '< ... >N', also called running average value in the following, the 
average relative amplitude error per turn computed from N turns is defined by 

C) < map > < di,.. >oa:r:z = a:r:z N -. a:r:z N
( (2.16)

a:r:z N N < a:,:' >N 

Here the superscripts map and dire refer to map tracking and direct tracking, respectively. 
Usually, the right hand side approaches a constant value after a few thousand turns. Only at 
very large amplitudes the relative amplitude error is not well defined, because the amplitude 
deviation increases rapidly and nonlinearly with the number of turns, so that the right hand 
side of (2.16) does not converge as a function of turn number N. 

In Fig. 2.5 the absolute value of the relative error (5a:r:z/a:r:z)N is depicted for tracking with a 
7th and an 11th order map in the case of HERA and for tracking with an 11th order map of the 
proposed Large Hadron Collider LHC [24]. The much better agreement between map tracking 
and direct tracking for HERA is clearly visible. The dynamic aperture of the LHC is at about 
a:r:z; ~ 0.772 mml mradl for an initial relative momentum deviation fl.p/p = 10-3 - 77% of 
the bucket height - and that of HERA is close to a:r:z ~ 1.3 mml mradl for a momentum 
deviation fl.p/p = 3.5.10-4 

- about 50% of the bucket height for the design radio frequency 
voltage of 26.4 kV. Comparing the relative amplitude error per turn at the respective dynamic 
aperture limit, a 7th order Taylor map gives a ten times smaller error for HERA than an 11th 
order map for the LHC. 

A short digression on some parameters of HERA and the LH C can explain the significant 
difference in the applicability of map tracking. A set of parameters for both accelerators is 
listed in Table 2.1. The injection energy for the LHO of 450 GeV is 11 times higher than that 
of HERA and, provided the performance of the preaccelerators is similar, the beam emittance 
is smaller by about the same factor. Most importantly, made possible by the smaller beam size 
the inner diameter of the superconducting magnet coils is reduced by a factor two third for the 
LHC. 
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IParameter HERA LHC 

15 mm mrad15 mm mradNormalized Emittance fN = if (20-) 
0.03 mm mrad004 mm mradUnnormalized Emittance f (20-) 

450 GeV 40 GeVInjection Energy 
167 m 76 mMaximal Beta in the Arc 

22495Number of FODO Cells 
50mm75mmCoil Diameter in sc. Magnets 

1.3. 10 ·37 . 10-4Bucket Height (6.p)/p 

Table 2.1: Comparison of parameters for HERA and the model of the LHC. 

HERA and LHC Multipole Errors 

Dipole Quadrupole 
Magnets Magnets 

HERA LHC HERA 
coefficient average sigma average sigma average sigma 

Normal Components 
b3 -32 3.2 -20.9 10.6 0.02 0.17 

b" 0.09 0.36 0.8 2.3 0.05 0.09 
bs 12 1.04 18 8.6 0.02 0.08 
b6 -0.1 0.34 - - -204 0.2 
b7 -2.0 0.53 34 4.9 0.02 0.05 
bs 0.14 0041 - - -0.17* 0.45* 
b9 0.44 0.48 52 7.6 0.30* 0.88* 
b10 -0.13 0.53 - - 3.04* 0.89* 

Skew Components 
a3 -0.36 0.71 - - 0.05 0.18 
a4 0.86 1.25 - - -0.01 0.13 
as 0.23 0.66 - - -0.02 0.13 
a6 -0.70 0.56 - - -0.02 0.15 
a7 -0.20 0.54 - - 0.01 0.06 
as 0.24 0.39 - - -0.56* 0.53* 
a9 0.10 0.67 - - -0046* 0.50* 
a10 -0.26 0.50 - - 0.26* 0.72* 

Table 2.2: Normal and skew multipole components for the superconducting magnets in the 
models of HERA [25] and the LHC [24]. All niultipole values are quoted for a radius ro = 25 
mm in units of 10-" relative to the main dipole field Bo. In the model of the LHC no field 
errors in the quadrupoles and no skew components in the dipole magnets have been taken into 
account. * Due to a faulty database the multipole coefficients of order 8 to 10 for the quadrupole 
magnets in this model of HERA are a factor 10 larger than the actually measured values. 
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Table 2.2 shows the average value and the rms-deviation of the multipole coefficients for 
the superconducting magnets in HERA and in the model of the LHe. The skew and normal 
multipole components an and bn , quoted in Table 2.2, are defined by the complex equation 

Bz + iBa: = Bo L
00 

(bn + ian )(x iz )n-l /r~n-l), (2.17) 
n=l 

where Eo is the main dipole field and ro is a reference radius. 
Because of the smaller magnet and coil dimensions the multipole coefficients for the LHe 

are much larger than for HERA. The unlike size of the nonlinear field errors is reflected in the 
average magnitude of the Taylor map coefficients. As an illustration the absolute values of the 
Taylor map coefficients averaged over all coefficients of the same order n are plotted versus the 
order n in Fig. 2.6, both for HERA and for the LHe. They differ by about a factor 10000 for the 
high-order terms which explains the different accuracy of map tracking in Fig. 2.5. Moreover, 
the Taylor map coefficients reflect the build-up of nonlinear field errors around the storage 
ring. A general 2n-pole contributes primarily to the coefficients of order (n - 1) in the Taylor 
map. For example, the uncompensated systematic 20-pole component of the superconducting 
HERA quadrupoles gives rise to a sharp peak value for the Taylor map coefficients of 9th order. 
Because multipole errors beyond 20-poles are not used in the simulation, all coefficients of order 
higher than nine are solely due to an interference between lower order multipoles. Therefore 
the magnitude of these coefficients decreases rapidly. 

If one wants to use Taylor maps for multi-turn tracking studies, the long-term evolution of 
the transverse amplitude is an important question to be addressed. Fig. 2.7 presents a typical 
behavior close to the dynamic aperture in HERA for three different orders (7, 9 and 11) of the 
Taylor map and an initial relative momentum deviation of 3.5 . 10-4 

• Depicted is the running 
average amplitude < a:u >N= ~ I:~1 aa:z(i), for which the extant amplitude oscillations tend 
towards zero, as a function of turn number N. The map tracking amplitude deviates from the 
direct tracking amplitude, which is constant over this number of turns, in a linear and regular 
way. Depending on the chosen order of the map, one finds both regular decreases and growths. 
Increasing the order of the map by two units, reduces the deviation by a factor of about eight. 
The reason for the deviation is that a truncated Taylor map is in general not symplectic. 

Denoting the Jacobian matrix of the map M (2.9) by J, 

8Mj{iJi) 
(2.18)

8111 

the map M is symplectic, if and only if the condition 

(2.19) 

holds for ~y set of initial coordinates Vi. The 6x6 matrix S is defined by 

(2.20) 


where I denotes the 3x3 unit matrix. 
In general, because the map M and its Jacobian matrix are polynomial expressions, the 

symplecticity condition cannot be fulfilled everywhere in phase space. 
It can be shown [20] that symplecticity is a necessary and sufficient condition for a trans­

formation to be canonical. Therefore truncated Taylor maps are not canonical and do in 
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particular not conserve the volume in phase space. As a result tracking with these maps leads 
to the artificial emittance growth or decrease observed in Fig. 2.7. 

It should be emphasized that despite of its manifest non-symplecticity a truncated Taylor 
map may contain an almost exact description of the resonance parameters and of the amplitude­
dependent tunes (see chapter 5). 

2.3.2 Irwin Factorization 

In this section we describe a promising scheme to 'symplectify' a truncated Taylor map. The 
aim is to modify the Taylor map in such a way that is still agrees with the direct tracking over 
a few turns, but does not show the artificial emittance growth due to the truncation. A Taylor 
map if (2.11) can be transformed into the following form [20] 

(2.21) 


where R is a rotation and the In are homogeneous polynomials of order n in i and j. The 
colon represents the Poisson bracket operator, which is defined by 

818g 818g
: I: 9 =[/,g] - 8i8j- 8j8i 

for two arbitrary functions I and 9 of the phase space variables [20]. Here the derivatives 
8/8i and 8/8j denote the nabla operators V z and Vp. The polynomials In can be chosen 
in such a way, that the expression (2.21) agrees with the original Taylor map up to order 
(no-I). This representation, called Dragt-Finn factorization [20], is exactly symplectic, because 
it is formulated in terms of Lie generators. If applied to an initial coordinate the Dragt­
Finn factorization generally gives rise to an infinite series, which means that it cannot be 
evaluated exactly. To bypass this problem another factorization has been suggested by Irwin 
[14]. Equation (2.21) is rewritten as 

(2.22) 


where the e:g
,,: are 'kicks', for which the exponential series terminates after the second term, 

(2.23) 

(2.24) 

In other words, all multiple Poisson brackets in (2.23) and (2.24) vanish. The expression on 
the right hand side of (2.22) is called kick factori~ation or Irwin factorization. Also the 'kick 
map' (2.22) agrees with the Taylor map if up to order (no - 1). In a six-dimensional kick 
factorization the k-th Irwin polynomial gk is defined by 

(2.25) 


where Zk, Yk and Zk have the form 

(2.26) 
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Figure 2.7: Evolution of the transverse amplitude as a function of turn number N for an initial 

amplitude close to the dynamic aperture of HERA using Taylor map tracking of various order. Shown 
is the running average amplitude < a:cz; >N= k L:f!:1 a:cz;(i) in mmt mradt, computed from the first 
N turns. In direct tracking the amplitude is perfectly constant, while with map tracking the amplitude 
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on the order of the used map. Despite of this divergence, the Taylor maps of order 7-11 and the direct 

~ 

tracking predict the same amplitude threshold of chaos, computed from 20000 turns by the Lyapunov 
exponent method (compare Table 2.3). 
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Here, exceptionally, 'y' denotes the vertical and 'z' the longitudinal plane of motion. For three 
degrees of freedom, that is for the description of coupled synchro-betatron :notion, the minimum 
number of kicks K required to ensure agreement with the Taylor map M of order (no - 1) is 
given by 

(2.27) 

The angles Ozle, OJ/Ie, Ozle can be chosen either by a special algorithm [14] or by a random 
number generator [21]. In general some freedom is left for the choice of the kick strengths 
f3i,n,rn to reproduce a specific monomial in the original map. The Irwin scheme uses Lagrange 
multipliers to minimize the quantity EIe=l,K(f3trn,n)2. Thereby the Irwin polynomials become 
uniquely defined. To avoid an accidentally large kick strength due to an unlucky choice of 
rotation angles, it is advisable not to work with the minimum number of kicks. 

In the Irwin factorization the original DA map is cast into a form which is identical to 
the original map in the low order terms, which is symplectic and which can be evaluated 
exactly. The only potential problem, inherent in every factorization scheme, is the introduction 
of spurious high-order terms: The evaluation of the Irwin factorization gives rise to new terms 
up to order (no - 1)K, which may be widely different from the equivalent terms in the element­
by-element tracking. 

Thus an application of the Irwin factorization relies on two premises. Firstly, the high-order 
terms in the direct tracking must have no infiuence on the dynamic aperture, because they are 
not represented in the Taylor map. This requirement has to be satisfied by any scheme that 
involves a truncated Taylor map. Secondly, the nonlinear kicks, which are determined such as 
to yield the correct low order terms, cause high-order nonlinearities, which likewise must not 
change the dynamic aperture. One might suspect that the second requirement is much more 
difficult to guarantee than the first one, in view of the fact that the Irwin scheme replaces an 
accelerator model containing very many, say 1000, multipole kicks by a new model with only 
80 nonlinear kicks. 

A seventh order six-dimensional Irwin factorization 1, consisting of 80 kicks (the minimum 
number is 48), is a factor of two faster than direct tracking for HERA. Therefore this is the 
highest order for which a six-dimensional kick factorization is useful concerning speed. 

In Figure 2.7 the amplitude behavior close to the dynamic aperture in HERA was shown, 
that was obtained by tracking with truncated Taylor maps of various orders. Fig. 2.8 presents 
the result of the Irwin scheme for the same starting coordinates. The tracking is now perfectly 
symplectic; which is reflected by the constant average amplitude. However, the oscillation 
frequency perceptible in the running average amplitude as a function of turn number differs 
from the corresponding frequency in the direct tracking. The difference can be ascribed to the 
spurious high-order terms. 

It is important to note here that a dependence on the longitudinal coordinate exists only in 
the accelerating sections, which are described by a single cavity in the model of HERA. Hence, 
if the tracking through this cavity is performed separately at the end of each turn, the number 
of independent variables can be reduced from six to five. This provides the possibility of a four­
dimensional kick factorization with momentum-dependent coefficients [22], which hereafter is 

ITo avoid confusion the specified order always refers to the equivalent map and not to the order of the Lie 
generators, which is higher by one. 
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called (4+1)-dimensional. In analogy to (2.25) the k-th Irwin polynomial is written as 

9k = :E f3!,m( '7)x~y;;, (2.28) 
l+m~no 

where now the coefficients f3~m are of the form 

f3"m() a',m + f3 m + a',m 2 +
k '7 = I-'k,o k,l '7 I-'k,2 '7 ... (2.29)"

The f3~,'; are determined for each order of '7 exactly as in a 4-dimensional problem. The 
expansion in '7 need not necessarily be performed to the order no of the transverse factorization 
and may even change for different values of (1 + m) [22]. It can be expected that a cubic 
expansion in '7 is usually sufficient. Not included in the Irwin polynomials 9k such obtained is 
the purely '7-dependent part, which affects only the transformation of q. This term has to be 
extracted from the Taylor map directly. 

The minimum number of kicks required by a 4-dimensional factorization of order (no - 1) is 

(no + 2)2 /4 }'f { } . no/2 .K (2.30)= { (no +3)(no + 1)/4 ' I (no + 1)/2 IS an Integer. 

and thus only 49 kicks are needed for a (4+1 )-dimensional kick factorization of 11th order as 
compared with 48 kicks for a full 6-dimensional factorization of 7th order. A significant reduc­
tion of computing time is therefore to be expected, but the (4+1 )-dimensional kick factorization 
has not yet been implemented. 

2.3.3 Reliability and Computing Time 

Map tracking for HERA is reliable even for maps of order as low as seven. Analysis of the 
Lyapunov exponent over 20000 turns yields the same onset of chaos for direct tracking and 
map tracking of orders 7, 9 and 11 without symplectification. If one considers the first 50000 
turns, the 7th order map starts to fail and predicts a dynamic aperture which is too low 
by about 10 %. As far as the short-term particle loss is concerned, a fairly large spread 
of values is observed with the different tracking schemes. This is not surprising, because at 
larger amplitudes the deviation between map tracking and direct tracking becomes stronger and 
nonlinear as a function of the turn number. The amplitude thresholds for the onset of chaos 
and for the short term particle loss predicted by Taylor maps of various order are summarized 
in Table 2.3. 

Table 2.4 shows the computing time required to track 20000 turns in HERA and indicates 
that the use of Taylor maps can increase the tracking speed by a factor 10-25. Included in 
the table is the possibility to treat the cavity separately at the end of each turn. This option, 
denoted by '6x5', increases the speed by about a factor of two for pure map tracking. In 
addition it permits the (4+1 )-dimensional kick factorization discussed above. An estimate of 
the computing time for this refined factorization can be obtained by a simple scaling law. In first 
approximation the computing time is proportional to the number of kicks and to the number 
of monomials in each Irwin polynomial. The la\ter is (no 4+1 + 1) and (no6 +1)(no6 + 2)/2 for 
the four- and for the six-dimensional factorization, respectively. Considering (2.27) and (2.30), 
we then expect 2 

(2.31) 

2Note that (2.31) underestimates the actual computing time, because neither the transformation of (1' nor 
the individual terms in J3',:m ('1), corresponding to different powers of '1, are taken into account. 

20 



method onset of chaos 
for 20 000 turns 

onset of chaos 
for 50 000 turns 

particle loss before 
20000 turns 

Direct Tracking 2.22 
11th Order Taylor Map 1.34 1.86 
9th Order Taylor Map 1.34 1.86 
7th Order Taylor Map 1.19 3.73 
7th Order Kick Factorization 1.34 2.80 

Table 2.3: Onset of chaos and 'short-term' particle loss predicted by the different tracking schemes 
for HERA; quoted are normalized amplitudes in units of mm! mrad!. The amplitude threshold of 
chaos is reproduced very accurately in all cases, except for the 7th order map tracking over 50 000 

turns. A large spread of values is, however, observed for the amplitude, at which a particle loss occurs 
in less than 20 000 turns. 

campwhere r denotes the computing time and (no - 1) the order of the equivalent map. Ac­
cording to this rule of thumb the (4+1 )-dimensional scheme is faster than the 6-dimensional 
factorization by a factor 10 for 7th order and by a factor 18 for 11th order. 

In view of Table 2.4, the kick factorization appears a promising alternative to pure map 
tracking. For studies of the LHe, a symplectification of the Taylor map is unavoidable and the 
Irwin scheme is even more attractive than for HERA [13, 15, 16]. 

An estimate of the dynamic aperture is provided by the Lyapunov-exponent method, which 
requires tracking over 10000 or 20000 turns (see section 2.2). Since the Lyapunov exponent of a 
trajectory in HERA can be obtained by a 7th order Taylor map, for this particular application 
the tracking speed can be increased by a factor 25. 

The reduction of computing time for map tracking facilitates scans in parameter values and 
allows detailed studies on the effect of tune modulation. Two comments may help to clarify 
these possibilities: 

Firstly, the effect of tune modulation due to a periodic ripple of the quadrupole strengths 
could, in principle, be simulated by using several Taylor maps in the map tracking, where each 
map were calculated for a slightly different strength of the quadrupole magnets. Fortunately, 
direct tracking studies suggest (compare also section 5.2) that tune modulation can be added 
in a much easier way, namely as a linear rotation with'varying angle applied after each turn. 
This procedure permits a simple inclusion of tune modulation in the case of map tracking. 

Secondly, a parameter-dependence can already be included while extracting the map (12], 
so that the Taylor map does not only depend on the phase space coordinates but also on a set 
of parameters, for instance on the strength of a correction magnet. An alternative method to 
consider tune modulation is, therefore, to define the focusing strength of a quadrupole family 
as a parameter of the Taylor map. 

The important conclusion is that only a single map is needed for most applications. 
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Imethod I computing time I 
Direct Tracking 520 s 
11th Order Taylor Map 300 s 
11th Order Taylor Map 6x5 150 s 
9th Order Taylor Map 120 s 
9th Order Taylor Map 6x5 60 s 
7th Order Taylor Map 44 s 
7th Order Taylor Map 6x5 22 s 
11th Order {4+1)-dim. Kick Factorization ,...., 90 s 
7th Order 6-dim. Kick Factorization 300 s 
7th Order (4+1 )-dim. Kick Factorization ,...., 30 s 

Table 2.4: Comparison of the computing time required by different tracking schemes to simulate 
six-dimensional particle motion over 20000 turns in HERA. The speed of the (4+1)-dimensional kick 
factorization is estimated by (2.31). All values refer to the mM ES 9000/900 at CERN. 
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Chapter 3 

Tune Modulation 

3.1 Introduction 

The inclusion of tune modulation in tracking simulations of HERA can lead to a large reduc­
tion of the dynamic aperture (see also chapter 5). A typical emittance evolution of a chaotic 
trajectory in the presence of tune modulation is shown in Fig. 3.1. Clearly visible are step-like 
changes of the emittance, which occur in intervals corresponding to the modulation period. 
It should be noted that this trajectory lies inside a region where the motion is regular in the 
absence of tune modulation. 

fz + fz 

in mm mrad 
6.40E·OO ­

ILeOE·OO ­

1.60E"00 ­

O.OOE·OO I I I 

N 

Figure 3.1: Transverse emittance €z + €z for 70000 revolutions in HERA at a starting amplitude of 
11.0 rom (f3 = 76 m). Each dot represents the maxin1.um value during 200 turns. The step-like changes 
coincide with the tune modulation period of 5000 turns, which corresponds to a frequency of 10 Hz. 
The modulation amplitude is qz = qz = 0.001. 

In the following a theory of tune modulation is developed which applies to dynamic aperture 
problems as well as to the beam-beam interaction. There are many origins of tune modulation 
in a storage ring: 
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• Synchrotron oscillations together with a nonzero chromaticity. The design synchrotron 
frequency for HERA is 14 Hz at injection and 78 Hz under luminosity conditions. 

• Power supply ripple at multiples of 50 Hz. 

• Standing waves in the main superconducting magnet circuit. The fundamental mode has 
a frequency of about 15.6 Hz [34]. It has been conjectured that such waves might be 
excited during the acceleration. 

• 	 Ground waves and mechanical vibrations of the magnets. Typical frequencies are between 
2 and 20 Hz. 

The expected tune modulation amplitudes can almost reach the same order of magnitude 
as the proton beam-beam tune shift and therefore their impact on the beam stability should be 
understood. The above list may suffice to motivate the detailed theoretical study in the next 
sections. 

3.2 Single Resonance 

As a starting point some basic quantities for a nonlinear Hamiltonian system in the absence of 
tune modulation are defined. If the motion is dominated by a single resonance 

nQ - p~ 0 

the Hamiltonian for one degree of freedom is approximately given by 

H(I, tP, fJ) = IQo +g(I) +h(I) cos(ntP - pfJ), 	 (3.1) 

where g(I) and h(I) denote in general nonlinear functions of the action I, which are called 
detuning and driving term, respectively. Of importance for HERA is the case of several isolated 
weak resonances, for which g(I) > h(I). From (3.1), the amplitude-dependent tune is 1 

Q(I) = Qo + ~~(I) ~ 4>'. 	 (3.2) 

The resonance condition is fulfilled at a certain action value Ir defined by nQ(Ir) = p. If 
equation (3.1) is expanded around the resonant value I r , a further approximation is possible, 
which reads 

K(Il,~) = i (~~(Ir)) Il2 + h(Ir)cosn~, 	 (3.3) 

where the new momentum and phase variables are defined by 

Equation (3.3) is recognized as the Hamiltoniau of a nonlinear pendulum. The total width of 
the pendulum separatrix is given by 

(3.4) 


1A prime denotes the derivative with respect to theta. 
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For small oscillations around 4>r = 1rIn, (3.3) can be expanded up to quadratic terms, cos n4> ~ 
-1+ ~n2(4>- 4>r)2. This yields the frequency at which particles inside a resonance island oscillate 
around the elliptic fixed point, 

(3.5) 


The frequency Qr is called the 'island tune' [36]. 

3.3 Single Resonance with Modulation 

In the presence of tune modulation the Hamiltonian assumes the form 

H(I, ¢>,O) = 1Qo + g(l) + h(l) cos (n¢> + ~: sin(QmO + a) - Po) , (3.6) 

where q is the modulation amplitude, Qm the modulation frequency and a an arbitrary phase. 
Equation (3.6) differs from the Hamiltonian (3.1) only by the additional term ~ sin(QmO +a) 
in the argument of the cosine. The contribution of the tune modulation to the total Hamilto­
nian becomes more explicit by means of a canonical transformation from I,</> to I, (fi with the 
generating function 

The transformation is 

(3.7) 


(3.8) 

(3.9) 

and the new Hamiltonian reads (compare also [36]) 

- 8F2 - - - - ­
H = H + 80 = Qol + g(/) + h(/) cos(n</> - pO) + qcos(QmO+ a)/. (3.10) 

The last term describes the tune modulation. For this Hamiltonian we have 

(3.11) 

Transforming again to the .nonlinear pendulum variables 

- - --= - pa = 1 - Ir,~4> = 4> - -0 
n 

one obtains 

K(fl., J, 0) = i=t(lr)fl. 2 + h(Jr )cos nJ + qcos(QmO+ a)fl., (3.12) 

which is the same as equation (3.3) plus an additional term that is linear in Li. 
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3.4 Island Width of Sidebands 

Equation (3.6) can be expanded into Bessel functions using the Jacobi-Anger identity [36, 37] 
(see appendix C) 

cos (n,p + ~~ sin(Qm8+ 0:) - PO) = ;f.. J; (~~) cos(n,p + jQmO- pO + jo:). (3.13) 

Inserting this expansion into (3.6) we get the generalized resonance condition in the presence 
of tune modulation 

nQ(I!) + jQm - P = 0 (3.14) 

For each fundamental resonance nQ-p = 0 a set of sideband resonances with j =1= 0 is generated. 
From 

. dg. p j
Q(I') = Qo + -(I') = - - -Qm (3.15) 

r dI r n n 

and 

~~(1!) ~ ~~(1.) + ~~ (I.) . jH, 

the distance 51 between two sideband resonances is 

51 R:: Q,2Qm . (3.16)
npp(Ir ) 

The width of the sideband separatrices is obtained by replacing h( Ir) by h(Ir )Jj ( ~) in the 
formula for the non-modulated case (3.4) 

h(Ir )J;( '9!:) 
(3.17)

fft(Ir) 

3.5 Chaotic Region and Diffusion Rate 

As a rule of thumb the Bessel function in (3.17) can have a significant value only, if its argument 
is larger than the order, i. e. if 

nq .
->J (3.18)
Qm 

In that case the Bessel functions may be approximated by their rms values for large arguments 
[38] 

1 
J;(z) R:: r-::=. (3.19) 

v 1rZ 

From (3.17) we then get (with QI as defined in (3.5)) 

1 

fl.l; "V 4QI (Qm) i 1 (3.20)
tot "V n <rqn1r fft(Irf 

Following [39] we expect global chaos, if the distance between two sidebands 51 (3.16) is smaller 
than the width of the resonances fl.Ilot , i. e. if 

1 

Qm 1< 4QI (Qm)i (3.21)
nfIf(Ir) n qn1r fft(Ir) . 
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Therefore the condition for chaos become~ (36] 

! 1

Qin(nq)i 4 (3.22)--'-- <-1 
QI 1I"i 

Note that (3.18) has been assumed in deriving (3.22). Fig. 3.2 a) and b) illustrate the validity 
of (3.18) and (3.19). For the two modulation frequencies Qm = 0.04 and Qm = 0.1 the location 
of the sideband resonances is depicted as a function of the modulation amplitude q. The chosen 

resonance parameters n = 4, ~(lr) = 1 and QI = 4Jh(lr ) = 0.049 refer to the phase diagram 
shown in Fig. 3.4. 

In Fig. 3.2, the island sizes f11lot are.computed by the exact expression (3.17). Action values 
in the hatched area lie inside of some resonance island, whereas action values in the white 
regions are outside of any island. Hence, if there is no white space between two sidebands, 
these do overlap. The centers of the sidebands are separated by 61 = Qm/4. They are closer 
and resonance overlap is, therefore, more probable for the smaller modulation frequency Qm, 
in Fig. 3.2 a). The curves drawn in both figures represent equation (3.18), which appears a 
good approximation to the number of sizable sidebands. As expected, this number grows about 
linearly with the modulation amplitude q. 

The overlap criterion (3.22) predicts a threshold of resonance overlap at modulation ampli­
tudes q ~ 1.8 or q ~ 0.12 for the modulation frequencies of Fig. 3.2 a) and b), respectively. For 
larger modulation amplitudes no sideband overlap is expected, since the island size shrinks as 
a function of q, which is described by (3.17) and (3.19). Fig. 3.2 a) shows that the sideband 
resonances overlap at least up to the modulation amplitude q = 1, in agreement with (3.22). In 
Fig. 3.2 b), the resonances become separated beyond about q ~ 0.1 - 0.15. This value is con­
sistent with the prediction of (3.22), indicated by a straight vertical line, and thus corroborates 
(3.19). 

If the inequalities (3.18) and (3.22) are fulfilled, we are in the chaotic region. Here an 
estimate of the 'diffusion' speed can be obtained in the following manner (40, 41]. Starting 
from the unperturbed Hamiltonian 

H(I, 4>, 0) = 1Qo + g(l) + h{l)cos{n4> - pO) 

and the corresponding equ,ation of motion for the action 

d1 8H .- =-- = nh{l)sln(n4> - pO) (3.23)
dO 84> 

we derive the increase in action (or emittance f =21) during a single crossing of the fundamental 
resonance. Integration of equation (3.23) yields 

fI2 dI fS' 
(3.24))11 h{l) = )'1 nsin{n4> ~ pO)dO. 

The integral on the right hand side can be ~alculated as demonstrated in [42J. The main 
contribution comes from the neighborhood of the 'stationary phase' <Po 2, where 

:o(nt/> - pO)i = o. (3.25) 
q,=~,'='o 

2The 'method of stationary phase' is described for example in [43]. 
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a) Size of sideband resonances as a function of q. Om=0.04 
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Figure 3.2: Location of the sideband islands with respect to the fundamental resonance as a function 
of the modulation amplitude q. The island sizes dltot are derived from (3.17) for the resonance 
parameters n == 4, d,2g/dI2(Ir ) == 1 and QI == 4y1i[I;J == 0.049. (The corresponding phase diagram 
is shown in Fig. 3.4.) Action values in the hatched area are inside of some resonance island. Two 
sideband resonances overlap, if they are not separated by a white region. The two diagrams refer to 
different modulation frequencies: a) QTn = 0.04, b) QTn == 0.1. According to (3.22), resonance overlap is 
expected only for modulation amplitudes q < 1.8 or q < 0.12 in case a) and b), respectively. In b), this 
limit is depicted by the straight vertical line. The solid curves represent (3.18), which approximates 
the number of sizable sidebands. 28 



A second order Taylor expansion around the phase 4>0 

1 84> I { )2 1 "{ )24> ~ 4>0 + 2 802 60 0 - 00 =4>0 + 24>0 0 - 00 (3.26) 

leads to 

/,62 /,62 {n4>"} /,62 {n4>" }sin{n4> - pO)dO ~ sin n.,po cos _0 {O - 00)2 dO + cosn.,po sin _0 {O - 00)2 dO, 
~ ~ 2 ~ 2 

(3.27) 
where, for brevity, a new phase variable .,po =4>0 - Oop/n has been introduced. The remaining 
integrals are Fresnel integrals and can be solved. Assuming that the intervals 101 - 00 I and 
102 - 00 1 are sufficiently large [42], the maximum value (as a function of .,po) of the integral 
(3.27) is given by 

(3.28) 


and its average absolute value is 
8 

(3.29)
1I"nl4>~I' 

The average value will be used in our further discussion. Returning to (3.24) we find 

(3.30) 


under the assumption h(l) ~ h(I,.) = constant. We now remember that the motion is assumed 
to be chaotic. Thus the phase correlation is lost between subsequent resonance crossings and the 
action increase can be described by a random walk process. Then the mean square uncertainty 
in the action after N resonance crossings grows as 

(3.31) 


Taking into account the tune modulation, the modulus of the second derivative of the phase is 
replaced by its average value 

1"1 2 (3.32)4>0 ~ -qQm.
11" 

Since the number of resonance crossings after a time At is 

(3.33) 


(two crossings per modulation period), we obtain 

(3.34) 


where f =21 denotes the single-particle emittance. The diffusion coefficient D =~(Af)2 /(Llt) 
is inversely proportional to the modulation amplitude q and independent of the modulation 
frequency Qm' 
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3.6 Diffusion Rate for a Two-Dimensional Map 

To examine the validity of (3.34) a numerical simulation is performed for a two-dimensional 
map consisting of a rotation 

( 
x) 
P f 

( cos21rQ 
- sin 21rQ 

Sin21rQ ) ( x ) 
cos 21rQ Pi' 

(3.35) 

where Q depends on the amplitude in the form 

a: 2 2 2 
Q = Qo + 4(Xi +Pi) , (3.36) 

and an octupolar kick 
(3.37) 


The corresponding Hamiltonian is 

1) a: 3 1 2 3 2 4 2H = Qo - - I + -I + -I cos4</> + -I + -6I cos2</>, (3.38)( 4 3 161r 161r 1 1r 

with the usual definition of I and </> 

x = .J2icos </> and P = -.J2i sin </>. (3.39) 

If the tune is close to the resonance 4Q ~ 1 and if, furthermore, a: > 1, the last two terms in 
the Hamiltonian may be disregarded and the driving term of the fourth integer resonance 

h(l) = _1_12 (3.40)
161r 

is much smaller than the detuning function 

a: 3 
9(1) = 31 . (3.41) 

The case h(l) ~ 9(1) is typical for a storage ring, where one stays away from strong low-order 
resonances. Note that the absolute value of detuning and driving terms can be changed by a 
scale transformation. Let us choose Qo = 0.23 and a: = 1000. The condition aH/a1 = 0 then 
leads to the resonant action value 

I. ~ J: G-Qo) ~ 4.5 . 10-3 (3.42) 

and the elliptic fixed points are located at 

x,. =p,. = Ii ~6.7·10-2. (3.43) 

The island tune (3.5) is 

J2O:I~ 3Ql=4 --~7.6·10-. (3.44)
161r 

An additional tune modulation with amplitude q ~ 0.1 and frequency Qm ~ 6.25 . 10-3
, 

not too far from the island tune, destroys the ",resonance island chain and gives rise to global 
chaos in agreement with (3.22). An ensemble of 200 particles is placed inside the chaotic region 
with a tiny initial spread in position of 10-7 

• The evolution of the rms-emittance-spread of this 
ensemble is shown in Fig. 3.3 as a function of the turn number for two different modulation 
amplitudes. After a transient period of about 2000 turns, in which the initially very close 
particles lose their phase correlation, the evolution is well described by (3.34). In particular, it 
is verified that the diffusion rate is inversely proportional to the modulation amplitude q. 
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Figure 3.3: Emittance spread for 200 chaotic trajectories of the two-dimensional map (3.35)-(3.37) 
as a function of the number of turns. 

.. equation (3.34) 

.' 

2000 4000 6000 


31 


http:3.35)-(3.37


3.7 Adiabatic Trapping 

If the modulation frequency Qm is held constant, equation (3.22) determines a maximum value 
of the modulation amplitude q below which the motion is chaotic. Here and in the next section, 
a complementary mimimum value of the modulation amplitude q is derived and justified. 

For a constant tune the position of the resonance islands is uniquely determined. If a tune 
modulation is added, however, the resonance islands change their location in phase space with 
the periodicity of the modulation cycle. Provided that the frequency of the tune modulation 
is sufficiently small, particles initially close to the center of the islands move with the islands, 
returning to the vicinity of their initial position once every modulation period. In this case the 
tune modulation is called adiabatic [44]. 

The adiabatic boundary can be derived from the intuitive condition [40, 41] 

action change rate } { action change rate } 
of island center due to < caused by the motion (3.45)

{ the slow tune variation around the resonance 

The maximum change rate of the action value for the island center is obtained from the action­
dependence of the tune in the following way 

I dg ( )cPr ~ Qo + dI Ir (3.46) 

J.29 ( )dlrII (3.47)cPr ~ dI2 Ir dO' 

dlr IcP:I qQmmax 
(3.48) 

dO max = 1~(Ir)1 = 1~(Ir)1 
According to (3.10) the action change during the motion around the resonance center is 

dI ­
dO = h(Ir)nsin(ncP - pO) ~ h(Ir)· n (3.49) 

(here it has been assumed sine n4>-pO) ~ 1, for a trajectory half-way between stable and unstable 
fixed points). By means of equations (3.45), (3.48) and (3.49) the adiabaticity condition reads 

J.2g
qQm < dI2 (Ir) . h( Ir) . n, 

or, using the island tune (3.5), 
qQm 1 

<-. (3.50)-Q2 
I n 

It should be mentioned that equation (3.50) agrees with the condition, that the fixed point of 
the Oth sideband becomes unstable in the limit of small modulation frequency [36]. 

3.8 Small Angle Approximation 
'If 

For small oscillations around the stable fixed points the cos ncf>-term in (3.12) can be expanded 
and the Hamiltonian is approximated as follows 3 [36] 

1 J.2g 2 1 2 - ()K(/l,cP) = 2" dI2(Ir)/l + h(Ir)2"(ncP) + qcos(QmO + a)/l. 3.51 

3For convenience, the definition of the phase ¢ is changed by 1rIn and the superscripts of (3.12) are dropped. 
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In this approximation the nonlinear pendulum of equation (3.3) has been replaced by a harmonic 
oscillator. From (3.51) we have the equations of motion 

and 

So E.. +Q;6. = - q: cos{Qm9 +a). (3.52) 
dP 

This is the equation of a driven harmonic oscillator. An analogous equation is satisfied by tP 

(3.53) 

A special solution is 

(3.54) 


and 
Q; q 

~ = - Q2 _ Q2 t!!JL cos(QmO+0:). (3.55) 
I m dP 

The prerequisite for this approximation has been given in [36] as 

(3.56) 


This can be obtained from (3.54), if one requires 

ntP <: 1, 

on which the quadratic expansion of the cosine in (3.12) was based. 
Equation (3.56) has a different physical interpretation in the high and in the low frequency 

limit. For small modulation frequencies Qm, (3.56) becomes identical to (3.50), which represents 
the adiabatic boundary. In the limit of large modulation frequencies, (3.56) approaches (3.18) 
for j = 1, which specifies the border where the first sideband resonance starts to be important. 

3.9 Two Degrees of :Freedom 

The theory of tune modulation outlined above suits also the more general situation of resonances 
for two degrees of freedom, if the appropriate replacements are made in the previous formulae. 
The Hamiltonian 

(3.57) 

describes the effect of a single resonance kQ:t + ZQz - P ~ O. By means of the generating 
function 

(3.58) 
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new canonical variables 4>z, 4>z, Iz, Iz are introduced according to 

(3.59) 

(3.60) 

and the transformed Hamiltonian Ii reads 

(3.61) 

The barred functions 9 and h are related to the old ones by 

g(Iz,Iz) - g(kIz,lIz + Iz) = g(Iz,Iz) (3.62) 

h(Iz, Iz) - h(kIz, lIz + Iz) = h(Iz,Iz). (3.63) 

The new Hamiltonian virtually describes a system of one degree of freedom, because the action 
Iz is an invariant of the motion. The Iz-4>z-plane will, therefore, be disregarded in our further 
discussion. In the remaining Iz-4>z-plane the motion close to the resonance is approximated by 
a nonlinear pendulum similar to (3.3), 

(3.64) 

where we have defined the new momentum ~z as the deviation from the resonant value, 

(3.65) 


This pendulum equation is almost the same as that derived by a different approach in [45]. 
According to equation (3.5) the island tune of a resonance for two degrees of freedom is given 
by 

Q[,2d = 

(3.66) 

where use has been made of (3.62) and (3.63) to convert the expression to the original variables. 
As usual the total width of the resonance island is deduced from the pendulum Hamiltonian 

(see also (3.4)) 

(3.67) 


The translation into the original action space with the help of the transformation (3.60) gives 

(3.68) 
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Hence the total island width for two degrees of freedom is 

(3.69) 


Tune modulation is introduced in analogy to (3.10). An additional term linear in Iz,z is added 
to the single-resonance Hamiltonian (3.57), yielding 

H(Iz,Iz, </>z,</>z, fJ) = 	I:z:Q:z:o + IzQzo + g(I:z:,lz) + h(I:z:,lz)cos(k</>:z: + 1</>z - pfJ) + 

+q(I:z: + 1z)cos(QmfJ + a), (3.70) 

where we have assumed, for simplicity, that both tunes are modulated with the same frequency 
Qm and amplitude q. Performing the same canonical transformation as above the pendulum 
approximation leads to (compare (3.12)) 

- - -: 1 J2g -	 - - 2 - - - ­
K(~, </>, fJ) = 2" dj2 (1:z:,,.,lz,,. )~z + h(lz,,., 1z,,.) cos </>z + q~:z:(k + 1) cos(QmfJ + a). (3.71) 

:z: 

Under our assumption that both tunes are modulated with the same frequency Qm and am­
plitude q, equations (3.18),(3.22),(3.56) and (3.50) are still valid, if one uses the general island 
tune (3.66) and if one replaces n by k + 1. The latter substitution indicates that difference 
resonances are less affected by the tune modulation than sum resonances. 

The mean emittance growth in the chaotic region close to a single resonance has been 
calculated for one degree of freedom in section 3.5 (3.34). It can easily be generalized to two 
degrees of freedom, and reads then 

(~(f:z: + fz))2 = 32 irev(k + 1)h2(1:z:,r,lz,r). (3.72) 
~t 	 q 

Again we find that only the substitution n -+ k +1 is required to generalize the result for one 
degree of freedom. 

3.10 Width 	of the Stochastic Layer 

The effect of tune modulation as a function of resonance order, island tune, modulation ampli­
tude and modulation frequency can be estimated in an alternative way. The basic procedure, 
developed in [39], is to construct a discrete mapping for the motion near the separatrix. The 
threshold of chaos for this map yields the width of the stochastic layer, which is a quantitative 
measure of the· chaotic part of the phase space close to a resonance. Our starting point is a 
Hamiltonian of the form (3.71) 

.. 
1J2g

H(~, </>, fJ) = 2" dI2 ~2 - h cos </> + q(k + 1)~ cos(QmfJ +a). (3.73) 

The unperturbed Hamiltonian 

1 d2g
Ho(~, </» = 2" dI2 ~2 -	 h cos </> (3.74) 

35 

http:3.18),(3.22),(3.56


has stable fixed points at 4> == 2k1r, t::.. == 0 and unstable fixed points at 4> == (2k + 1)1r, t::.. == o. 
The motion on the separatrix is given by [46] 

A. - 4 t Qr8'¥.:e - arc an e - 1r, (3.75) 

where we have used the island tune defined in equation (3.5). The change in Ho during a 
half period of the oscillation can be approximated by integrating dHo/df) =[Ho, q . (k + 1) . 
t::.. cos(Qmf) + a)] along the separatrix trajectory, which is denoted by the subscript'sx' 

(3.76) 

(3.77) 

(3.78) 

Here we have changed the integration variable from f) to sf)· Q] and have introduced the 
dimensionless quantity 

IC ~~. (3.79) 

The integrals on the right hand side are known as Melnikov-Arnold integrals [39, 46, 47, 48] 
and can be evaluated (see appendix B). We are then led to the following solution 

(3.80) 

A2 being defined in appendix B. Denoting the relative energy deviation from the separatrix by 
w, 

Ho-hw= h 

(3.80) can also be written as 

(3.81) 

A canonical variable conjugate to w is the phase a. In order to construct a map also the change 
in a has to be calculated. The oscillation frequency in the vicinity of the separatrix is given by 
[39] 

1rQ] 
(3.82)Q(w) "" In( I~I)" 

Hence the change of a during a half period of tthe oscillation is 

(3.83) 

Note that the argument of the logarithm is the transformed variable wand not the initial 
w, which means that (3.81) and (3.83) are applied successively. The Jacobian determinant of 
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either part is one and therefore the total map is symplectic. The trace of the Jacobian matrix 
for this map is calculated as 

It 
TrJ{a, w) = 2 + f Iwl cos a, (3.84) 

with the abbreviation 

(3.85) 


A fixed point is stable if the absolute value of the trace is smaller than two, otherwise it is 
unstable. In our case the fixed points are given by (with m,. and n,. being natural numbers) 

21fmr 

32· e- " 

If f is a positive quantity, the fixed points a = n,.1I" with nr even are always unstable. However 
for an uneven nr instability occurs only if 

Itf
Iwl <-. (3.86)

4 

In order to proceed further we have to insert the solution of the Melnikov-Arnold integral A 2 , 

[39, 46] (appendix D) 

(3.87) 


into (3.85). According to (3.86) the width of the stochastic layer is then written as 

'- 3(k + l)q sinh(T) (3.88)
W.l - 1I"1t Q . h( ).

m SIn 11"'" 

The value of W.l is proportional to the fraction of area of the resonance island which becomes 
chaotic due to the external tune modulation. For a large ratio Qm/QI =It ~ 1, the width of 
the chaotic layer decreases exponentially as a function of the modulation frequency. 

Instead of founding our argumentation on the stability of the fixed points we can derive the 
width of the stochastic layer in an alternative way. If f defined by (3.85) is sufficiently small, 
it is possible to linearize the mapping in w (but not in a) around a resonant value w,.. (3.81) 
and (3.83) are then transformed into 

1 - 1+ Ksina (3.89) 

a a +1, (3.90) 

where we have introduced the new variable ~ 

(3.91 ) 


(3.92) 


and the parameter 
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Equations (3.89) and (3.90) constitute the 'standard mapping', which is of fundamental impor­
tance in the theory of nonlinear resonances. The onset of global chaos for this mapping occurs 
at a critical value K :::::: 1 [39]. Hence the width of the stochastic layer is approximately 

(3.93) 


which differs from (3.86) only by a factor four. In the following we will drop the subscript and 
write w instead of w..z for the expression on the right hand side of (3.88). 

3.11 Phase Diagrams 

In the parameter space of tune modulation, areas with distinct dynamical behavior can be 
graphically represented, which leads to 'phase diagrams' as proposed in [36]. The borderlines 
given by the inequalities (3.22) and (3.56) 

! 1 

Q:n(nq)i 4 
-- (3.94)QI 

1qQm 
- . 
nQI-Q~ 

describe approximate boundaries between regions with qualitatively different behavior in the 
(q, Qm)-plane. The unperturbed system is defined by only two parameters, the island tune QI 
and the order n of the resonance". A typical phase diagram is shown in Fig. 3.4 (solid curves), 
for the values Q1 == 0.049 and n == 4 of the octupole kick map studied in section 3.12. The four 
different regions in the phase diagram can be interpreted as follows: 

1. 	At small modulation amplitudes and small modulation frequencies the adiabaticity con­
dition holds and the particles are stable. 

2. 	 For small modulation amplitudes and large modulation frequencies the sideband islands 
cover only a very small fraction of phase space. Thus the majority of particles is not 
affected by the tune modulation. This region is characterized by 'rapid phase oscillations'. 

3. 	If the modulation amplitude is increased, the sideband islands gain importance. For large 
modulation frequency these islands are separated from each other and the motion is still 
regular. 

4. 	For large modulation amplitudes the sidebands start to overlap below some critical mod­
ulation frequency, giving rise to global chaos. It is this region of the phase diagram (in 
the left upper corner) where emittance growth processes and proton losses occur. 

The particle loss is due to a 'diffusion' process in the chaotic region, which is described by 
(3.34) 

(3.95) 


4 As mentioned, in the more general two-dimensional case n has to be replaced by k + 1. 
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Figure 3.4: Phase diagram for the island tune QI = 0.049 and the resonance order n = 4 according 
to (3.94) (solid curves) and contour lines (3.96) with w = 0.05,0.1,0.2,0.3 (dotted lines). The small 
closed and open circles refer to strongly chaotic and to ahnost t;mdisturbed cases, respectively, as 

found in simulation studies with an octupole kick map (section 3.12). The phase space diagrams 
corresponding to the circles (from left to right) are depicted in Fig. 3.5 b )-j) and Fig. 3.8 a)-f). 
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The local diffusion rate is independent of the modulation frequency. 
We now propose an alternative phase diagram, which is derived from equation (3.88) 

Q2 sinh( 11"9_ ) 
_ m 291! (3.96) 

W = 1rnq Q3. (_1'1) = WO°sInh ~ 
1 91 

The contour line W = Wo, for a properly chosen constant Wo, can be used to define a border 
between chaotic and regular regions. Contour lines for Wo = 0.05,0.1,0.2 and 0.3 are shown 
as dotted curves in Fig. 3.4. While the chaotic regions predicted by (3.94) and (3.96) agree 
approximately, there are still a few important differences: 

a) 	Equations (3.94) describe a resonance-like behavior at Qm ~ QI, whereas according to 
equation (3.96) the modulation amplitude has to exceed a certain threshold to be harmful. 
The prediction of (3.94), that an arbitrarily small modulation amplitude may cause global 
chaos, seems to be unrealistic. 

b) 	The maximum response to tune modulation is either at Qm = QI (3.94) or at Qm ~ 
1.35 . QI (maximum value of width W in (3.96)). 

c) 	The first equation of (3.94) implies that a reduction of the modulation amplitude may 
lead from regular to chaotic motion. 

d) 	The boundary of the chaotic region is defined by only one equation if one applies the 
stochastic layer argumentation (3.96). 

In order to study these questions more deeply the effect of tune modulation on a simple octupole 
kick map is examined in the next section. 

3.12 Octupole Kick Map 

The two-dimensional map that we want to study consists of a rotation 

( x) ( cos 21rQ sin 21rQ ) ( X ) (3.97)
P f - sin 21rQ cos 21rQ P i 

and an octupolar kick 
(3.98) 


The equivalent Hamiltonian is 

(3.99) 


Action and angle variables 1 and </J are introduced by the usual relations 

x = v'2i cos </J andp = - v'2i sin </J. (3.100) 

Near the fourth integer resonance 4Q ~ 1 the total Hamiltonian is approximated by 

- ( 1) 3 1 ­H{1,</J) ~ Q - - 1 + _12 + -12cos{4</J). 	 (3.101 ) 
4 161r 161r 
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We readily identify the characteristic quantities 

9(1) ~12 (3.102)
161C' 
_1_12h(1) (3.103)
161C' 

n 4. (3.104) 

Choosing Q 0.23, the resonant action value is I,. = 41C'(~ - Q) ~ 0.25 and the island tune is 
approximately 

(3.105) 


The phase diagram of this situation is shown in Fig. 3.4. We investigate two special cases. 
Firstly, we examine the behavior for the comparatively small modulation amplitude q = 0.002. 
In Fig. 3.5 phase space diagrams for ten different modulation frequencies are presented. Each 

diagram shows six different trajectories plotted once every modulation period (stroboscopic 
plot). The corresponding positions in the phase diagram are indicated by the lower row of circles 
in Fig. 3.4. It is evident from the diagrams that the small angle boundary (3.94) considerably 
underestimates the size of the chaotic region: The second equation of (3.94) predicts chaos 
only in the very small range 0.045 < Qm < 0.053. However, chaotic trajectories occupy large 
phase-space areas roughly for ~QI < Qm < 4QI. These limits would be described by (3.96) 
with Wo ~ 0.01 as can be seen from Fig. 3.6 depicting the stochastic width (3.96) as a function 
of the modulation frequency. The stochastic width w is maximal at Qm ~ 0.066 and thus in a 
region which should be regular according to (3.94). 

Another point of interest is the border derived from the resonance overlap criterion (3.22). 
We choose the modulation amplitude q = 0.05, which is larger than the value q. ~ 0.033 at the 
intersection of the two phase boundary lines (3.94). Fig. 3.7 shows the width of the stochastic 
layer as a function of the modulation frequency for this value of q. 

In Fig. 3.7 the chaotic width w becomes too large at modulation frequencies close to the 
island tune for the predicted value to be accurate. Since the stochastic layer extends to both 
sides of the separatrix only half of it lies inside the resonance island. A reasonable upper limit 
for the parameter w is therefore two, which would describe a situation where the complete 
resonance island is chaotic. Hence the range of validity of formula (3.88) is restricted in a 
self-consistent way to values of w smaller than two. Far from the separatrix it is no longer 
possible to approximate the motion by integrating along the separatrix, which was the basic 
assumption made. 

Fig. 3.8 shows phase space diagrams for six different modulation frequencies and a constant 
modulation amplitude q = 0.05. Due to the larger value of q, chaotic particles are lost almost 
immediately, which leads to a somewhat distinct appearance of the phase space diagrams as 
compared to Fig. 3.5. The change from chaotic to regular motion occurs at about Qm ~ 0.25. 
In view of Fig. 3.7, this threshold could be described by (3.96) with Wo ~ 0.1, whereas the first 
equation of (3.94) predicts the border of global chaos already at Qm ~ 0.133. The six cases 
examined in Fig. 3.8 are represented by the upper row of circles in the phase diagram 3.4. 

It may be concluded that (3.96) represents the border of the chaotic region at least as 
accurately as the two equations (3.94). 

The reader may have noticed, from Fig. 3.5-3.8, that in many cases the fraction of the 
resonance island destroyed by the tune modulation agrees with (3.96) only within a factor 5­
10, where the deviations are both towards too high and towards too low values. Therefore, it 

41 



a) 

, -1 -oJl -0.6 -0.4 -O.l 0 O.l 0.4 0.6 o.a 1 
X x X 

Figure 3.5: Phase space diagrams of six trajectories for the octupole kick map (3.97) and (3.98) with 
a tune modulation amplitude q 0.002; each diagram corresponds to a different modulation frequency 
Qm, namely a) no modulation b) Qm = 0.005, c) Qm = 0.01 ~ ~QI' d) Qm = 0.02, e) Qm = 0.04, f) 
Qm = 0.05 ~ QI, g) Qm 0.06, h) Qm = 0.1, i) Qm = 0.2 ~ 4QI, j) Qm = 0.5. 
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Figure 3.6: Width w of the stochastic layer (3.96) for the simple octupole kick map (3.97) and (3.98) 
with a modulation amplitude q = 0.002 as a function of the modulation frequency Q'mo The open 
and closed circles refer to the almost undisturbed and to the strongly chaotic phase space diagrams 
in Fig. 3.5 b)-j), respectively. 
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Figure 3.7: Width w of the stochastic layer (3.96) for the simple octupole kick map (3.97) and (3.98) 
with a tune modulation amplitude q = 0.05 as a function of the modulation frequency Qm. The open 
and closed circles refer to the almost undisturbed and to the strongly chaotic phase space diagrams 
in Fig. 3.8 b)-f), respectively. 
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Figure 3.8: Phase space diagrams of six trajectories for the octupole kick map (3.97) and (3.98) with 
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is desirable to estimate the magnitude of the deviation to be expected for a typical resonance 
in HERA and thus of the error in the results of chapter 5. 

It has been pointed out [50] that the equations (3.94) and (3.96), describing alternative bor­
ders in a phase diagram, can be expressed in terms of two quantities solely, namely by a 'scaled' = =modulation amplitude q nq/Qm and a 'scaled' modulation frequency Qm I\, Qm/QI. 
Simulations provide strong evidence that the degree of chaoticity is indeed characterized by the 
two universal parameters q and Qm and does not depend on the actual values of nand QI. 
Assuming parameters representative for HERA (see chapter 5), here labeled by the superscript 
H, 

nH - 10, 

QIf .......,......., 2 .10-4 , 
Q! .......,......., 10-3 , 
qH .......,......., 10-4 , 

the scaled parameters are qH ~ 1 and Q~ ~ 5. The phase space diagram of Fig. 3.8 d) 
corresponds to about these values, namely to q ~ 1 and Qm ~ 4. For this case, Fig. 3.7 
predicts a chaotic region whose size is about 40% of the undisturbed island. From comparison 
of the phase space diagrams in Fig. 3.8 d) and f), about 60-70% of the island is actually 
destroyed in Fig. 3.8 d). The island tune QI for most of the resonances in HERA is smaller 
than the assumed value Qf ~ 2 . 10-4 • Fortunately, for a larger ratio Q~/Qf the error of 
(3.96) decreases. This is illustrated by Fig. 3.8 e), for which the stochastic width is about 15%, 
in good agreement with Fig. 3.7. 

It may, therefore, be expected that, in the results for HERA presented in chapter 5, the 
error of w is not larger than a factor of two. 

3.13 Chaotic Fraction of Phase Space 

As a measure of the harmfulness of different tune modulation frequencies for a storage ring 
such as HERA we introduce a 'sensitivity function' r as follows. The product of the total 
island width and the width of the stochastic layer is summed over all relevant resonances and 
normalized to the total emittance range. More specifically, the sensitivity is defined by ( compare 
also (3.69) and (3.88) ) 

all resonances i 

where the subscript 'i' denotes the individual resonances. The function so defined measures the 
fraction of phase space that becomes chaotic due to the tune modulation. It depends on the 
modulation frequency Qm and on the modulation amplitude q. 

To estimate the average emittance growth rate, which in general is influenced by several 
high order resonances, we add the contribution of each resonance, again weighted by the chaotic 
fraction of the corresponding resonance island and normalized to the total emittance range. 
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Thus the global emittance growth rate is given by 

(3.107) 
where the square brackets '< ... >' denote the average over phase space up to a maximum 
amplitude. The range of validity of this formula will be discussed in chapter 5, where it is 
used to analyse the dependence of emittance growth rates caused by high order resonances in 
HERA on the modulation frequency. Note that the average emittance growth rate does not 
depend on the modulation amplitude q, but does depend strongly on the modulation frequency 
Qm, in contrast to the local growth rate (3.72). The insensitivity to q reflects the fact that the 
fraction of phase space covered with chaotic trajectories increases linearly with the modulation 
amplitude q, whereas the diffusion rate within this zone decreases as 1/q (compare (3.34) and 
(3.88) ). 

3.14 Diffusion Model 

Let us now assume that the particle distribution function f in the chaotic regions of phase 
space depends only on the transverse emittance E =Ell: + Ez; and obeys a diffusion equation of 
the form (this ansatz is motivated in appendix F) 

f
af = ~ (D(E)a ). (3.108)
at aE aE 

The diffusion coefficient D(E) is related to the squared emittance change per unit time by the 
simple formula (see again appendix F) 

D(E) = ~ (LlE)2). (3.109)
2 Llt 

Local approximations to this diffusion coefficient can be obtained by considering the individual 
terms i in the sum of equation (3.107) separately. An approximate value of the diffusion 
coefficient D( E) is then given by the average over regular regions with no diffusion and chaotic 
regions with an emittance growth rate as in (3.72). The range of validity and the interpretation 
of this mean· value are discussed in section 5.5. Instead of the total emittance range Etot, the 
normalization constant is now the distance between two adjacent resonances (Ei+l - Ei-l)/2. 
Consequently, our estimate for the emittance-dependent diffusion coefficient D(E) reads 

(3.110) 
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Again the index 'i' specifies the individual resonances. In this case the square brackets do not 
denote an average over the total phase space, but over the region between two resonances. It 
is reasonable to take into account only resonances 'i' for which the stochastic width does not 
vanish or, more precisely, for which Qm/QI,i < 50. 

The amplitude-dependent mean emittance growth rate < !:::..€/!:::..t > is obtained from the 
diffusion coefficient D(€) by differentiation 5 

!:::..€) a- :::::: -D(f:). (3.111 ) ( !:::..t a€ 

This relation applies not only to purely Hamiltonian systems, but also to multiple scattering 
(compare chapter 8). In the latter case, D(€) is a linear function of € and, consequently, 
< !:::..€/!:::..t > is constant. 

SIt was shown by Landau [46, 49] that this relation is valid for Hamiltonian systems. See also appendix F. 
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Chapter 4 

Modulation Amplitudes 

4.1 Origin of Power Supply Ripple 

A major source of tune modulation in a storage ring are magnetic field modulations caused by 
voltage ripple of the magnet power supplies. The voltage ripple is partly due to the design of 
the rectifiers and partly due to technical imperfections. 

The superconducting correction coils in HERA are fed by switched mode power supplies 
(chopper). These are built as converters on the basis of a pulse width modulation and are 
driven at a frequency of 14 kHz [51]. Due to the very high frequency their effect on the beam 
dynamics is negligible, provided that the fractional part of the betatron tune is not too close 
to the driving frequency of the power supplies, which corresponds to Qm ~ 0.296. 

For magnets or magnet chains which are operated at a current higher than 360A, rectifiers 
with thyristor bridges are used. The main superconducting circuit is fed by a 24-pulse 4-bridge 
silicon controlled rectifier (SCR). The expected fundamental ripple frequency is 12 kHz for a 
perfect balance of the bridge circuit. The circuits of the quadrupoles in the interaction region 
are powered by 12-pulse (2-bridge) SCRs, for which the lowest unavoidable ripple frequency is 
600 Hz. Due to imbalances between individual bridges and thyristors and due to capacitances 
to ground all harmonics of the fundamental frequency 50 Hz are found in the voltage spectra 
of the SCRs. 

4.2 Simple Model of the Main Circuit 

In the HERA ring all superconducting dipoles and quadrupoles are powered in series. As a con­
sequence, a current ripple in the main circuit changes the focusing strength of the quadrupoles 
as well as the deflecting dipole field. A change in the dipole field leads to a shift in en­
ergy and beam orbit. In the arcs the corresponding shift of the tune is compensated by the 
simultaneous change of the quadrupol\! strengths. Independent power supplies feed the normal­
conducting quadrupoles in the straight sections. Therefore the compensation of the dipole and 
the quadrupole field variations is not perfect aJid a net tune modulation results. 

To illuminate the relation between power supply ripple and tune modulation, a simplified 
model of a current ripple ~I COS(Wripplet) with constant amplitude and phase along the supercon­
ducting magnet chain is considered. Three effects contribute to the effective tune modulation, 
namely 

1. the absolute change of the momentum, 
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2. the orbit change at the position of the sextupoles, 

3. the change of the focusing strength of the quadrupoles. 

For a low-frequency ripple, Wf'ipple <t: w.ync, the energy of the particles follows the change in the 
external field. The revolution frequency stays constant because the radio frequency (rf) in the 
cavities is not changed. Hence the change in the velocity is compensated by a change in the 
path length and we have 

Dt.C Dt.v 1 Dt.p 
-- == - == ---,
C V '"r2 P 

where'"r is the relativistic '"r =(1 - ~ )-~. The relative change in the orbit length is 

Dt.C _ ~ (Dt.P _ Dt.B)
- 2 •

C '"rtf' P B 

In this section the ripple of the guide field fl.: is assumed to be equal to the current ripple ~[. 
The transition energy '"rtf' is the nominal energy at which the change in path length exactly 
compensates the change in velocity for off-momentum particles. For HERA its value is '"rtf' ~ 
27.7. The last two equations lead to 

Dt.p '"r2 Dt.B 
(4.1)P == '"r2 - '"r;f' B . 

If there were no sextupole coils in the ring, the absolute change in momentum would give rise 
to a tune modulation amplitude q[ via the natural total chromaticity e::::t. 

tot Dt.p tot '"r2 Dt.B 
q[ == eno.t. - == eno.t. 2 2 B ' (4.2)

P '"r - '"rtf' 

the chromaticity ebeing defined as the change in tune Dt.Q per relative momentum deviation, 

(4.3) 


The 'natural' chromaticity eno.t. is caused by the variation with momentum of the quadrupole 
focusing strength. It can be expressed as an integral of the quadrupole strength K in units of 
m-2 times the beta function f3 around the ring, 

ttot =-~ f Kf3 ds. 
~no.t. 41t" 

Sextupole correction coils and sextupole field errors in the superconducting magnets provide 
a second contribution to the overall chromaticity, which is of opposite sign. The effective 
sextupole strength around the ring is adjusted'such that the total chromaticity 

tot tot 
e == e + ~ fmDf3 ds (4.4)

no.t. 41t" 

is close to zero, m being the sextupole strength in units of m-3 and D the dispersion function. 
Hence the horizontal orbit shift in the sextupoles, given by 

:r; == D (Dt.P _ Dt.B) == D '"rif' Dt.B, 
p B '"r2 - '"r;f' B 
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causes a modulation amplitude qII, which can be written as 

qII = 
ttot ,iT' 

-~nat. 2 2 , -'tT' 
t:J,.B 

B • ( 4.5) 

It is convenient to decompose the total natural chromaticity into two parts, 

ttot _ 
~nat. ­

t.tT'oight + t0T'C 
~nat. ~nat. , ( 4.6) 

by means of which the effect of the warm quadrupoles in the straight sections is separated from 
that of the superconducting quadrupoles in the arcs. The modulation of the focusiIlg strength 
of the superconducting quadrupoles leads to a modulation amplitude qIII, 

1 1 Kf.l d t:J,.B t01"C t:J,.B
qIII = - JJ S -B = -~nat'-B • (4.7)

411" 01"C 

Adding (4.2), (4.5) and (4.7) the total modulation amplitude q becomes 

It.t1"oight It:J,.B (4.8)q = IqI + qII + qIIII= ~nat. B for 

For frequencies larger than the synchrotron frequency, WT'ipple ~ W.ync, the momentum is ap­
proximately constant t:J,.p ~ O. Hence, in this case, there is no contribution to the modulation 
amplitude of the form qI (4.2). The horizontal orbit change is simply 

t:J,.B
z=-D­

B 

and qII (4.5) has to be replaced by 

tot t:J,.B ( )
qlv = enat. B' 4.9 

while qIII (4.7) also applies to a high-frequency ripple. The total tune modulation amplitude 

It.t1"Oi9htlt:J,.B ~or (4 10)
q = IqIII + qIVI = ~nat. B 11 WT'ipple ~ W.ync • 

is the same as for a low-frequency ripple (equation (4.8)). 
In the HERA proton ring the natural chromaticities at injection energy are about 

ttot = t 01"C + t·t1"oight ~ -40 t 01"C ~ -30 t·tT'oight ~ -10. (4.11 )~nat. ~nat. ~nat. , ~nat. , ~nat. 

In our simple model, the relation between current ripple and tune modulation amplitude is 

~ It.t1"oightl t:J,.B ~ 10 t:J,.B 
q ~ ~nat. • B ~ .B' ( 4.12) 

The amplitude of the 150-Hz field ripple measured in the reference dipole magnets is ll.B / B ~ 
1.4 . 10-6 and corresponds to a tune modulation amplitude q ~ 1.4 . 10-5 ; according to (4.12). 
In reality the amplitude of the current ripple is not constant around the ring and the overall 
modulation amplitude q is about a factor 3-4 luger (see next section). 

It is difficult to relate the observed field ripple to the voltage ripple at the power supply. 
For example, using L tot ~ 24H the estimate t:J,.U = wLtotI/:": results in t:J,.U ~ 8V. In contrast, 
the power supply specifications allow a maximum ripple amplitude of only 2 Volt [52]. Direct 
measurements at the power supply show that the actual ripple amplitude is even smaller, 
namely in the order of 150 m V [53]. Thus an RL-circuit is not an adequate model to describe 
the superconducting magnet chain. 
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4.3 Transmission Line Characteristics 

In order to properly estimate the actual effect of the magnetic field ripple, the transmission line 
characteristics of the superconducting magnet string have to be considered. For every ripple 
frequency a wave pattern builds up along the magnet chain. The corresponding current ripple 
amplitude at each position in the ring can be computed from the measured 4-pole parameters 
of dipole and quadrupole magnets. As far as the contribution to the overall tune modulation 
is concerned the ripple effects in different quadrupole and sextupole magnets partially add and 
partially cancel each other. 

In Fig. 4.1 the tune modulation amplitude expected for a harmonic power supply voltag:: 
ripple of amplitude 1 V is shown as a function of the ripple frequency [34]. The amplitud~ 
of the 50-Hz ripple was measured to be about 50 m V, which, according to Fig. 4.1, translates 
into a tune modulation amplitude of q '" 3 . 10-5 • The 150-Hz voltage ripple of 150 m V gives 
rise to a tune modulation of amplitude q '" 5 . 10-5 • The large enhancement of the effect of 
a power supply ripple between 0 and 300 Hz, illustrated by Fig. 4.1, is related to standing 
wave resonances of the magnet string, which occur at frequencies as low as 15.6 Hz. According 
to model calculations [54] the eigenmodes of the transmission line may be excited during the 
ramp. Such an excitation has not yet been measured. 

~ -4 is 
~Y) 10 
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J 

o 
o 	 100 300 lfOO Soo '00 > 

f ~\I\ 1i1.. 

Figure 4.1: Tune modulation amplitude at injection energy as a function of the ripple frequency for 
a voltage ripple of 1 V at the power supply [34]. 

4.4 The Quadrupoles of the Interaction Region ' 

At 820 GeV the ripple in the normal-conducting quadrupoles of the interaction regions is the 
dominant source of tune modulation. While the ripple in the superconducting main circuit is 
very important at injection energy, its contribution to the total tune modulation is negligible 
at top energy in view of the much higher dc current. 

The vertically focusing interaction-region quadrupole circuit consists of eight magnets (three 
QS10 and one QRI0 on either side of the interaction region). The relative voltage ripple 
determined for the south interaction region is about 10-3 at 50 Hz and 5 . 10-3 at 600 Hz [55], 
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where these values apply to luminosity conditions. Fig. 4.2 shows a measurement of the 600-Hz 
ripple with a relative ripple amplitude of 5 . 10-3 • 
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Figure 4.2: Voltage ripple for the power supply Munk 506A/08 feeding the vertically focusing 
quadrupole circuit in the south. The actual dc voltage of about 650 V corresponds to a value of 
10 V in this measurement. The fundamental ripple frequency is 600 Hz as expected for a two-bridge 
rectifier. Also present is a 50 Hz component, which is, however, not noticeable on this time scale. 

A similar number is assumed for the horizontally focusing circuit consisting of three magnets 
QR14 on both sides of the interaction zone. The current ripple amplitude can be estimated via 

6.1 1 fl.U 
(4.13)

I - J{r;)2+1 U 

and the amplitude q of the tune modulation due to the current ripple ~I is given by 

q = ~1 K f3 ds fl.l, 	 (4.14)
471" qua.dr. I 

where the integral is over the quadrupole magnets of one circuit. The resistance and inductance 
of the two circuits are listed in Table 4.1 togetL.er with the computed current ripple and tune 
modulation amplitudes. 

4.5 Shielding by the Beam Pipe 

The inside of the cold HERA beam pipe is coated with a copper layer of thickness d = 10 pm 
at a radius r == 27.5 mm. This layer provides most of the shielding, which can be calculated by 

53 

http:togetL.er


I Parameter horizontal vertical 

6.UjU(50 Hz) I"V 1 . 10-3 
I"V 1 . 10-3 

6.U jU(600 Hz) I"V 5 . 10-3 
I"V 5 . 10-3 

Inductance I"V 0.78 H I"V 1.4 H 
Resistance 1.22 n 1.45 n 
6.1 j 1(50 Hz) I"V 5 . 10-6 

I"V 3 . 10-6 

6.1 j 1(600 Hz) I"V 2 . 10-6 
I"V 1.5 . 10-6 

!QU4dr. Kds I"V 0.12 m- l 
I"V 0.15 m- l 

f3 I"V 1500 m I"V 1200 m 

q (50 Hz) I"V 7 . 10-6 
I"V 4 . 10-6 

q (600 Hz) I"V 3 . 10-5 
I"V 2 . 10-5 

Table 4.1: Current ripple in the interaction region quadrupoles and corresponding tune modulation 
amplitudes. 

solving Maxwell's equations with the appropriate boundary conditions [56,57]. The frequency­
dependent skin depth is given by 

1 
h(f) = vi f . (4.15) 

7r /.LoU 

The 'shielding factor' Q=BinsidejBoulside is defined as the ratio of the magnetic field inside 
the beam pipe and the field in a great distance from it, which is assumed as homogeneous. 
Introducing the two abbreviations 

k(f) 
-

l+i 
h(f) 

K(f) - k(f)· (r - d) , 

the shielding factor can be written in complex form as [56, 57] 

Q(f) = [COSh(k(f). d) + 0.5 [K(J) + K~f)] .sinh(k(J) · df! . ( 4.16) 

In Fig. 4.3 a) the absolute value of Q(f) is plotted in the frequency range from 0 to 15 kHz 
assuming a conductivity O'eopper ~ 4 . 109 o~ at liquid helium temperature [58]. At 150 Hz, the 
attenuation factor is only 0.8. 

The warm sections of the beam pipe are not coated by copper, but consist of 2 mm thick 
stainless steel with a conductivity of 0' ~ 3.106 o~ [58]. At the position of the interaction-region 
quadrupoles (QR10,QR14) the average beam pipe radius is r = 29.5 mm. Fig. 4.3 b) shows 
that in the frequency range of interest, between 0 Hz and 600 Hz, the warm beam pipe provides 
virtually no shielding. 

4.6 Ground Motion Effects 

A tune modulation of low frequency can be caused by ground waves and mechanical vibrations 
of the magnets. The amplitude of the beam oscillations due to these effects and the impact 
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a) Shielding factor 5 as a function of frequency 
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Figure 4.3: Shielding factor IQI as a function of frequency in Hz for the HERA beam pipe; a) cold 
beam pipe with d = lOJLm copper plating, b) warm beam pipe consisting of d =2mm stainless steel. 
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on collision alignment in HERA have been an object of vigorous investigations [35]. One may 
suspect that a part of the low-frequency beam oscillations results in a harmonic tune modulation 
due to an orbit change at the position of the sextupoles. For instance, assuming a root-mean­
square orbit displacement in the arc of Xrms = 0.05 mm caused by mechanical quadrupole 
vibrations, a rough estimate of the resulting modulation amplitude is 

Q - {Q} Xrms 
qvibration :::::: lenat.1 Q rr:.r-.' ( 4.17) 

DV Nquad 

where D is the average dispersion function (about 1.5 m), Nquad the number of quadrupoles, 
enat. :::::: -40 the natural chromaticity and Q - {Q} the fractional part of the betatron tune Q. 

The factor (Q - {Q} )/Q accounts for the oscillatory character of the closed orbit distortions. 
Over every full betatron wavelength the accumulated tune shift is zero, because orbit displace­
ments of opposite sign in a sextupole compensate each other. Thus in a first approximation 
only the fractional part of the tune, which corresponds to an incomplete closed orbit oscillation, 
gives rise to a tune shift. For a typical working point of Q :::::: 31.3 the suppression factor is 
about 0.3/31 :::::: 10-2 • The square root of the number of quadrupoles (Nquad :::::: 200) enters in 
(4.17), if there is no correlation between the individual magnets. 

A typical number is q = 10-6 , which is a factor 100 smaller than the modulation amplitudes 
due to power supply ripple. The dominant frequencies are in the range 2-20 Hz [35]. 

4.7 Modulation Amplitudes 

The results of this chapter can be summarized as follows. 
All multiples of 50 Hz are found in the Fourier spectra of voltages and magnetic fields. Of 

special importance and strength are the 50 Hz and 150 Hz lines at injection energy and the 50 
and 600 Hz lines for luminosity conditions. 

At injection energy we expect tune modulation amplitudes in the order of 10-4 
• These are 

caused by a current ripple in the main superconducting magnet string. 
For the luminosity mode the modulation amplitude is of similar size and is primarily due 

to the normal-conducting quadrupole circuits in the interaction region. 
Ground waves and mechanical magnet vibrations may lead to a low-frequency tune modu­

lation (below 20 Hz) whose amplitude is smaller by two orders of magnitude. 
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Chapter 5 

Dynamic Aperture 

5.1 Effect of the Persistent-Current Field Errors 

Comprehensive tracking calculations have been performed to study the effect of magnetic field 
errors on the dynamic aperture of HERA at the injection energy of 40 Ge V. The measured 
individual multipole components up to 20-pole of all superconducting dipoles and quadrupoles 
were taken into account by adding five thin, higher-order lenses to each Fono half cell. The 
details and methods used in the tracking-data analysis are described elsewhere [60, 63, 4] (see 
also chapter 2). The simulations provide an estimate of the dynamic aperture, defined by the 
onset of chaotic particle motion. 

The predicted dynamic aperture of the HERA proton ring is shown in Fig. 5.1 as a function 
of the amplitude of momentum oscillation ll.p/p. The dynamic aperture r is given in units of 
mm and depends on the beta function f3 at the point of observation. In this case f3 is chosen as 
76 m, the maximum value in the arcs. A quantity that is closely related to the aperture, but 
is independent of the point of observation, is the dynamic acceptance A~,z, which is defined as 
the single-particle emittance of the outermost stable trajectory and is quoted in units of mm 
mrad. The relation between aperture r and acceptance A is 

or r =VA· 76m (5.1 ) 

where f3 = 76 m is the beta function value at the point, to which r refers. 
The working point of Q~ = 31.27 and Qz = 32.30 chosen for the investigation is close to 

the actual value used in the HERA operation of 1992. In 1992 the circumferential rf voltage 
of the 52 MHz system was about 70 kV corresponding to a synchrotron frequency of 22 Hz. 
This value is also used in the simulation. For a proper bucket matching between PETRA and 
HERA a smaller rf voltage and synchrotron frequency are required. The design synchrotron 
frequency is 14 Hz. 

~he dynamic acceptance expected from the threshold of chaos in the simulation studies 
is A ~ 4 mm mrad for on-momentum particles, equivalent to an aperture of 17.5 mm. The 
onset of chaos is considerably reduced to about. A = 1.9 mm mrad or r = 12 mm for an initial 
momentum deviation of ll.p/p = 5 . 10-4, which is about the actual momentum spread of the 
injected bunch. 

Two effects may cause a reduction of the dynamic aperture for off-momentum particles. 
Firstly, the nonlinear fields are larger on a dispersion orbit than for particles with ll.p/p = o. 
However, for a relative momentum deviation of ll.p/p = 5 . 10-4 and an average dispersion 
function of about 1.5 m in the arc the orbit shift is less than 1 mm. This is much too small to 
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explain the reduction of aperture noticed in Fig. 5.1. Secondly, large synchrotron oscillations 
induce a betatron tune modulation via the chromaticity of the storage ring. In the model­
calculations the corrected chromaticity is e:l: = -1.3 and ez = 0.6. Hence the resulting tune 
modulation amplitude for a typical off-momentum trajectory is in the order of the momentum 
spread 5 . 10-4 

• The observed reduction of the dynamic aperture for off-momentum particles 
can mainly be ascribed to the additional tune modulation. 

In agreement with this interpretation is the observation that for a circumferential rf voltage 
of 2 MV (and a different working point Q:I: = 31.15, Qz = 32.18) the dynamic aperture is 
reduced by less than 10% in the simulation, for a particle with I1p/p = 5 . 10-4 [60]. An rf 
voltage of 2 MV corresponds to a synchrotron frequency of about 120 Hz. As will be shown 
later a relatively small tune modulation frequency such as the synchrotron frequency of 22 Hz 
used in 1992 is potentially much more harmful. This can be explained by high-order resonances, 
which are studied in sections 5.3 and 5.4. 

Also shown in Fig. 5.1 is the design beam size, corresponding to two standard deviations 
(J', and a rough measurement of the actual dynamic aperture in the HERA proton ring. Pro­
ton beams that are injected with large transverse oscillations have a lifetime of less than 1 
hour, which suggests that the dynamic aperture is smaller than the physical aperture. This is 
confirmed by beam profile measurements with the residual gas monitors [61]. These indicate 
that the dynamic aperture is about 1.2 mm mrad, while the linear acceptance as measured 
by orthogonal orbit bumps is between 2.3 and 3.0 mm mrad. The observed bunch lengths are 
always smaller than 3 m, which provides an estimate of the dynamic momentum acceptance. 

Fig. 5.1 can be compared with Fig. 5.2 presenting the results of a tracking study for a faulty 
model of HERA, in which the 20-pole coefficients of the quadrupole magnets are a factor of 
ten larger than the actual values. Hereafter we will occasionally refer to the correct model of 
HERA as model I and to the faulty one as model II. 

While the threshold of chaotic motion for model II is found at about the same amplitude 
as for the correct model, the stability limit over 20000 turns for on-momentum trajectories is 
significantly reduced. This finding can be interpreted as follows. The dynamic aperture, as 
defined by the border between chaotic and regular trajectories, is so small that it is completely 
determined by the multipole components of order lower than 20. On the contrary the emittance 
growth in the chaotic regions of phase space and the border for particle-stability over 20000 
turns are affected by the additional systematic 20-pole coefficient. This multipole component 
gives rise to a strong detuning at large amplitudes and consequently to more resonance-crossings 
as well as to enhanced driving terms. This interpretation is confirmed by the results of map 
tracking for model II, which were reported in chapter 2. A 7th order Taylor map, which does 
not include the effect of the 20-pole component, yields the same threshold for the onset of chaos 
as the direct tracking or a Taylor map of 9th order. But both the 9th order map and the direct 
tracking show a much smaller region of stability over 20000 turns (see Table 2.3). 

For completeness it should be mentioned that in model II also the coefficients as-alO and 
bs-b9 of the quadrupole magnets are increased by a factor of 10 (compare Table 2.2). However, 
only the considerably larger coefficient blO has an influence on the tracking results. 

(J 

5.2 Tracking Studies including Tune Modulation 

According to the last section, the measured dynamic aperture is a factor 1.5-2 smaller than 
the value expected from simulations which take into account only the nonlinear field errors. A 
better agreement is obtained if a modest tune modulation is included in the model. 
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HERA, dynamic aperture, Qx=31.27, Qz=32.30, Vrf=70kV 
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• chaotic trajectory 0 regular trajectory ~p/p x 10-2 

Figure 5.1: Dynamic aperture in the arcs of the HERA proton ring expected from simulation studies 
for the working point Q:r: = 31.27, Qz = 32.30 and a circumferential rf voltage of 70 kV. Shown are 
amplitude values r in IDm, defined by the equation r = Jf3(E:r: + Ez ) with f3 = 76 m, as a function of 
the amplitude of momentum oscillations !:J.p/p. The underlying model of HERA, which includes the 
actually measured multipole errors, is refer-red to as model I in the text. Also indicated is a range of 
values for the real dynamic aperture measured in 1992. The uncertainty depicted does not refer to 
the error of the measurement, which is much sma1ler, but to the variation observed over periods of 
days or weeks. 
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Figure 5.2: Predicted dynamic aperture for model II of HERA, in which the 20-pole coefficients b10 

of the quadrupole magnets is a factor of ten larger than the measured values. As in the previous 
figure the aperture r in mm, defined by the equati~n r = Jf3( €z +€z) with f3 = 76 m, is plotted as a 
function of the amplitude of momentum oscillations l1p/p. Also the chosen working point Qz = 31.27, 

Qz = 32.30 and the rf voltage of 70 kV are the same as in Fig. 5.1. 
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q fq in Hz acceptance in mm mrad 
!::..p/p = 0 !::..p/p = 10-3 

0 0 4.2 1.9 
0.001 10 1.5 -

~005 10 1.5 -
0.01 10 1.2 0.9 

0.005 50 1.9 -
0.01 50 1.9 0.9 

0.005 600 3.1 -
0.01 600 3.1 -

Table 5.1: Influence of tune modulation on the dynamic acceptance in HERA at ~p/p = 0 and 
~p/p = 10-3 • The results are obtained by simulations of the six-dimensional motion with uncompen­
sated linear coupling and do not differ for the two models of HERA. The modulation frequency fq in 
Hz is related to the modulation tune Qm by Iq == Qmlrev, where Irev denotes the revolution frequency 
(Irev = 47.3 kHz for HERA). 

It is of no great importance in which way the tune modulation is added. The reduction in 
acceptance is the same, if one either modulates the strength of all quadrupoles or if one simply 
adds an additional rotation with a modulated angle at the end of each turn, provided that the 
overall modulation amplitude is the same. 

The impact of tune modulation on the dynamic acceptance can be illustrated by the results 
of two tracking studies: 

Table 5.1 shows the reduction in the dynamic acceptance caused by a tune modulation of 
different frequency and amplitude. The data refer to a simulation performed for uncompensated 
linear coupling (K, ~ 0.017, where K, denotes the minimum difference between the two betatron 
tunes in the case of coupling [62]) and with full synchro-betatron motion. It can be seen that the 
sensitivity to the modulation frequency is much stronger than the sensitivity to the modulation 
amplitude and that a ripple of frequency 10-50 Hz can drastically reduce the aperture over a 
wide range of modulation amplitudes. 

The effect of a 50-Hz ripple with an amplitude of 10-4 was simulated for pure betatron 
motion with different emittance ratios in the linearly decoupled accelerator (K, ~ 0.003). The 
results of this study are summarized in the two acceptance-diagrams of Fig. 5.3, which represent 
regular, chaotic and unstable trajectories for the non-modulated case and in the presence of 
tune modulation, respectively. It can be seen that the tune modulation reduces the aperture 
by about a factor of two. 

In chapter 4 the modulation amplitudes due to power supply ripple have been estimated to 
be as large as 10-4 • The strong effect of tune modulation on the dynamic aperture observed in 
the tracking studies calls for an analytical study of the chaos-generating process. 
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Figure 5.3: Vertical versus horizontal dynamic acceptance for model II of HERA in the case of pure 
betatron motion with compensated linear coupling; a) no tune modulation, b) 50 Hz tune ripple with 
amplitude 10-4 • The border between regular and chaotic trajectories is hardly affected by the value 
of the 20-pole coefficient blO and about the same for the model I. Trajectories in the hatched region 
of diagram b) are chaotic only in the presence of tune modulation. 
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5.3 Parameters of High-Order Resonances 

By a suitable combination of normal-form and factorization processes the parameters of all 
resonances kQ~ + IQz = P up to 11th order can be evaluated inside the dynamic aperture 
of HERA. The basic procedure consists of two steps [23]. First, a four-dimensional truncated 
Taylor map of 11th order is extracted from a tracking code by the methods of differential algebra 
[12]. As a second step differential-algebra based normal-form transformations and Lie-algebraic 
factorizations are performed [23, 26], which bring the map into a particularly simple form. 
To illustrate the procedure, an overview of differential algebra and of normal-form methods is 
presented in appendix A. 

An 8th order normal-form transformation for a model of the HERA proton ring still shows 
considerable deviations from tracking, which indicate that the order 8 is too low. For in­
stance the tune dependence on amplitude is not well reproduced for emittances of about 4 mm 
mrad (see Fig. 5.4). However, small resonance denominators prevent a 9th order normal-form 
transformation to converge in the whole amplitude range of interest. A possible way out is to 
normalize the map M up to 8th order and subsequently to rewrite the remainder as a Dragt­
Finn factorization [20], or in other words - to apply first order perturbation theory in the 
8th order normal-form coordinate frame. The original map M is then cast into the following 
form 

(5.2) 

where the tn and In are polynomials of degree n in Xle = J2IIe cos.ple and Pie = -J2IIe sin .pie. 
'A' denotes the 8th order normal-form transformation. The detuning is deduced from the 
approximate Hamiltonian 

Tune curves for model II obtained by this method and those from an 8th and an 11th 
order normal-form analysis are compared with the tracking data in Fig. 5.4. Here and in the 
following, the amplitude values refer to the interaction point, where the horizontal and vertical 
beta function of the injection optics are {3a: :::::: 28.5 m and {3% :::::: 3.8 m. The horizontal axis in 
Fig. 5.4 gives the starting amplitude at this point, the total scale corresponding to an emittance 
of 4 mm mrad. The initial angles x' and z' are chosen as zero. 

In Fig. 5.4 the divergence of the 11th order normal-form analysis and the shortcoming of an 
8th order normalization are clearly evident. The combination of a normal-form transformation 
and a subsequent Dragt-Finn factorization leads to a substantial improvement and reproduces 
the amplitude-dependent tunes up to the threshold of chaotic motion. 

In order to verify the convergence of A-l, the transformation can be directly applied to the 
tracking data. This is illustrated in Fig. 5.5 for a trajectory with an initial emittance f~ :::::: 2.2 
mm mrad and fz = 0 mm mrad. Shown are the usual phase space projections and those in an 
8th order normal-form coordinate frame. In the transformed coordinates, the motion in both 
planes is almost perfectly decoupled and circular. The small, but finite width of the circle in 
the vertical normal-form plane (Fig. 5.5 d) ) is caused by nonlinear terms of order higher than 
8 and can only be removed by increasing the order of the transformation. 

Fig. 5.6 presents similar phase space plots for an initial vertical emittance of about 4 mm 
mrad. At this larger amplitude an 8th order transformation is still well behaved. A 9th order 
normal-form transformation, however, diverges strongly in the vertical plane (Fig. 5.6 f) ), where 
the transformed coordinates become extremely large. 
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Figure 5.4: a) Horizontal tune Qz as a function of the starting amplitude Z6ta.,.t (f3z = 28.5 m, 
Z6ta.,.t =0), b) vertical tune Q% as a function of the starting amplitude Z.ta.,.t (f3% =3.8 m, Z6t4.,.t = 0). 
In both diagrams, the maximum amplitude corresponds to an emittance of about 4 rom mrad. 
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a) original horizontal plane, b) original vertical plane, c) horizontal plane normalized to 8th order, d) 
vertical plane normalized to 8th order. 
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Figure 5.6: Tracking data for HERA at an initial emittance E:z; = 0 mm mrad and Ez ~ 4 mm mrad; 
a )-b) original horizontal and vertical plane, c )-d) horizontal and vertical plane normalized to 8th 
order, e)-f) horizontal and vertical plane normalized to 9th order. Note the different scale in diagram 
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To identify the relevant high-order resonances the amplitude-dependent tunes are depicted 
in a tune diagram together with the resonance lines. This is done for three different working 
points in Fig. 5.7. Shown is the change of the tunes, if the initial emittance is varied between 
zero and fz = fz = 4 mm mrad. Also represented in the figure are all resonance lines through 
order 11. For the three working points, it is possible to identify 11, 6 and 11 resonances of 
order 7 to 11, which are crossed by the tune, if the starting emittance is changed continuously 
from 0 to 4 mm mrad along the three lines fz = 0, €z = 0 and €z == fz. 

Fig. 5.8 shows an analogous diagram for model II, where only a single working point is 
investigated. In this case, 18 resonance-crossings are found. The larger number of resonances 
crossed can be ascribed to the detuning induced by the additional 20-pole component. 

As illustrated in appendix A, the detuning and driving terms 829/812 and h can also be 
determined by the normal-form analysis. They are evaluated for all resonances crossed in 
Fig. 5.7. In Table 5.2 the results are listed for one of the working points. A compilation 
of the resonance-parameters for all three working points is given in appendix B along with 
normal-form results for model II. 

x z Resonance 8 2g/81; 8 2g/81z 81z 8 2g/81'; h QI 
0.000 2.720 -3Qz + 6Qz =100 0.5· 10-~ -0.4· 10-~ 0.26.10-3 0.2·10-1U 2.10-6 

0.000 2.780 6Qz - 2Qz = 123 0.5· 10-~ -0.4· 10-~ 0.29.10-3 0.13.10-14 1.9.10-8 

0.000 2.800 9Qz + 2Qz = 346 0.5.10-2 -0.4.10-2 0.30.10-3 0.14.10-23 6.1.10-13 

0.000 2.840 3Qz + 4Qz = 223 0.55 ·10-~ -0.4· 10-~ 0.32.10-3 0.13. 10-9 2.3.10-6 

0.000 3.960 8Qz + 3Qz = 347 0.8.10-2 -0.57.10-2 0.18.10-1 0.33.10-20 2.9.10-11 

4.290 0.000 7Qz ­ 3Qz = 122 0.33.10-2 -0.27.10-2 -0.71.10-4 0.9.10-12 5.10-7 

6.105 0.000 -4Qz + 7Qz = 101 0.31. 10-2 -0.22.10-2 -0.17.10-3 0.3.10-16 2.10-9 

7.150 0.000 11Qz = 344 0.30.10-2 -0.20.10-2 -0.19.10-3 0.11.10-7 6.3. 10-5 

5.720 2.080 7Qz - 3Qz = 122 0.39· 10-~ -0.24 ·10-~ -0.27.10-3 0.16. 10-6 2.2.10-4 

6.490 2.360 -4Qz + 7Qz = 101 0.39.10-2 -0.21.10-2 -0.36.10-3 0.31.10-6 2.24.10-4 

8.415 3.060 11Qz = 344 0.38· 10-~ -0.13 ·10-~ -0.62.10-3 0.77.10- 7 1.9.10-4 

Table 5.2: Characteristics of high-order resonances in HERA as a function of starting amplitudes z 
and z for the working point Qz = 31.27, Qz = 32.30. At the point of observation z = 11 mm or z = 4 
mm correspond to an emittance of about 4 mm mrad. 

According to Tables B.1-BA an island tune of 2 . 10-4 and a resonance order n == 10 may 
be considered typical for large amplitudes. The corresponding phase diagram is depicted in 
Fig. 5.9. It is evident that tune modulation frequencies above 50 Hz (Qm > 10-3) should be 
harmless from a sideband-overlap point of view. 

Fig. 5.10 shows the island width Ll€tot _ 2Ll1tot, computed from (3.69), as a function of the 
emittance € = €z +.. f z, for the resonances of order 7-11 listed in Tables B.1-B.3 and BA. The 
resonance width is approximately parametrized by 

Llftot ~ 2.10-4 . f4. (mm mrad)-3. (504) 

In Fig. 5.11 the absolute width of the stochastic layer w . Ll1tot in mm mrad (equations 
(3.69) and (3.96)) is represented as a function of the modulation frequency for a typical high­
order resonance in HERA (10th resonance in Table 5.2). The modulation amplitude q = 10-4 

assumed can for instance be caused by power supply ripple. 
Fig. 5.12 is the same as Fig. 5.11 apart from the larger value of the modulation amplitude 

q == 10-3, which could be due to synchrotron oscillations and a nonzero chromaticity. The design 
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Tune diagram, 8th o. normal form & 11 th o. D-F 

aO.31 

0.295 

0.28 
0.25 0.29 

Figure 5.7: Diagram of the amplitude-dependent particle tunes for the HERA proton ring (model 

I) and of all resonance lines up to order 11. The tunes are obtained by the combined 8th order 

norm.al~form analysis / 11th order Dragt·Finn factorization. The numbered dots are tunes for special 

values of the starting emittances: 

1 €z =0., €z = 0, 2 €z = 0 , €z =4 mm mrad, 

3 €z =4 mm mrad, €z =0, 4 €z = 4 mm mrad, €z =4 mm mrad. 

The connecting lines correspond to a continuous <'Variation of the initial emittances between these 

values. The squares, circles and triangles refer to the working points (Q z = 31.27, Qz = 32.30), 

(Qz =31.27, Qz = 32.295) and (Qz =31.27, Qz = 32.29), respectively. 
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Tune diagram, 8th o. normal form & 11 th o. O-F 
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Figure 5.8: Diagram of the amplitude-dependent particle tunes for model II and of all resonance lines 

up to order 11. The tunes are obtained by the combined 8th order normal-form analysis / 11th order 

Dragt-Finn factorization. The numbered dots are tunes for special values of the starting emittances: 

1 E:e = 0 , Ez = 0, 2 E:e = 0 , Ez = 4 :nun mrad, 

3 E:e = 4 mID. mrad, Ez = 0, 4 E:e =' 4 :nun mrad, Ez = 4 mID. mrad. 

The connecting lines correspond to a continuous variation of the initial emittances between these 

values. The chosen working point is Q:e = 31.27, Q"z = 32.30. 
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Phase Diagram, n= 10, Q1=0.0002, w=0.05,0.1 ,0.2,0.3 
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Figure 5.9: Phase diagram for the island tune QI = 2.10-4 and the resonance order n = 10 according 
to (3.94) (solid curves) and contour lines (3.96) f<;lr w = 0.05,0.1,0.2,0.3 (dotted curves). This diagram 
represents a typical high-order resonance at injection energy in HERA. 
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Figure 5.10: Island width Jl€tot == 2Jlltot (3.69) as a function of the resonant single-particle emittance 
€ == €z + €z in units of mm mrad, for the resonances of order 7-11 listed in Tables B.1-B.3 (closed 
symbols) and B.4 (open circles). The closed squares, circles and triangles refer to the three different 
working points of Figure 5.7. The dotted curve represents (5.4). 
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0.03 

0.02 

synchrotron frequency of 14 Hz is close to the maximum width of the dotted curve (3.96). For 
this fairly large value of q it becomes important that the relative width w, computed from 
(3.96), has an upper limit of about 2. As already mentioned in section 3.12, this limit is related 
to the complete destruction of the resonance islands. If, for each modulation frequency, the 
minimum of (3.96) and 2 is chosen as the value of w, we get the solid curve in Fig. 5.12. 

Figure 5.11: Absolute width of the stochastic layer w • .aItot in units of nun mrad according to 
equations (3.69) and (3.96) as a function of the modulation frequency Qm for a typical 11th order 
resonance in HERA. This resonance (10th entry of Table 5.2) is crossed at an emittance value of 
f = fa: + f;z ~ 2.95 nun mrad and has an island tune QI ~ 2.24 .. 10-4• The modUlation amplitude 
q = 10-4 is characteristic for the effect of power su,pply ripple (see chapter 4). 

In order to compare the effect of different modulation frequencies in a more quantitative 
way, the chaotic fraction of phase space r (3.106) is calculated for a modulation amplitude 
q = 10-4 • To this end the sum in (3.106) is extended over all resonances of Tables B.1-B.3. 
Fig. 5.13 shows that the sensitivity to tune modulation is highest for modulation frequencies 
between 5 Hz and 50 Hz. Chaotic trajectories may cover about 10% of the phase space in the 
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Figure 5.12: Absolute width of the stochastic layer w· ~It.ot. in units of mm mrad for the same reso­
nance as in Fig. 5.11, assuming the larger modulation amplitude q =10-3 • A modulation amplitude 
like this could be caused by synchrotron oscillations and nonzero chromaticity. The dotted curve 
depicts equation (3.96) solely. The solid curve is obtained by regarding 2 as an upper limit for w, 
which corresponds to the complete destruction of the resonance island (see also section 3.12). 
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presence of a 50-Hz power supply ripple. For frequencies above 100 Hz the effect of the tune 
modulation is negligible. 

Sensitivity as a function of modulation frequency 
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Figure 5.13: Chaotic fraction of phase space r (3.106) as a function of the modulation frequency for 
a constant modulation amplitude q = 10-4 • 

5.4 Emittance Growth Rates 

Equation (3.107) may be used to obtain an estimate of the global emittance growth rate caused 
by high-order resonances under the influence of an external tune modulation. It amounts to 
computing the weighted sum of the 'local' emittance growth rates near individual resonances. 
The calculated growth rate (3.107) of the transverse emittance f fz+f% is depicted in Fig. 5.14 
for modulation frequencies between 0.05 and 500 Hz, summing over all resonances of Tables 
B.1-B.3. 

The emittance-dependent diffusion coefficient D( f), defined in (3.110), is shown in Fig. 5.15 
for model I and model II assuming a ripple frequency of 50 Hz. Three regions in emittance can 
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Figure 5.14: Global emittance growth rate < (ll.E)2 / ll.t >global as a function of the modulation 
frequency. Note that, according to (3.107), the growth rate does not depend on the modulation 
amplitude q. 
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be distinguished: 

A threshold fo of tune-modulation-induced diffusion is observed at about 

fO ::::::: (1 - 1.5) mm mrad. (5.5) 

This threshold can be regarded as an estimate of the dynamic acceptance. Its value is about the 
same for both investigated models and is in remarkable agreement with the threshold of chaos 
found in tracking simulations including tune modulation (section 5.2) and with the actually 
observed acceptance of 1.2 mm mrad (section 5.1). 

Beyond about 8 mm mrad in the case of model I and beyond about 4 mm mrad for model 
II the diffusion coefficient reaches values in the order of 1 (mm mrad)2/s, which would show up 
as a rapid particle loss. In fact, these emittance-values are consistent with the stabi~ty-limit 
over 20000 turns found in six-dimensional tracking studies for the two models (see Figures 5.1 
and 5.2). 

In an intermediate amplitude range, a possible, very rough parametrization of the diffusion 
coefficient is 

(5.6) 

where c is approximately 
(5.7) 

The exponent a in (5.6) is of particular interest since the predicted dependence of the 
diffusion rate on f can directly be compared with collimation studies in the HERA proton ring 
[64, 65]. From Fig. 5.15 follows 

a::::::: 15. (5.8) 

Nearly the same values of fo and a are obtained for a modulation frequency of 10 Hz. 
According to (3.111) the locally averaged emittance growth is given by 

(5.9) 

leading to 

1.2 }
at f = 2.0 mm mrad. (5.10)

{ 4.0 

It should be mentioned, that the large value of the exponent a is consistent with results from 
a phenomenological analysis of beam profile evolutions observed at the Fermilab Tevatron. For 
the Tevatron diffusion experiment, the best fit to the measured data was achieved with rapidly 
growing functions such as D = DOfQ. with a ~ 6 [66]. 

5.5 Range of Validity of the Model 
The average value of the diffusion coefficient in the phase space region between two adjacent 
resonances, defined in (3.110), is suitable for a comparison with multiple scattering processes, 
that affect all particles equally. 

In addition several physical processes give a physical meaning to the phase space average. 
Some of these are briefly dicussed in this section. 
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Figure 5.15: Emittance-dependent diffusion coefficient D(f) (3.110) as a function of the transverse 

single-particle emittance f in units of rom mrad, for the resonances of Tables B.1-B.3 (closed symbols) 
and BA (open circles). A modulation frequency Qm = 10-3 (corresponding to 50 Hz) is assumed. The 
closed squares, circles and triangles refer to the three different working points of Figure 5.7. Below 
fO ~ 1.4 mm mrad, demarcated by a vertical dashed line, all trajectories are regular. At 8 or 4 rom 
mrad, indicated by a dashed and a dotted vertical line, respectively, the diffusion coefficient D (€ ) 

becomes of the order of 1 (rom mrad)2 / s. In the f'ntermediate emittance range, D(f) can be roughly 
parametrized by an exponentially growing function like (5.6). 
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Over periods of hours considerable slow changes of orbit and tunes are observed during the 
operation of HERA. These are mainly due to drifts in the power supplies and to temperature 
effects. If the tunes change, the resonance islands will alter their position in phase space too. 
Particles are lost from the chaotic layer and other, previously regular protons are trapped inside 
the stochastic layer, if the resonance islands move in phase space. Only the particles which are 
currently inside the chaotic region suffer a diffusion in action. The resulting emittance growth 
averaged over long time periods equals the emittance growth averaged over the phase space, 
provided that the change in the island position is faster than the diffusion in the chaotic regions. 
From this condition we can derive a rough criterion for the range of validity of the model. If we 
denote the mean change of the machine tune per unit time by it, the rate at which the position 
of the island changes is about 

f:l.€) 4 . 
( - ~82 Q (5.11)

f:l.t i.land-dri/t ~ 

Typically the tune changes by 10-4 during 1 hour. From diagram 5.4, the corresponding 
emittance change is roughly 0.05 mm mrad. Hence the islands alter their position at a rate 

( f:l.€) ~ 1.4 .10-5 mm mrad S-I. (5.12) 
f:l.t i.land-dri/t 

For predicted emittance growth rates larger than this value, the validity of the phase space 
averaging is no longer guaranteed. Using the growth rate (5.9) the drift rate (5.12) can be 
translated into a 'critical' emittance 

(5.13) 


For smaller values of the emittance the phase space average has a physical meaning. 
According to Tables B.1-B.3 and Fig. 5.15 the distance between two resonance islands in 

HERA is about be ~ 0.5 - 1.0 mm mrad. Therefore almost every part of the phase space has 
been covered by resonance islands roughly after a time Tave ~ be/( !:)idand-dri/t ~ 10 - 20 
hours. 

A second process which can cause an averaging in phase space is residual gas scattering (see 
section 8). The actual emittance growth due to gas scattering {f:l.e/ f:l.t)ru.ga. ~ 1.2 . 10-7 mm 
mrad S-1 (8.27) is a factor 100 smaller than the critical growth rate (5.12) due to drifts of the 
resonance islands and is, therefore, of minor importance. 

Resonances of order higher than 11 cause tiny chaotic regions everywhere in phase space, 
which form a dense web of stochastic layers. The 'microchaos' may enhance the phase space 
averaging effect of the island drifts. It will not be attempted here to quantify this contribution. 
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Chapter 6 

Beam-Beam Interaction 

6.1 Model 

As shown in appendix A, a Taylor expansion using differential algebra is not adequate for the 
treatment of the beam-beam interaction. In this chapter, therefore, a different approach is 
followed, namely the island parameters of high-order resonances for the beam-beam interaction 
are deduced by first order perturbation theory. To simplify the analysis, we will limit ourselves 
to the case of round beams. In this special case many results can be stated explicitly without 
making use of numerical calculations. It is worthwhile to note that the round beam scenario is 
a viable option for ep collision in HERA [67]. 

Because of the moderate electron beam-beam tune shift ie ~ 0.01 - 0.02, no blowup of 
the electron beam is expected and it is justified to focus the attention on the incoherent single 
particle dynamics of the protons (weak-strong approximation). 

In Table 6.1 a few important beam-beam parameters are listed that are used in our subse­
quent analysis. The quantities €z,p and €z;,p are the two-sigma proton beam emittances at 820 
Ge V, defined by 

240­
l --Y for y = x, z. (6.1)

Y,P - /3·
Y,P 

Assuming a Gaussian bunch shape the two-sigma emittance corresponds to 86% of the beam. 
The beam-beam tune shift in Table 6.1 is about four times larger than the one quoted in [67] in 
order to incorporate the effect of several interaction regions. Almost all quantities of interest, 
that will be derived, are proportional to the proton beam-beam tune shift ip or are independent 
of it. Hence the extrapolation to other values of ip is straightforward. 

Parameter Value 
• •o-z.e,o-z.e 0.147 mm 
• •0-Z,P' 0-%.P 

9 0.146 mm 

tz,p, ez,p 0.0024 

/3;,p, /3:.fJ 3.0 m 
lz,p, €%,P 0.028 mm mrad 

Table 6.1: Some beam-beam parameters for the round beam scenario. 
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The simple model consists of a beam-beam kick and a four-dimensional rotation. Linear 
coupling between the two transverse planes of motion is disregarded and also the nonlinear 
magnetic field errors, which are negligible in view of the small transverse beam size at large 
proton energies. 

Our analysis is based on the working hypothesis that an interplay of high-order resonances 
driven by the beam-beam interaction and an external harmonic tune modulation limits the 
beam lifetime and leads to particle losses at large amplitudes. Other phenomena, such as a 
random tune drift, are considered only in so far as they give rise to the averaging in phase space 
discussed in section 5.5. 

6.2 Hamiltonian 

(6.2) 

The variables Iz,z. and ¢z,z. are related to z and z in the usual way, 

z = J2/3Iz cos ¢z and z = J2/31z. cos ¢z., where /3 == /3;,p = /3;,p' (6.3) 

The beam-beam potential V is rotationally symmetric and can be obtained by integrating the ' 
beam-beam kick 

(6.4) 

where r2 = z2 + z2 for centered collisions and e=ez,p = ez.,p. The result can be expressed in 
terms of the exponential integral Ei, 

u eU' 
Ei(u) = j -, du' (u > 0). (6.5) 

-00 u 

The integral has to be understood as the principal value. Using Ei the potential (6.4) is written 
as 

(6.6) 

In the Hamiltonian (6.2) this expression is multiplied by 2:5(O+n21r) = 2:exp(ipO)j(21r) to 
take into account the localisation of the kick. The exponential integral E1 , which is related to 
the function Ei via 1 [68] 

1 00 zn 
Ei(x) = --(El(-x + iO) + E1 ( -x - iO)) = I + In Ixl + L --I' (6.7)

2 n=l n· n. 

is supported by commercial program libraries [69]. 
Similar to the treatment 'of tune modulation and nonlinear magnetic field errors at injection 

energy, the general Hamiltonian (6.2) is repla~ed by a single-resonance approximation of the 
form (3.57) 

H(Iz, Iz., ¢z, ¢z., 0) = IzQz,o + 1z.Qz.,o + 9(lz, 1z.) + h(lz, Iz.) cos(k¢z + l¢z. - pO), (6.8) 

which will be used in the later analysis. For different resonance orders the tune shifts og j oIz,z. 
and the second derivatives of 9 as well as the driving term h have to be calculated. 

IThe quantity i :::::: 0.57721 ... is Euler's constant. 
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6.3 Tune Shift and its Derivatives 

The tune shift is obtained by taking the derivative of the Hamiltonian (6.2) with respect to the 
action Iz,z and averaging over the angle variables. It reads 

(6.9) 


where 

(6.10) 

Let us restrict the analysis to the diagonal Iz = Iz I to represent a typical behavior. In 
(6.10) only even powers of cos <Pz and cos <Pz appear. Making use of the general relation 

~ f21r cos2m <pd<p = _1_ ( 2m ) (6.11)
27r Jo 22m m 

one can average over both angles and arrive at 

89 - [1 (f3I ) n n 1 ] (6.12)00 

8I ,z = 2e 2+~ (72 (-1) (n + I)! . en 
z 

where the coefficients en are of the form 

en =_1 ~ ( n ) ( 2n - 2m +2 ) ( 2m ) (6.13)
22n+2 L.J m n - m + 1 m 

m=O 

The first two terms of the series (6.12) are 

89 - [ 5 (f3I ) ] (6.14)8I ,z = e 1 - 8" + ... (72 
z 

The second derivatives of the function 9(Iz ,Iz ) are obtained analogously. Again one has to 
average over the angles. The result is 

829 
812 

z 

829 
8Iz 8Iz 

(6.15) 

where the coefficients Dn are 

_1 ~ (n ) ( 2n - 2m + 4 ) ( 2m ) (6.16)
22n+4 L.J m n - m + 2 m 

m=O 

_1 ~ (n ) ( 2n - 2m + 2 ) ( 2m + 2 ) (6.17)
22n+4 L.J m n - m + 1 m + 1

m=O 
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6.4 Driving Term 

The form of the Hamiltonian already indicates that no odd resonances occur (the Hamiltonian 
depends only on r2). Thus we have the resonance condition 

with k and 1even. 	 (6.18) 

It is tedious to calculate closed expressions for single resonance driving terms in the same way 
as for the tune shift and its derivatives 2. Therefore, to extract Fourier components from the 
potential 

U(z,z) = V(z,z) = 2e [EI (~) +In (~)] 	 (6.19)
21r f3 20-2 20-2 

we choose a numerical fast Fourier transform (FFT) [69]. The Fourier coefficients are 

1 102 
11" 0'_ °1-- U(z z)e-t.tc<Pce-t. <Pz: d"" d""(21r)2 0' 	 ~:z; ~z 

~ ~ [~ ~ U(z z )e-i1e2 11"N e- iI211"N]N N L m,n, m,n 	 (6.20) 
m,n=O 

The expression in square brackets is calculated by the FFT routine. The driving term h of 
(6.8) is 

(6.21) 


A further complication arises if a fiat electron beam is considered. In this case the beam­
beam kick can be expressed by means of the complex error function [32]. In 1992 the aspect 
ratio of the electron beam in HERA was 

(6.22) 


Extraction of detuning and driving terms for this situation is more involved, but the results will 
not qualitatively differ from the round beam case and will, therefore, not be presented here. 

6.5 Chaotic Fraction of Phase Space 

The general procedure to calculate the island tune for a specific resonance consists of several 
steps, similar to the treatment of resonances in chapter 5: 

1. A working point (Q:z;, Qz) is chosen in the tune diagram. 

2. 	The resonance is specified by a pair (k,l) of integer numbers. 

3. 	From the tune shift equation (6.12) the emittance value f:z; = fz is computed at which the 
resonance condition is fulfilled. 

4. 	The second derivatives of 9 with respect to I:z;,z are calculated for this emittance using 
relation (6.15). 

2After completion of this thesis the author became aware that, for the one-dimensional case, explicit expres­
sions of the driving term h and the detuning term 9 are stated in [87]0 
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5. Finally the driving term h is calculated by the fast Fourier transform. 

Fig. 6.1 compares tracking results with the tune shift calculated from equation (6.12). Not 
surprisingly, the agreement is good for amplitudes up to about x = z ~ 30- ~ 0.5 mm. At 
larger amplitudes, not shown in the figure, the curve deviates from the tracking data due to a 
truncation of the infinite sum (6.12) at n = 26, which is required to avoid numerical overflow. 

x 102 
Tune shift as a function of start amplitude 

j 0.25 ..----------------, 
o 
<l 

0.225 

0.2 

0.175 

0.15 

0.125 

0.1 

0.075 

0.05 

• tracking 
0.025 - equation (6.12) 

t-.................... .,......................... , 

o 0 0.05 0.1 0.' 5 0.2 0.25 0 . .3 0 . .35 0.4 0,45 
x-*'z-t in mm (P...",,3m) 

Figure 6.1: '!\me shift 8g/8IZt% for the beam-beam interaction. 

In Fig. 6.2 the island tune, defined in (3.66), is shown as a function of amplitude for 
resonances of order 8, 10, 12, 14 and 20. Increasing the resonance order by 2 reduces the island 
tune by a factor 2 to 10 (dependent on the amplitude value; the largest reduction occurs at 
small amplitudes). 

For all resonances under consideration the island tune stays below 0.001 (rv 50 Hz). Because 
both the detuning function 9 and the driving term h in (6.8) are proportional to the beam-beam 
tune shift parameter e, a smaller value of ewould lead to a further decrease of the island tune. 
Since the island tune is a measure of the frequency range, in which a harmonic tune modulation 
gives rise to strong chaos, one can conclude that a tune ripple of 50 Hz or of higher frequency 
will not dramatically widen the chaotic region for resonances of order 10 or above. 

In order to illuminate this topic a little more, a local chaotic fraction of phase space r is 
calculated 

r( Q )-~I ()/(61) (Qm )2Sinh(~) 41rq(1+k)Vk2+l2 1 ( ) 
X, rn.,q = tot' W x = QI(X) sinh (~) 1(12 +k2)~ +2k1.i!:L161 6.23 

QJ(z) 8J; 81e lz 

Here 81 is the distance in action between two adjacent resonances. A realistic value is 81 ~ 
0.001 - 0.002 mm mrad. The function r differs from the sensitivity function r (3.106) in that 
it refers to a single resonance order only and 4' that it also has a dependence on the starting 
amplitude x. 

Fig. 6.3. shows r as a function of the starting amplitude for different resonance orders. The 
modulation frequency Qrn. is held constant, equal to 10-3 

, and the modulation amplitude q is 
10-4 , so that 

41rq 1 1
61 ~ 1 mm- mrad-. (6.24) 
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Figure 6.2: Island tunes as a function of the transverse amplitude for resonances of various order. 
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10 

Fig. 6.3 confirms that, for amplitudes up to 30', the resonances of 10th and of higher order 

Sensitivity as a function of amplitude 

0.08 	 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 
X=Z in mm (Px.z=3m) 

Figure 6.3: Chaotic fraction of phase space t (6.23) as a function of the transverse amplitude for 
resonances of various order, assuming a tune modulation of frequency 50 Hz and amplitude 10-4 • 

should have no strong effect on the particle stability. Note, however, the steep increase of r 
for 10th and 12th order resonances, indicating that in the range 3 - 50' (0.45 - 0.75 mm) the 
effect of these resonances may become important. 

6.6 Emittance Growth Rates 

In close analogy to the discussion in chapter 5, the dependence of the diffusion rate on the 
transverse emittance' € = €:a: + €z is estimated by 
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(6.25) 
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where the 'local' emittance growth rate is defined in (3.72). In Fig. 6.4 the dependence of the 
diffusion coefficient D( f) on the single-particle emittance is weaker than exponential. Thus it 
is different from the case of multipole errors (Fig. 5.15). 

Diffusion coefficient for the beom- beam interaction 
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-23 
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-25 
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Figure 6.4: Diffusion coefficient D( €) (6.25) for resonances of various order as a function of the trans­
verse single-particle emittance € == €z + €z, assuming a modulation frequency of 50 Hz (Qm =10-3 ). 

Locally it is still possible to approximate D( €) by an exponential expression Do( €) = Cofoo 

(see also [70]). The subscript 0 indicates the local character of the approximation. Differ­
entiation of DO(f) yields the emittance growth rate < t::..€/t::..t > at €o (compare (3.111) and 
appendix F). In Table 6.2 results are listed for a single-particle emittance fO of about 0.1 mm 
mrad, corresponding to z = z ~ 2.7tj. (. 

6.7 Off-Center Collisions 

If the beams collide off-center, high-order resonances feed down to lower order. Especially, a 
non-centered collision leads to an excitation of odd order resonances, whose strengths depend 
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on the displacement of the two beams. Of special importance is the 7th order odd resonance 
at Qz ~ Qz ~ 0.286, which is close to the actual working point of 1992 and has a measurable 
effect on beam lifetime and background. The beam-beam potential (6.19) also applies in the 
more general situation of a horizontal displacement ax, if the horizontal coordinate x in the 
argument r2 = x2 + Z2 is replaced by x + ax, 

The coordinates x and z are related to 1ztz and ¢z,z by (6.3). To study the dependence of the 
diffusion rate close to this resonance on the displacement between the two beams, the detuning 
and driving terms have to be evaluated. The second derivatives 82U/81;,z of the potential 
U{ x, z) are computed numerically. Their average values, calculated by a fast Fourier transform 
[69], are the detuning terms 829/81;,z. Likewise an FFT provides the driving term h{Iz, I z ) as 
in section 6.4. 

A diffusion coefficient D{ € , ax) can be defined in analogy to (6.25), where now the quantities 
aItot , wand (a{ €z + €z))2 / at depend also on the beam separation ax. Differentiation of D{ € ) 

yields the amplitude-dependent emittance growth rate (see (3.111)). 
In Fig. 6.5 the expected growth rate is depicted as a function of the horizontal displacement 

ax of the beams for various starting amplitudes. At the modest amplitude x = z = 20"ez, 
in Fig. 6.5 a), the emittance growth rate exceeds that due to intra-beam scattering (9.4), if 
ax > O.lO"el. For this amplitude, the effect of the 14th order resonance is too small to be shown. 
At a transverse amplitude of x = z = 40"el, in Fig. 6.5 b), the growth rate equals that caused 
by intra-beam scattering for a beam displacement ax ~ 0.050"el. The effect of the 14th order 
resonance can still be neglected. It becomes noticeable at greater transverse amplitudes such as 
x = z = 60"el, shown in Fig. 6.5 c). For beam offsets ax beyond O.lO"ez, however, the emittance 
growth resulting from the 7th order resonance exceeds the effect of the 14th order resonance by 
many orders of magnitude. For still larger transverse amplitudes x = z, the emittance growth 
rate starts to decrease. At x = z = 80"el, in Fig. 6.5 d), it is already smaller by about a factor 
105 than for x = z = 60"d. 

The maximum tolerable displacement ax between the electron and the proton beam in 
HERA is conservatively estimated as 

(6.27) 


Resonance 
order 

exponent 0:0 coefficient Co 
in (mm mrad)2-ao s-1 

< a€/at > 
in mm mrad S-1 

8 
10 
12 

rv 10 
rv 22 
rv 63 ~ 

rv 106 

rv 1013 

rv 1041 

rv 0.01 
rv 2 . 10-7 

rv 6 . 10-20 

Table 6.2: Emittance growth rate < Ilt=/Ilt > computed by use of (3.111) from the diffusion coefficient 
Do( €) ~ Co • ~o, which is a local approximation to (6.25). The parameters Co and 00 are evaluated at 
an emittance €o ~ 0.1 mm mrad (equivalent to z ~ z ~ 2.70") for resonances of order 8, 10 and 12. 

The values quoted refer to a modulation frequency of 50 Hz (Qm = 10-3 ). 
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For this value the emittance growth rate due to the 7th order resonance, excited by the beam 
displacement, becomes comparable to that caused by intra-beam scattering and to the effect of 
the 14th order resonance, which is excited even if the collision is centered. 
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Figure 6.5: Emittance growth rates < tJ.€/tJ.t > close to a 7th and a 14th order resonance as a 
function of the horizontal displacement Az between the two beams for various amplitudes z = Z; the 
diagrams refer to a modulation frequency of 50 Hz. 
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Chapter 7 

Multiple Proton-Electro~ Scattering 

7.1 Emittance Growth Rate 

In this section the effect of multiple proton-electron scattering on the proton beam emittance 
is estimated. For small four-momentum transfer q, q2 < 2m!rotonc2, the cross section for elastic 
electron-proton scattering is given by the Rutherford formula, which in covariant form reads 

2h2du a
(7.1)

dq2 = 'lrq4' 

Here a is the fine structure constant and h is Planck's constant. For small scattering angles 
the four-momentum transfer can be written as 

q2 '" p202 (7.2)'" P p' 

In this approximation, Pp is the momentum and Op is the scattering angle of the proton in the 
laboratory frame. Note that the transverse momentum transfer l~pp,J..1 I~Pe,J..I:::::;: pp()p is 
invariant under Lorentz transformations in the longitudinal direction and thus has the same 
value in the center-of-mass frame or in the rest frame of the proton. Integration of (7.1) yields 
the total cross section for proton-electron scattering, 

(7.3) 


where qmin and qma.z are suitably chosen limits. The mean squared momentum transfer for 
scattering of a proton on a single electron is then given by 

(7.4) 


To compute the mean squared momentum transfer per unit time and per proton for scattering 
on all electrons of the opposite bunch, the expression (7.4) has to be multiplied by the luminosity 
L, the total cross section Utot and the number of interaction points NIP, and it has to be divided 
by the total number Np of colliding protons. Hence we get [73] 

< q2 > NIPL lqTRCUI! du 2 2 
---:::::;:-- -2qdq . (7.5) 
~t Np qTRift dq 
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Inserting the cross section (7.1) and performing the integration, one is left with 

(7.6) 


The dependence of < q2 > I~t (7.6) on the limits of integration is weak. A reasonable value 
for the maximum four-momentum transfer is deduced from the (horizontal) acceptance Az , 

(7.7) 

Pip being the horizontal proton beta function at -the interaction point. An estimate of the lower 
limit qmin is obtained from the uncertainty principle [73] 

(7.8) 

where <Tel is the electron beam size at the collision point and Ii is h divided by 211". Then the 
horizontal emittance growth rate becomes [73] 

(7.9) 


Here the factor ~ takes account of the projection of the scattering space angle (Jp onto the 
horizontal plane. The vertical emittance growth rate is about ten times smaller (Pip ::::::: l~Pip) 
and may, therefore, be disregarded. Inserting the actual values of 1992, 

NIP - 2, 

Pp - 820 GeV Ic, 
,...",. 2 1029 -2-1 
,...",.L · cm s , 
,...",. 
,...",.Np 25 . 1010, 

Pip 7 m, 

Az ::::::: 0.2 mm mrad, 

<Tel ::::::: 0.2 mm, 

equation (7.9) yields 

~fz ::::::: 10-10 mm mrad S-l. (7.10) 
~t 
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Chapter 8 

Residual Gas Scattering 

8.1 Introduction 

During the first commissioning period of the HERA proton ring in MarchiApril 1991, the beam 
lifetime was limited to about 30 minutes at the injection energy of 40 GeV. Some insight into the 
underlying loss process was gained by beam profile measurements, which showed that the beam 
always filled the available aperture completely. However the source of the lifetime limitation is 
still an unresolved question. In the following we will investigate whether interactions with the 
residual gas could have been responsible for the short lifetime 1. By-products of this study are 
an estimate of the emittance growth rate due to multiple scattering and a calculation of the 
beam lifetime, if it were limited only by nuclear interactions with the residual gas. 

8.2 Lifetime for One Degree of :Freedom 

We first describe the one-dimensional treatment. This corresponds to a situation, where the 
aperture in one direction is large compared to the other. In order to determine the distribution 
function f( E, t) for either the horizontal or vertical emittance we start from a Fokker-Planck 
equation (see appendix E) 

8 < ~E >f( ) !.~ < (~E)2 >f( ).a E, t + 8 2.a E, t . (8.1)
8E t 2 E t 

In this equation < ~E > I~t denotes the mean emittance change per unit time. Similarly < 
(~E)2 > I~t is the mean squared emittance change per unit time. A projected scattering angle 
8 causes a change in emittance ~E(8) = 2(az + f3z')8 + f38 2 

• Averaging over the circumference 
and over the angular coordinate in phase space yields 

(8.2) 


where < (3 > is the mean value of the beta function around the machine. Correspondingly we 
obtain 

(8.3) 


1 Studies of beam gas scattering lifetimes have previously been performed at CERN and at Fermilab 
[74, 75]. 
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Here terms proportional to 1J4 have been neglected. Now the Fokker-Planck equation (8.1) can 
be solved via a separation ansatz f( €, t) = exp( -tiT) . F( f). Introducing the abbreviation 

lib == T < f3 >< 1J2 > I ll.t, 

the differential equation for the function F( €) reads 

€F" +F' +bF = 0 • (8.4) 

The projected mean squared scattering angle per unit time can be approximated by the ex­
pression 2 [76] 

< 1J2 > = (14.1MevIc) 2 pc , 
(8.5)

ll.t p Xo 

where p is the momentum of the protons, Xo is the radiation length of the traversed medium 
in g/cm2 and p is its density. Introducing the normalized amplitude y =Vi of the betatron 
oscillation, equation (8.4) can be rewritten in terms of a distribution function G(y) as 

4bf1G + G' + yG" = 0 . (8.6) 

This equation is solved by a Bessel function of zeroth order, G(y) = Jo( y'4by). At the physical 
acceptance y~Q.z = Ay the argument of Jo should be identical to the first zero Uo ~ 2.4 of Jo • 

We thus arrive at the following expression for the beam lifetime T 

4 Ay ( P )2 Xo (8.7)
Ttd = u~ < f3 > 14.1MeVIc pc· 

The lifetime is proportional to the ratio of acceptance Ay and average beta function < f3 >. It 
is inversely proportional to the mean pressure via the density p. 

The discussion is restricted to the largest possible time constant T, whereas, in principle, an 
infinite number of solutions to equation (8.6) exists. Each solution, labeled by the subscript j, 
is characterized by a different time constant Tj ex: 1/(UO,j?, where UO,j denotes the jth zero of Jo 
[75]. The solutions form a complete set, in the sense that an arbitrary beam distribution f can 
be expanded into them, f( €, t) = 2:j Fj(€) exp( -t/Tj). For large values of t the first term (j = 1) 
is dominant, since the time constant T2 is considerably smaller than Tt (T2 = (UO,t)2 I(UO,2)2 'Tt ~ 
0.2· Tt) and the contributions for j > 2 decay even faster. In addition, two observations suggest 
to disregard all terms besides j = 1: Firstly, in April of 1991 the beam profile had a cosine-like 
(or Bessel-function-like) shape, which did not change over periods comparable to the beam 
lifetime. Secondly, the time-dependence of the current was almost perfectly exponential and 
there was no evidence for a superposition of several time constants. 

8.3 Lifetime fOT Two Degrees of Freedom 

To describe a more general situation, (8.1) h~ to be replaced by a two-dimensional Fokker­
Planck equation 

o 0 < ll.€z > 0 < ll.€z > 
otf(€z, €z, t) = - O€z ll.t f( €z, €z, t) - O€% ll.t f( €z, €%, t) + 

2The approximation is accurate to a few percent for time intervals At > 10-3 • Xo/(pc). At an 
average hydrogen pressure 5.10-7 mbar and a temperature T = 300 K this amounts to At > 50 sec. 
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(8.8) 

Again neglecting terms proportional to (}4 and assuming that the average values of the horizontal 
and vertical beta functions are equal, i. e. < {3z >=< {3z. >=< (3 >, one can proceed exactly 
as in the one-dimensional case. The two-dimensional analogue to (8.6) reads 

1 8G 82G 1 8G 82G 
4bG + -;- 8 + 8 A 2 + -:- 8 + 8 A 2 = 0 . (B.9) 

x x A x z z A z 

For uncoupled motion, equation (B.9) can be solved by factorizing the distribution function 
G(x,z) 91{X)92(Z). After separation of variables one arrives at the following two equations, 
where A is the separation constant, 

X29~ + xg~ + (1 - A)4bx2g1 - 0 (8.10) 

Z2g; + zg~ + A4bz292 - o. (8.11 ) 

These equations are mathematically equivalent to (B.6). Accordingly their solution is given by 

gl{X) - Jo( J4b{1 - A)X) (B.12) 

g2{Z) - Jo{V4bAZ) . (8.13) 

Denoting the horizontal and vertical acceptance by Az and Az. respectively, the boundary 
conditions lead to the following set of equations 

I-A (B.14) 

(8.15) 

Elimination of A yields an expression for the lifetime 

4 1 AzAz. ( p ) 2 Xo (8.16)
T2d = U5 < {3 > Az + Az. 14.1MeVIc pc· 

Note, that (B.16) reduces to (B.7) in the limiting case Az ~ Az. or Az. ~ A~. However, if the 
horizontal and vertical acceptances are equal, (B.16) predicts a lifetime which is a factor two 
lower than in the one-dimensional case. 

8.4 Lifetime on the Couplip.g Resonance 

On the coupling resonance, the distribution function f depends only on the single invariant of 
motion 

(8.17) 

In this case the Fokker-Planck equation can be reduced to a one-dimensional differential equa­
tion. To this end we choose as a new independent variable the invariant quantity r =Vfges. 
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Then equation (8.9) (with x, z replaced by YI, Y2) is transformed to an equation for the distri­
bution function F( r) 

38F 82F 
4bF+ -- + - = O. (8.18)r 8r 8r2 

To solve this equation, we try the ansatz F(r) = R(r)lr. The differential equation for R(r) 
becomes 

r2 R" + r R' + 4br2R - R = 0 . (8.19) 

Its solution is given by the Bessel function of first order 

R(r) = J I ( v'4br) . (8.20) 

Th~ boundary condition requires that R(r) is zero at 

(8.21) 


Denoting the first zero of J 1 by UI (UI ~ 3.8), we find 

4 A p 
2 

Xo 
(8.22)

TcoupliDg = 'U~ < p > ( 14.1MeVIc ) pc' 

8.5 Comparison with Experimental Observations 

In the HERA proton ring, the vacuum-pressure effects in the beam pipe are dominated by 
the warm straight sections. Under normal operating conditions the main contribution to the 
pressure comes from hydrogen [77]. Other molecules - such as H20, CO and CO2 - merely 
constitute a small fraction of the residual gas. If the lifetime at injection energy were caused 
by gas scattering, it is decribed by (8.16). Inserting the parameter values, Uo ~ 2.4, p = 
40Ge V Ic, T = 300 K, < P>~ 50 m and, assuming that hydrogen is the dominant compound, 
XO H2 ~ 61g/cm2 

, PH2 ~ PH2 mH2/(kT), equation (8.16) is reduced to 

(8.23) 


From the vacuum gauges an average hydrogen pressure of 4 . 10-9 mbar was deduced [78]. 
In April of 1991 the measured acceptances were A:e ~ 2.1 mm mrad , Az ~ 0.4 mm mrad 3. 

The lifetime calculated according to (8.23) is approximately 66 hours. To explain the very 
low observed value of about 30 minutes, one would have to postulate an average pressure of 
PH2 ~ 5 . 10-7 mbar, which seems extremely unlikely. 

In view of the great discrepancy between prediction and measurement the attention should 
be directed to molecules with higher atomic masses. For instan<.:.e, to obtain a rather pessimistic 
estimate of the lifetime, the measured pressure values could completely be ascribed to carbon 
dioxide. Taking into account the different radiation length and density, Xo cO2 ~ 36gJcm2

, 

Pco2 ~ Pco2 mco2 I (kT), equation (8.23) is replaced by 

(8.24) 


3The bad vertical acceptance was caused by a misplaced monitor. 
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The vacuum gauge data would correspond to an average pressure Peo, = 10-9 mbar at a 
temperature of 300 K [78]. Using the same value for the acceptances as above the predicted 
lifetime is about 7 hours. To reduce it to 30 minutes, an average pressure of Peo, = 1.4 . 10-8 

mbar has to be assumed. Although this pressure value is smaller by a factor 35 than the one 
required for hydrogen, it still seems highly improbable. 

In order to finally settle this question, a complementary experiment has been performed. 
After careful minimization of linear coupling, the working point was set on the coupling reso­
nance at Q:J! = Qz = 0.19. Subsequently the dependence of the proton beam lifetime on the 
aperture was measured by applying a local horizontal orbit bump of varying amplitude. Under 
the assumption that residual gas scattering is responsible for the short lifetime T, (8.22) predicts 
the following dependence of T on the acceptance, 

(8.25) 

with A 

mbar· s A 
~ 1130--­

Here A:J! and Az denote the horizontal and vertical acceptances of the machine without the 
orbit bump. The lifetime should be constant at small bump amplitudes (for abump below 17 
mm), i. e. as long as the overall aperture limitation is given by the small vertical acceptance 
and not by the local bump. A typical result of the MarchiApril run is shown in Fig. 8.1, where 
vir is plotted versus the bump amplitude abump' The measured data differ significantly from 
the theoretical curves. Moreover, the required pressure value is again highly inconsistent with 
the vacuum gauge data. The possibility, that residual gas scattering caused the short lifetime, 
becomes even more improbable in view of the following two observations [79]: 

• 	 In April 1991 the best lifetime was obtained on the coupling resonance, whereas (8.16) 
and (8.22) predict a decrease of the lifetime on the coupling resonance by about a factor 
u~/ui . (1 + AzIA:J!) ~ 0.5, if the limitation was caused by gas scattering . 

• 	 In the second commissioning run of HERA from July to December 1991 typical lifetimes 
of several hours have been reached at injection energy, while the vacuum gauge data for 
the two runs have been identical. 

The strong disagreement between multiple scattering theory and the observed data together 
with the experience of the second commissioning run imply that multiple scattering has not 
been the dominant lifetime limiting effect in spring 1991. Up to now no convincing explanation 
of the short lifetime has been proposed. 

8.6 Estimate of Emittance Growth Rl:ltes 

An estimate of the emittance growth rate due to multiple scattering is obtained from (8.2) and 
(8.5) 

< at: > _ f3 < (J2 > _ f3 (14.1MevIc) 2 pc 
(8.26)at -< > at -< > P Xo . 

For an average hydrogen pressure of 5 . 10-10 mbar we get 

< 	at: > 
1.2· 10-7 mm mrad S-1 at 40 GeV, 	 (8.27)at 
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Figure 8.1: Square root of the lifetime versus the amplitude abump of a horizontal orbit bump. The 
pressure values refer to a temperature of 300 K. Equivalent carbon dioxide pressures are smaller'by a 
factor 35. The beta function at the bump maximum is f3z =76 m. 

~ 
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3.0.10-10 mm mrad S-1 at 820 GeV. (8.28) 

At 820 GeV the effect of multiple gas scattering is negligible. 

8. 7 Nuclear Interactions 

A nuclear interaction between a proton and a nucleus of a residual gas molecule will almost 
certainly lead to a particle loss. The corresponding beam lifetime T is given by 

1 1 dN 

-:;: = - N dt = PmoICO'p,mol, (8.29) 


that is 
kT 1 

T= -----. (8.30) 
CPmol 0'p,mol 

We again consider only hydrogen and carbon dioxide as extreme cases. The total nuclear 
interaction cross sections for these two molecules are [76] 

~ 4. 10-26cm2 (8.31) 
2~ 7.5. 10-25cm • (8.32) 

At a temperature of 300 K we obtain 

-2 1 
~ 3.4· 10 [b] S (8.33) 

pm ar 

~ 1.8·10 
-3 

[b
1 

]s. (8.34) 
pm ar 

To account for a lifetime of half an hour, one would need an average hydrogen pressure of 2.10-5 

mbar or a carbon dioxide pressure of 10-6 mbar. These values exceed the ones calculated for 
multiple scattering by at least a factor of 30. Thus it is clear, that nuclear interactions had no 
influence on the beam lifetime in 1991. 

Nuclear interactions with the residual gas lead to a lifetime limitation which is almost 
independent of the beam energy. This limit is, however, of no practical importance, because it 
is larger than one year for a mean hydrogen pressure of 10-9 mbar. 
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Chapter 9 

Comparison of Lifetime Limiting 
Processes 

In this chapter the various effects that increase the emittance and reduce the beam lifetime are 
compared regarding their magnitude and significance. 

Naturally one can distinguish between effects that lead to an immediate particle loss, such 
as nuclear interactions with the residual gas, and processes that primarily cause an increase in 
emittance. If the latter is very large and gives rise to a quasi-stationary proton distribution it 
will also limit the beam lifetime T, roughly according to 

(9.1)
T:::::: l1f./

A 
l1t ' 

where A is the available acceptance. A situation of this kind has been investigated in the 
treatment of multiple Coulomb scattering on the residual gas. More likely, however, multiple 
scattering processes will only affect the luminosity lifetime and not the beam current. They 
are characterized by a uniform emittance growth rate. 

Quite different is the chaotic particle transport driven by field nonlinearities or by the beam­
beam interaction, which cause a strongly amplitude-dependent emittance growth rate and lead 
to a loss of the outermost particles. 

The contribution of individual processes to the total emittance growth rate is not necessar­
ily additive. For instance, multiple scattering transfers particles between regular and chaotic 
regions of the phase space and may thereby enhance the chaotic diffusion due to nonlinearities, 
in addition to its direct effect on the emittance. Quite generally the total growth rate satisfies 
the inequality 

l1f.1 ~ L (l1f.) (9.2)
l1t total i At i 

where the subindex 'i' denotes the separate phenomena. 
In the following we summarize the results obtained so far and present some numbers for 

comparison with other effects. 

9.1 Intra-Beam Scattering 

A significant limitation of the proton beam lifetime is imposed by intra-beam scattering, which 
is a multiple Coulomb scattering process between particles within the same bunch [71, 72]. 
Intra-beam scattering is mainly important in the longitudinal phase space, but contributes to 
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the horizontal emittance growth as well. The effect has been estimated in [80] assuming a 
normalized emittance of 20 mm mrad and a Gaussian bunch shape. From reference [80], a 
mean emittance growth rate of about 

< ..6.fz > 6--- ­ ~ 1.6 . 10­
..6.t 

d -1mm mra s at 40 GeV (9.3) 

can be deduced, while the initial emittance growth rate is 

< ..6.fz > 7-- ­ ~ 1.9 . 10­
..6.t 

d -1mm mra s at 820 GeV. (9.4) 

The value at 820 Ge V is smaller by a factor of ten than the value at injection, but note that the 
actual emittance is smaller as well, by a factor 20. The emittance growth rate is proportional 
to the number of protons per bunch. The quoted values refer to the design number of lOll. 

The emittance growth rate of a single test particle ..6.fz/..6.t is proportional to the effective 
proton density seen during a full betatron oscillation. For a Gaussian bunch shape it can be 
written in the form 

..6.fz 1 (27r (2fz 2) [2ff' (2fz 2 )
..6.t (fz, fz) = eIB (211")2 10 exp - fz cos </>z d</>z 10 exp - fz cos </>z d</>z, (9.5) 

where fz,z is the emittance of a single particle and the barred quantity fz,z is the two-sigma 
beam emittance. The latter equals two times the average emittance of the bunch 

- 2 2 __ fz,z __ up, z,z • 
< fz,z > (9.6)

2 {3p 

The coefficient elB is obtained by requiring that the integral of ..6.€z/..6.t over the bunch distri­
bution yields the mean emittance growth rate, 

(9.7) 


where Tz is defined by 
1 

Tz 

1 duz 

= u z it· 
(9.8) 

The value of Tz is adopted from [80]. The integration is done numerically and the resulting 
normalization constant elB is 

eIB ~ 3.0.10-6 mm mrad S-1 at 40 GeV 

and eIB ~ 3.8 . 10-7 mm mrad S-1 at 820 GeV. 

In Fig. 9.1 the amplitude-dependent emittance growth rate ..6.fN/..6.t (9.5) at 820 GeV and at 
40 Ge V is depicted as a function of the normalized emittance fN ="If 'Y( fz + fz) for the 
special case of equal horizontal and vertical emittance. 

9.2 Tune Modulation and Field Errors at 40 GeV 

The emittance growth caused by the interplay of tune modulation and high-order resonances 
has been estimated in chapter 5. From (5.10), we expect a single-particle emittance growth 
rate of about 

(9.9) 
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at an emittance l = 1.2 mm mrad, while we have 

~l 
- ~ 2 . 10-4 mm mrad S-1 (9.10)
~t 

at an emittance l = 4.0 mm mrad, assuming a modulation frequency of 50 Hz. 

9.3 Gas Scattering and Proton-Electron Scattering 

According to (8.28), an average hydrogen pressure of 5 .10-10 mbar causes an emittance growth 
rate due to multiple Coulomb scattering of about 

< ~l> 
~t = 1.2 . 10-7 mm mrad S-1 at 40 GeV, (9.11) 

< ~l>--- = 3.0 . 10-10 mm mrad S-1 at 820 GeV. (9.12)
ll.t 

The growth rate is inversely proportional to the mean pressure around the ring. Hence, for a 
hydrogen pressure of 4· 10-9 mbar the quoted numbers have to be multiplied by 8. The effect 
of nuclear interactions with the residual gas is considerably less important (see chapter 8). 

From chapter 7, multiple proton-electron scattering gives rise to an emittance growth rate 
of 

(9.13) 


which thus is about a factor 3-20 and a factor 2000 smaller than the average emittance increase 
due to residual gas scattering and intra-beam scattering, respectively. 

9.4 Tune Modulation and Beam-Beam Interaction 

During commissioning and operation of HERA it has been verified that the beam-beam inter­
action can lead to substantial particle losses and can reduce the proton beam lifetime to less 
than one hour. The lifetime is short, if the collision parameters are not optimized, for instance 
if the two beams do not collide centered, if the beams collide with a vertical crossing angle or 
if the proton tunes come too close to the seventh order resonance at Qz ~ Qz ~ 0.286. Even 
under good conditions, when the beam lifetime exceeds 24 hours, the beam-beam effect causes 
a significant amplitude-dependent transverse proton diffusion rate, which can be measured by 
the collimation system [64]. 

Computer simulations suggest a typical emittance growth rate in the order of 

(9.14) 


close to a 14th order resonance, if a random tune drift of ~Qrm.s = 5 . 10-4 is included in the 
model [33]. 

The effect of a harmonic tune modulation with a frequency of 50 Hz has been studied in 
chapter 6 of this thesis. Close to an 8th order resonance it may cause an average emittance 
growth rate of 

(9.15) 
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at an amplitude of about x = z ~ 2.7u~!l (~ 2.7up ). For a 10th order resonance the growth rate 
is smaller by a factor 50000 and the higher-order resonances are suppressed even stronger (see 
Table 6.2). 

If the collision is not centered, odd order resonances are excited too. The predicted emittance 
growth rates close to a 7th order resonance depend strongly on the displacement between both 
beams (chapter 6). At the amplitude x = z ~ 2.7uel, the emittance growth rate is about 

< ilf > ~ 5.10-4 mm mrad S-1 (9.16)
ilt 

for a horizontal beam separation ilx = O.lUel, while for the larger separation ilx = 0.3Ue l the 
local growth rate is as high as 

< ilf > -1 --- ~ 0.2 mm mrad s . (9.17)
ilt 

The collision adjustment has to be better than 0.1 Uel to guarantee a satisfactory proton beam 
lifetime. 

9.5 Comparison of Growth Rates 

Table 9.5 summarizes the predicted emittance growth rates due to the various effects both at 
a proton energy of 40 Ge V and of 820 Ge V. 

Fig. 9.2 shows typical emittance growth rates at injection energy due to nonlinear field 
errors, intra-beam scattering and residual gas scattering as a function of the single-particle 
emittance. The dominant effect at small amplitudes is intra-beam scattering, followed by 
residual gas scattering, which is already a factor three to four less important for the customary 
vacuum pressure values. The combination of tune modulation and persistent-current field errors 
generates chaotic regions in phase space and determines the dynamic aperture of the storage 
ring. It is responsible for very large emittance growth rates beyond about 2 mm mrad, in 
comparison to which all other processes become negligible. 

Fig. 9.3 depicts emittance growth rates at 820 GeV caused by intra-beam scattering and 
by the beam-beam interaction close to a 10th order resonance as a function of the particle 
emittance. In the (unavoidable) presence of tune modulation the beam-beam interaction is the 
major source of transverse diffusion. So far the prediction is in agreement with the observations, 
but a detailed measurement of diffusion coefficients in the machine is still missing. If the beams 
do not collide centered the transverse proton diffusion can be much larger than indicated in 
the figure. For non-colliding beams, intra-beam scattering contributes mostly to the overall 
emittance growth. 
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effect emittance growth 
during one second 

in mm mrad 

comment 

Injection Energy (40 GeV) 
nonlinear resonances & 
tune modulation 

2 . 10 ·4 at 4.0 mm mrad 
1 . 10-~ at 2.0 mm mrad 
1 ·10-11 at 1.2 mm mrad 

intra-beam scattering 2 . 10-6 [80] 
residual gas scattering 5 . 10-7 hydrogen pressure 2 . 10-9 mbar 

1 .10-7 hydrogen pressure 5 ·10-1U mbar 

Luminosity Energy (820 GeV) I 

beam-beam interaction har
modulation f

2 . 10-1 

3 . 10-:.I 
1 . 10-:.I 
5 . 10-4 

monic tune modulation, 
requency 50 Hz, z = z ~ 2.7 (jet 

7th order resonance and .6.z = 0.3 (jet 

7th order resonance and .6.z = 0.2 (jel 

8th order resonance 
7th order resonance and .6.z = 0.1 (jel 

2 . 10-7 10th order resonance 
6·10-:.IU 12th order resonance 

random tune drift, ll.Qrms = 5 . 10-4 
, 

4·10-D 14th order resonance [33] 
intra-beam scattering 2 . 10-7 initially [80] 

7 . 10-8 after 10 hours [80] 
residual gas scattering 1 .10-9 hydrogen pressure 2 . 10-9 mbar 

3. 10 ·lU hydrogen pressure 5 . 10 ·lU mbar 
multiple pe scattering 1 . 10-10 actuallumi parameters 

Table 9.1: Comparison of the predicted emittance growth rates at injection energy and at 820 GeV. 
The values for the beam-beam interaction with random tune drift and for the intra-beam scattering 
have been adopted from [33] and [80]. 
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Emittance growth rates due to intra-beam scattering 

(I) 0.36 

,--.. 
" 

o 	 20 40 60 80 100 
gN in mm mrad 

Figure 9.1: Emittance growth rate ll.€N / ll.t due to intra-beam scattering at 40 GeV and at 820 GeV 
as a function of the normalized emittance €N. 
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Figure 9.2: Emittance growth rates ll.E/ ll.t at 40 GeV as a function of the particle emittance E. The 
values represent a typical situation. 
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Figure 9.3: Emittance growth rates A.f. / A.t at 820 GeV as a function of the particle emittance f.. The 
values represent a typical situation. 
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Chapter 10 


Conclusions 


The observed dynamic aperture of about 1.2 mm mrad in the HERA proton ring at 40 Ge V is 
in good agreement with the results of computer simulations and analytical calculations which 
include the effect of the measured nonlinear field errors of all superconducting magnets and an 
additional modest tune modulation. 

Techniques to facilitate the simulation studies have been proposed and investigated in de­
tail. The use of Lyapunov exponents in the postprocessing analysis of tracking data and the 
application of truncated or symplectified Taylor maps are promising and fast new methods. 

Differential-algebra and Lie-algebra software packages have been installed, which provide 
the possibility to investigate analytically the high-order resonances in the HERA proton ring. 
It was shown for the first time that a suitable combination of normal-form and factorization 
processes permits the extraction of parameters for resonances including 11th order inside the 
whole dynamic aperture of a complex storage ring such as HERA. 

A detailed theory describing the effect of an additional tune modulation in a nonlinear 
Hamiltonian system has been developed. This theory applies to the nonlinear magnet errors 
at injection energy as well as to the beam-beam interaction. It provides expressions for the 
chaotic fraction of phase space and for the amplitude-dependent emittance growth rate. 

Emittance growth rates due to various sources have been evaluated and compared. At 
40 GeV intra-beam scattering is the dominant diffusiori-causing process inside the dynamic 
aperture. For large amplitudes the emittance-dependent diffusion rate due to the nonlinear 
field errors grows exponentially. The growth rate owing to residual gas scattering is not much 
smaller than the effect of intra-beam scattering and is prevailing in an intermediate amplitude 
range. 

At 820 GeV the beam-beam interaction strongly affects the proton beam lifetime. Emittance 
growth rates are predicted for working points close to resonances of various order. In addition 
the excitation of the 7th order resonance near the actual working point has been studied as a 
function of the displacement between both beams. The beam displacement at the collision point 
should be smaller than O.lO"el in order not to lead to an unacceptable emittance growth and 
transverse diffusion. The necessity to adjust the collisions to such a high precision is consistent 
with the experience of HERA operation available up to now. 

If the beams do not collide, intra-beam scattering is the main source of emittance growth 
also at 820 GeV. The diffusion rates resulting from multiple scattering with atoms of the 
residual gas and with electrons of the opposite bunch are smaller by about two or three orders 
of magnitude. 
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Stimulated by a serious lifetime limitation in the first commissioning run of HERA the effect 
of residual gas scattering on the beam lifetime has been analysed carefully. Starting from a 
Fokker-Planck equation, general expressions of the beam lifetime have been derived for several 
vacuum chamber geometries and including coupling. Residual gas scattering can be ruled out 
as a possible cause of the short beam lifetime in spring 1991. 

The predicted dependence of the diffusion rates on the transverse amplitude will have to be 
compared with future collimator measurements. 
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Appendix A 

Differential Algebra and Normal-Form 
Methods 

A.1 Introduction 

Differential Algebra (DA) [12] provides the basis for an automated perturbative treatment in 
terms of Taylor series which allows calculations of storage ring beam dynamics up to very high 
orders (say above 10th order) [23]. The DA-based perturbation treatment consists of two steps: 

• 	 Firstly, the formal power series map for a complex accelerator is extracted from a con­
ventional tracking code like SIXTRACK [19] . 

• 	 Secondly, this map is analysed by a normal-form algorithm in Lie-algebraic language. All 
the Lie-algebraic manipulations are very efficiently performed making use of the ability 
to calculate derivatives of arbitrary order with differential-algebra routines. 

The normal-form procedure results in explicit expressions for important dynamical quantities. 
For example it provides the formal Pseudo-Hamiltonian, detuning and driving terms, island 
tunes, resonance widths and non-linear invariants. A by-product is a transformation A-I, 
which can be used to transform particle tracking data into a new coordinate system. In this 
normal-form coordinate frame, regular motion shows up nearly as a 'circle'. 

An advantage of this approach is that the analysis is done with a map obtained from the 
original tracking code. Thus there is a direct link between conventional tracking on the one 
side and analytical treatment on the other. For instance, to ensure, that the normal-form 
algorithm is still convergent at a specific amplitude, one can always cross-check with tracking. 
A comparison of the tunes deduced from tracking and the ones predicted by the Pseudo­
Hamiltonian allows to verify the well behaving oj the transformation. An alternative test of the 
convergence is a transformation of the tracking data by A-I. Like every perturbative method 
the normal-form analysis breaks down at an amplitude where the first relevant resonance is 
crossed. This shortcoming is reHected by a divergence of A-I. 

Repeatedly another application of differential algebra has been advocated, namely to use 
the extracted Taylor map instead of the original code for tracking. The problems arising in this 
approach are dicussed in chapter 2. 
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A.2 Examples of Differential-Algebra Operations 

Differential Algebra can be viewed as an application of nonstandard analysis or, more pro­
saically, as an efficient implementation of the Leibniz rule for derivatives. Here it will only be 
indicated by a few examples how the DA operations are performed. 

The first component of a DA vector is the actual value of the considered quantity. The 
second component is the first derivative with respect to one of the independent variables. The 
further components contain Taylor series coefficients with respect to other variables or of higher 
order. In addition to a scalar multiplication and an addition, which are defined ill the usual 
way, for DA vectors of first order and one independent variable a multiplication is introduced 
by 

(aO,al)' (bo,bl ) = (ao' bo,ao· bi +bo · all· 

Let us consider the function 

Starting with the DA vector 
i = (5,1) 

and applying the above multiplication rule the resulting vector is 

f = (5 . 5, 5 . 1 +5 . 1) = (25, 10). 

Its components are the value of the function and the value of the first derivative at x = 5. 
The DA package is an elegant formulation of this basic idea. Every special function, that 
occurs in standard Fortran, is internally expressed as a power series, for which the described 
algebraic differentiation rules are then well defined. The generalization of ~ommonly supported 
functions, like exponential function and square root, to differential algebra is facilitated by a 
remarkable property. According to the multiplication rules, nth order DA vectors of the special 
form v = (0, al_n ), i. e. with zero value in the first vector component, vanish if taken to the 
(n + l)th power 

(A.l) 

As a consequence the extension of ordinary functions in the differential-algebraic sense requires 
only the evaluation of finite sums (for more details see [12]). Note also that differential algebra 
operations always act on numbers and not on abstract variables. 

For the more general case of two variables and second order the product c = a· b = 
(eo,CI,C2, ••• ,Cs) of the two DA vectors ii = (aO,a},a2, ..• ,as) and b = (bo,bl ,b2, . .. ,bs ) is 
defined as follows 

eo - ao . bo 
Cl - ao . bl + al • bo 

C2 - ao . b2 + a2 . bo 

C3 - ao . b3 + albl + a3 . bo 

C4 - ao . b4 + alb2 + a2 . bl + a4 . bo 

Cs ao . bs + a2b2 + as • bo (A.2) 
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A two-dimensional map consisting of a sequence of sextupole kicks and rotations may serve 
as an example, namely 

followed by 

Xf ) ( cos 27rQ2 sin 27rQ2 ) ( Xj ) (A.3)( Pf = - sin 27rQ2 cos 27rQ2 Pj +xl 
The map (A.3) may be considered as a simple model storage ring in one degree of freedom. 
This miniature accelerator consists of a linear machine to which two separated sextupoles of 
equal strength have been added. In this interpretation the sum Ql + Q2 corresponds to the 
tune of the storage ring, whereas the individual angles 27rQl and 27rQ2 are the phase advances 
between the two sextupoles. 

To apply differential algebra, the initial values of the two DA vectors x and Pare chosen as 

Xi = (0,1,0,0,0,0) and 'Pi = (0,0,1,0,0,0), (AA) 

where the derivative of x and P with respect to itself has been set to one and all other components 
to zero. The multiplication rules defined above lead to 

X~ - (0,0,0,2,0,0) 

X·J (0, cos 27rQl, sin 27rQl, sin 27rQl, 0, 0) 

Pi - (0, sin 27rQl, cos 27rQl, cos 27rQl, 0, 0) 

(0,0,0, cos227rQl, 2 sin 27rQ1 cos 27rQh sin227rQl) 

xf - (0, cos 27r(Ql + Q2), sin 27r(Ql + Q2), sin 27r(Ql + Q2) 

+ sin 27rQ2 cos227rQl, 2 sin 27rQ2 sin 27rQl cos 27rQl, sin 27rQ2 sin227rQ1) 
... 
Pf (0, sin 27r(Ql + Q2), cos 27r(Ql + Q2), cos 27r(Ql + Q2) 

+cos 27rQ2 cos227rQl, 2 cos 27rQ2 sin 27rQ1 cos 27rQ1, cos 27rQ2 sin227rQl) (A.5) 

Note that the matrix elements cos 27rQl,2 and ± sin 27rQl,2 of the rotation are treated as scalar 
quantities and not as DA vectors. The components in the final DA vectors xf and Pf are 
related to the derivatives of the coordinates Xf and Pf with respect to the initial ones Xi, Pi up 
to second order. More precisely, they agree with the coefficients Ckl in the Taylor series 

(A.6) 

In our example the Taylor map coefficients are 

C~o ~'C:;o 

c~o ° cos 27r(Ql + Q2) cio - ° - sin 27r(Ql + Q2) 
C~1 sin 27r(Ql + Q2) ~1 - cos 27r(Q1 + Q2) 
c~o - sin 27r(Ql + Q2) ~o - cos 27r(Q1 + Q2) 

+ sin 27rQ2 cos227rQ1 + cos 27rQ2 cos227rQl 

C~1 2 sin 27rQ2 sin 27rQ1 cos 27rQl ci1 2 cos 27rQ2 sin 27rQl cos 27rQ1 


sin 27rQ2 sin227rQ1 L{2 cos 27rQ2 sin227rQlo
c~2 
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For an actual storage ring a Taylor map representation is obtained in the same way. The 
closed orbit is chosen as the starting value for the first components of a four- or six-dimensional 
DA vector, the derivative with respect to itself is initially set to one and all other components are 
zero. If this vector is transformed through the model of the accelerator, the vector components 
after one turn are the coefficients of the Taylor map. 

A.3 NorlDal-ForlD Analysis 

Let / and 9 be arbitrary functions of phase space variables and A, Band C be arbitrary 
noncommuting operators. Denoting the Poisson bracket operator by : / :, i. e. 

8/8g 8/8g 
: / : 9 - [I, g] - 8i 8p - 8p8i 

the following theorems apply [26, 28, 20]. 

e:J:e:g : e:-J: exp(: e:J:g :) (A.7) 

exp(A) exp(B) exp(C) 

with C A + B + {A,B}/2 + {A,{A,B}}/12 + {B,{B,A}}/12 + ... (A.8) 

{:/:,:g:} : [/, g] : . (A.9) 

Theorems (A.7)-(A.9) are the fundamental relations used in the normal-form analysis. For­
mulae (A.7) and (A.8) allow to perform a composition of Lie transformations. Relation (A.9) 
describes an important homomorphism between the commutator algebra of Lie operators and 
the Poisson-bracket algebra of functions and is implicitly used in the normalization process. 
Because of its ability to evaluate derivatives, differential algebra offers the possibility to calcu­
late Poisson brackets to arbitrary order. Let us assume, that we have extracted a Taylor series 
description of an accelerator 

(A.I0) 


where the subscripts j or k denote the components of the phase space coordinate vector v == 
(x, z, U,pz,pz, 1/) and the superscripts i or / refer to the initial and final coordinates, respectively. 
The Taylor series M agrees with a symplectic map up to the truncation order. As described in 
detail in [23, 26, 27] the map M can be transformed into normal form N up to order (no - 1) 
by a transformation A 

(A.ll) 

The transformation A is of the form 

A -A A A A A - :Jfto: :J3:A A- no··· 4 3 2 1 = e ... e 2 1, (A.12) 

where Al and A2 are the transformation to the closed orbit and the transformation to Courant­
Snyder variables, respectively. The /n are homogeneous polynomials of degree n in Xk = 
.j2Ik cos <Pk and Pk = -.j2Ik sin <Pk. The normalized map N only contains action variables Ik 
and is independent of the phases <Pk, 

N = exp(: -jI. J + D(J) :). (A.13) 
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Here D(f) denotes the nonlinear part of the exponent. The quantity A-I[jt. f - D(f)] is the 
formal Pseudo-Hamiltonian. 

The normal-form result is well-behaved only inside a resonance-free domain around zero, 
because the transformation A-I diverges close to resonances. A way to overcome this problem 
is to construct a partial normal-form by excluding harmful resonances from the transformation. 
Such a reduced normalization does not transform away completely the 4> - dependent terms 
in the map M. On the one hand this is unfavorable because it prevents the construction of 
a global, only action-dependent Hamiltonian, but on the other hand a partial normalization 
offers the possibility to calculate driving terms for specified resonances. This scheme allows the 
evaluation of island widths and other resonance parameters (see chapter 3 and 5). 

If all resonances are excluded from the transformation, the normalization process leads to 
a Dragt-Finn factorization [20] of the map if =A2AIMAllAll 

(A.14) 

where the hn denote homogeneous polynomials of degree n in Xk and Pk. 

A.4 Example of a Normal-Form Transformation 

As an illustration the transformation to normal form is performed for a two-dimensional map 
M (compare also [28]) consisting of a rotation 

( x) = ( cos 21rQ sin 21rQ ) ( x) = R ( x ) (A.15)
P I - sin 21rQ cos 21rQ P i - P i 

and an octupolar kick 
(A.16) 

where the parameter ko is a measure of the octupole strength. In this example the closed orbit 
is zero and the linear part of the map is already independent of the beta function. Consequently 
the transformations Al and A2 of (A.12) are identity transformations. Introducing action and 
angle variables I and 4> by 

x = .J2icos 4> and P = -.J2i sin 4> (A.17) 

the rotation R (A.15) can be written as 

(A.18) 

4 

The octupolar kick (A.16) is expressed by the Lie transformation e:ko a;. :, so that the complete 
map IS 

(A.19) 

Equation (A.19) already agrees with the Dragf.Finn factorization (A.14) of the map M (M = 
if). In the following the octupole strength ko is considered as a smallness parameter of an order­
by-order perturbative calculation. For later convenience, the abbreviation f is introduced for 
the nonlinear term in the exponent 

x4 1
f =- = _]2 (cos 44> + 4 cos 24> + 3) . (A.20)

4 8 
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To construct a transformation A3 , that brings M into normal form N to first order in ko, 

N = A3MA;l, (A.21) 

we make the ansatz 
A 3 - e:koF: ,- (A.22) 

where the exponent F has to be determined. Combining (A.19)-(A.22) leads to 

A3MA;l = 
e:ko F : Re:koJ:e-:koF: (A.23) 
RR-1 e:koF: Re:koJ:e-:ko F: (A.24) 

_ Re:koR- 1 F: e:koJ: e-:koF: (A.25) 
Re:ko(R-IF+J-F): + O(k~). (A.26) 

In the step from (A.25) to (A.26) use has been made of theorem (A.7). Equation (A.26) is ob­
tained by applying the Baker-Campbell-Hausdorff theorem (A.8). It is beneficial to decompose 
the function 1 into two parts 

1 = 10{I) + 1,,(1,4», (A.27) 

where 10 is purely action-dependent. The operator (I - R-l 
) can only be inverted on the 

angle-dependent part 1,,(1,4», because (1 - R-l )/0(1) = O. If the function F is chosen such 
that 

(A.28) 

the transformed map N is in normal form to first order in ko, 

N = Re:koJo(I): + O(k~) = Re:ko~tJ: + O{k~). (A.29) 

In this example F is given by 

12 ( "I,. sin 44> sin 81rQ "I,. sin 24> sin 41rQ)
F = - cos 40/ + + 4 cos 20/ + 4 . (A.3D)

16 1 - cos 81rQ 1 - cos 41rQ 

It is typical that small denominators of the form 1/(1 - cos n21rQ) are present, which cause a 
divergence of the transformation A3 near resonances nQ ~ p. 

In the next step a second order normal-form transformation 

(A.31) 

is applied to the first-order normalized map N (A.29). The exponent G is determined in the 
same way as F [23, 28]. The order-by-order transformation can be performed up to an order 
as high as 11 and is finally terminated by a divergence due to resonances. 

A.5 Comparison of the Map and the Hamiltonian 

The octupole kick map, defined by (A.15) and (A.16), may also serve to illustrate the differences 
between the Hamiltonian picture and the map picture in the analysis of a single resonance [29]. 
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A.S.1 Hamiltonian 

The octupole kick map is derived from the Hamiltonian 

where 
.:c = 51cos 4> and p = - 51 sin 4>. (A.32) 

Inserting these relations and the series expansion of the delta function we have 

1 ko 2 "'[ 1 3ko 2", . 6H(1, 4>, 0) = Q1 - --1 L.J cos(44> + mO) + 4 cos (24) + mO)] - - --1 L.J e'm • (A.33)
27r 8 m 27r 8 m 

Near the resonance 4Q = 1 we neglect all oscillating terms except for the resonant one (corre­
sponding to an averaging over 0) and obtain 

1 ~ 2
H (1,4>,9) = Q1 - 27r 8 1 cos(44> (A.34) 

A canonical transformation (1,4» --+ (J, ~) generated by 

(A.35) 

eliminates the explicit theta-dependence of the Hamiltonian. The new Hamiltonian becomes 

-) ( 1) 1 ko 2 - 1 3ko 2H(J,4> = Q - - J ~ --J cos(44)) - --J . (A.36)
4 27r 8 27r 8 

A.S.2 Lie-Algebraic Treatment 

In the Lie algebraic language the map is written as 

(A.37) 

where R denotes the rotation by an angle 27rQ. Introducing action and angle coordinates 1, 4> 
Vla 

h+ =.:c + ip = 51e-i4> , (A.38) 

h- =.:c - t p = 51e+i4> , (A.39) 

one can rewrite .:c4 as 

(A.40) 

By excluding the fourth integer resonance from the normal-form procedure, a transformation 
A..u is constructed with 

(A.41) 
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--- -----------

In analogy to the Hamiltonian treatment it is possible to transform to a rotating coordinate 
frame [30]. To this end a co-moving map Nc is introduced by 

No _ exp (: 2~I :) . N... 

- exp (: ­ 21r ( Q DI :) exp (: (A.42) 

Close to the resonance the difference 6 _ Q - 1/4 is a small quantity. Therefore the two 
exponents can be combined into one. Neglecting terms of order (6· ko ) (A.42) becomes 

1 ) k [2 3k [2 )
Nc ~ exp ( : -21r ( Q - 4 1+ Tcos(44)) +T: + O(6ko ) + O(k!). (A.43) 

The transformation to the co-moving frame is necessary for creating a small quantity 6 such as 
to allow the combination of the exponents. To first order in ko, the Pseudo-Hamiltonian if of 
(A.43), defined by Nc =exp(: -21rH :), is identical to the Hamiltonian (A.36) obtained earlier. 

A.6 Examples of Normal-Form Results 

To illustrate the possibilities of the implemented normal-form algorithms [12, 23, 26, 30], some 
results are presented for two maps similar to the Henon map [31]. 

We first deal with the octupole kick map as defined by (A.15) and (A.16). Let us choose 
ko == -4 and Q == 0.245. Fig. A.l a) shows the original tracking data for five trajectories, 
three of which (near the separatrix) can hardly be distinguished. In Fig. A.l b), a seventh 
order transformation A-I is applied to the original data. The transformation diverges close to 
the resonance. If the resonance 4Q == 1 is excluded from the normalization process, a reduced 
transformation Ail is obtained. The trajectories transformed by Ail, in Fig. A.l c), are very 
similar to the original trajectories of Fig. A.l a), apart from a somewhat greater 90-degree 
symmetry. 

From (A.36), the action value at the stable fixed point of the fourth integer resonance is 

This is positive only for values of Q below 0.25. For larger values of Q, the negative resonant 
action corresponds to imaginary coordinates z and p. Because the convergence behavior of 
a Taylor series is controlled by singularities in the whole complex plane, the divergence of 
the normal-form analysis can also be caused by such 'imaginary resonances'. To illuminate 
this point, we present results, analogous to Fig. A.l, for the case Q == 0.255 in Fig. A.2. 
In Fig. A.2 a) no islands are visible, but in Fig. A.2 b) the convergence of the perturbation 
series is disturbed by the same 4th integer resonance as in Fig. A.l b). Therefore, even if 
no resonances are visible in the original phase. space diagram, it is not guaranteed that the 
normal-form algorithm converges properly. Again, if the resonance 4Q == 1 is excluded from 
the transformation, the divergence is removed, in Fig. A.2 c). 

Fig. A.3 a) shows the amplitude-dependence of the tune obtained from the full transforma­
tion A-I and from the reduced transformation Ail (resonance 4Q == 1 excluded) in the case 
Q == 0.245. In Fig. A.3 b), the cosine-like driving term of the 4th integer resonance is depicted. 
The results can be compared with a conventional first order perturbation theory applied to the 
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Hamiltonian (A.36). Using the relation J = X;tart/2, a detuning by 0.06 and a driving term of 
about 1.24 . 10-3 are expected at X.tart = 0.5. This agrees with the normal-form result of the 
reduced transformation, which was to be expected. 

a) b) c) 
Octupole kick mop. 0""0.245 Octupole kick mop. 0=0.245 

0.0 .3 ,...-------------, "0.° • .:5 

0.2 

0.1 

o 

-0.1 

-0.2 

,..-----------, 
Ao.... -tronsformecl doto 

0.2 

0.1 

o 

-0.1 

-0.2 

-0·~O.3 -0.2 -0.1 0 0.1 0.2 0.3 -O·~0.3 -0.2 -0.1 0 0.1 0.2 0.3 
x x' 

Figure A.I: Original and transformed phase space diagram for the octupole kick map with Q =0.245. 

a) b) c) 
Octupole kick mop. 0""0.255 Octupole kick mop. 0 ...0.255 Octupole kick mop. 0,.,0.255 

0.0.3 r------------, "0.0 . .:5 .-------------, "0.0 •.:5 ,------------, 
OI'i9inol doto 

0.2 0.2 

0.1 0.1 

o o 

-0.1 -0.1 

-0.2 -0.2 

.-:'-tronsfOl'med doto 
 Ao-'-tronsformed doto 


0.2 

0.1 

o 

-0.1 

-0.2 

-O·~0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0·~0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0·~0.3 -0.2 -0.1 0 0.1 0.2 0.3 
x xPl x'" 

Figure A.2: Original and transformed phase space diagram for the octupole kick map with Q = 0.255. 

As a second example we consider a four-dimensional map consisting of a rotation 

o 
o P~o )(X) (AA4)

cos 2rrQz sin 21rQ% z 
- sin 2rrQz cos 2rrQ% P%., 

and of a sextupolar and an octupolar-like kick 

P~f - P~i + kn(x; - z;) - 2k.XiZi + kox~ 


P%f P%i + k.( z; - x;) - 2knXiZi (A.45) 


Let us, arbitrarily, choose the values Q~ = 0.245, Q% = 0.29, kn = k. = -1 and ko = -4. 
Fig. AA a) and d) show the original phase space data in the X-P~- and in the z-P%-plane for 
five different regular trajectories. A normal-form analysis up to 7th order has been performed 
for the (in this case exact) corresponding Taylor map. In Fig. A.4 b) and e), the normal-form 
transformation A-I is applied to the original coordinates. At small amplitudes the motion 
is almost perfectly decoupled and circular. As expected the transformation A-I is strongly 
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a) b) 

tune os 0 function of x-.. 7th order normol-form h os 0 function of x-.. 7th order normol-form 
.102~__________________________~ 

.£:a 0.4 

0.28 

0 . .38 

0.24 
0 . .36 

0.2 
0 . .34 

0.16 
0 . .32 

0 . .3 
0.12 

0.28 0.08 

0.26 0.04 

0.24 0 0.05 O. , O. , 5 0.2 0.25 0 . .3 0 . .35 0.4 0.45 0.5 o 0 0.05 0.' o. , 5 0.2 0.25 0 . .3 0 . .35 0.4 0.45 0.5 

Figure A.3: Normal-form analysis for the octupole kick map: a) tune as a function of starting 
amplitude for the reduced transformation AR1 (solid curve) and the full transformation A-I (dotted 
curve); b) driving term h(I) of the 4Q = 1 resonance as a function of starting amplitude (solid curve). 
Also shown is the result of a conventional first order perturbation theory for Z.tart = 0.5 (closed circle). 

divergent close to the resonance 4Qz = 1. In Fig. AA c) and f), we depict data transformed by 
ARt, in the construction of which the resonance 4Qz = 1 has been excluded. No divergence is 
observed for this reduced transformation. The price is that the motion at small amplitudes is 
not completely circular, but exhibits a more distinct residual 4-fold structure in the horizontal 
plane, in Fig. AA c), as compared with Fig. A.4 b). 

As indicated in chapter 3, to study the effect of tune modulation on a single resonance, 
the island tune, the detuning function g(Iz,Iz) and its derivatives as well as the driving term 
h(Iz,Iz) have to be known 1. For the four-dimensional map (AA4)-(AA5), the tunes Qz and 
Qz are depicted as a function of the starting amplitudes X.tart and Z.tart in Fig. A.5. Fig. A.6 
shows the cosine-like driving term of the 4Qz = 1 resonance as a function of X.tart. There is no 
sine-like driving term in this particular case. The second derivatives of the detuning function 9 
with respect to the action variables Iz and Iz are presented in Fig. A.7 a) and b). The curves 
shown illustrate that a Taylor map may provide detailed informations on resonance islands. 

The resonance parameters of an arbitrary Taylor map can be computed in two steps. First, 
the amplitude values are determined at which a particular resonance condition is fulfilled. 
Afterwards, for these amplitudes the driving term h of the resonance and the second derivatives 
of the detuning function 9 are evaluated, which enter into the expressions for the island tune, 
for the island width and for the width of the stochastic layer (see chapter 3). Results for HERA 
are quoted in chapter 5 and in appendix B. 

IThe functions h(Iz, I z ) and g(Iz, I z ) are defined in equation (3.57). 
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Figure A.4: Original and transformed phase space diagrams of the map (A.44)-(A.45); a)-c) hori­
zontal plane, d)-f) vertical plane. 
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Figure A.5: Tune as a function of amplitude for the map (A.44)-(A.45); a) tune Qz as a function of 
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H,. versus Amplitude, 7th order (4/0) 

Figure A.6: Driving term h(I) of the 4Qz = 1 resonance for the map (A.44)-(A.45) as a function of 
starting amplitude Zatart. 

a) b) 
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Figure A.7: Second derivative of the detuning function g(l) for the map (A.44)-(A.45); a) {J2 g/{JI;,z 
as a function of starting amplitude Z.ttart, b) {J2g / {JI';,z as a function of starting amplitude Zstart. 
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A.7 	 Description of the Beam-Beam Interaction by Dif­
ferential Algebra 

While differential algebra is adequate for the treatment of nonlinear multipole kicks, which 
are polynomials, this is not necessarily the case for other nonlinear forces. In this section we 
give a counterexample, which simultaneously shows that a discrepancy between the DA-based 
normal-form results and tracking is not always related to small denominators and resonance 
crossing. If the force is not properly represented by a Taylor series, the DA approach may 
already fail at a relatively small amplitude, far from any resonance. This is unfortunately true 
for the highly nonlinear beam-beam force. 

It is not difficult to extract a Taylor map description of the beam-beam force even for the 
case of colliding flat beams, which is of importance for HERA. As is well known the general 
beam-beam kick can be rewritten in terms of the complex error function [32]. However, in 
order to apply the methods of differential algebra the beam-beam kick has to be expressed by 
a set of standard functions, which are supported by the employed DA package [12]. A practical 
solution is to represent the complex error function by a sum of fractions [33], similar to a 
Pade approximation. This representation is suitable for a differential-algebra treatment. For 
simplicity a model as in [33] was examined, consisting only of a 4-dimensional rotation followed 
by a beam-beam kick, that combines the effect of two collision points. 

For our present purpose it is, however, sufficient to discuss only the collision of two round 
beams, which is a possible option for future HERA operation. Fig. A.S compares the tune as a 
function of amplitude obtained by tracking with the result of an Sth order normal-form analysis 
and a subsequent 11th order Dragt-Finn factorization - a combination, which proves to be 
very useful in studying the effect of nonlinear field errors in HERA (see chapter 5). A strong 
discrepancy is observed at amplitudes above 0.3 mm, corresponding to two standard deviations 
(J':r,z of either beam. 

a) 	 b) 

)( 10° HERA. tune as a function of amplitude, round beams )( 10° HERA, tune as a function of cmplitude. round beams 

0°·27 a 0.3 

0.269 0.299 
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0.268 0.298 • • 
0.267 0.297 
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0.266 • tracking data 0.296 • tracking data 

0.266 - 8th o. n.f. & , 1th o. Dragt-Finn 0.296 8th o. n.f. & 11th o. Dragt-Finn 

0.265 0.295 

° 0 

Figure A.S: Result of normal-form analysis for the beam-beam interaction: a) tune Q% as a function 
of Zdarh b) tune Qz as a function of Z.start. The maximum amplitude corresponds to about 3.50' of 
either beam. 
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The proton beam-beam kick due to a round electron beam is given by 

(A.46) 


where f3* is the proton beta function at the interaction point, Uel is the electron beam size and 
{p is the proton beam-beam tune shift, which is expressed in terms of the beam size Uel and 
the number of electrons per bunch Nel as 

- f3;Nele 2 

e = (4 )2 2 2p 
7r eompc ;puel 

The reason for the discrepancy observed in Fig. A.8 is evident from Fig. A.9. The beam-beam 
kick (A.46) (solid curve) is badly reproduced by 9th and even 11th order Taylor maps, which 
both diverge at about 2Uel. The results of a differential-algebra application to the flat beam 
collision show no qualitative difference to the round beam case. 

x 16" Beam-beam kick 6. as a function of )( 

(J) 	 0 
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.---------.....,-----------. 

11 th order DA map 

9th order DA map 

0.1 0.2 0 . .3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure A.9: Beam-beam kick (}z caused by a round opposite beam of size U ~ 0.15 mm versus initial 
amplitude Z.tart. 

At amplitudes below 2Ue l ::::::: 2up the Taylor map description and also the subsequent normal­
form transformation may still work well. This implies that high-order resonances are, in prin­
ciple, still accessible inside the two-sigma region. Here, the corresponding island parameters 
could be determined in the same way as for the evaluation of the dynamic aperture in chapter 
5. In HERA, however, the nominal proton beam-beam tune shift per interaction point is 0.0012 
and for the chosen working points no resonances of order up to 11 are crossed at amplitudes 
below 2up • Such a statement need not necessarily be true for proton colliders, which may have 
beam-beam tune shifts as large as 0.005 per interaction point. 

Because it is impossible to extract the required information on resonances by use of dif­
ferential algebra, another approach is needed to study the effect of tune modulation on the 
beam-beam interaction. An analytical treatment is presented in chapter 6. 
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Appendix B 

Parameters of High-Order Resonances 
in HERA 

The parameters of resonances through 11th order in an emittance range up to fz = fz = 4 mm 
mrad are listed in Tables B.1-B.3 for the actual HERA proton ring (model I). Each table refers 
to a slightly different working point. The amplitude values z and z are quoted for a position 
with a horizontal and vertical beta function of {3: ~ 28.5 m and {3z ~ 3.8 m, respectively. 

Table BA shows analogous resonance-parameters for model II, which differs from model I 
by the increased 20-pole coefficient in the quadrupole magnets (see chapter 5). For the single 
working point investigated, 18 resonances are crossed as compared with 6-11 resonances for 
model 1. The larger number of resonance-crossings reflects the additional detuning due to the 
enhanced 20-pole component. 
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~oo 
z Resonance lPg/81; 8 2g/81z81z 82g/81; h QI 

2.720 -3Qz + 6Qz 100 0.5· 10.2 I -0.4 ·10 ·2 0.26.10 ·3 0.2·10 10 2.10 -6 

0.000 2.780 6Qz ­ 2Qz 123 0.5. 10 ·2 • 10-2 0.29.10-3 0.13. 10-14 1.9 ·10-H 

0.000 2.800 9Qz + 2Qz =346 0.5. 10 -2 -0.4 . 10-2 0.30.10-3 0.14. 10 ·23 6.1 . 10 13 

0.000 2.840 3Qz + 4Qz =223 0.55.10-2 -0.4.10 ·2 0.32.10 -3 0.13. 10 -9 2.3.10 -6 

0.000 3.960 8Qz+ 3Q,z 347 0.8. 10 2 -0.57'10 2 0.18. 10 1 0.33. 10 20 2.9.10 11 

4.290 0.000 7Qz ­ 3Qz = 122 0.33.10 .:.1 -0.27.10 ·2 -0.71.10 ·4 0.9. 10 ·12 5.10 7 

6.105 0.000 -4Qz + 7Qz =101 0.31. 10 -2 -0.22.10 ·2 -0.17.10 ·3 0.3. 10 16 2.10 ·9 

150 0.000 11Qz =344 0.30. 10 -2 -0.20.10 ·2 -0.19. 10 ·3 0.11 . 10 ·7 6.3.10-5 

5.720 2.080 7Qz ­ 3Qz =122 0.39·10-:.1 -0.24.10 -2 -0.27.10 ·3 0.16. 10 ·6 2.2. 10 4 

490 2.360 -4Qz + 7Qz =101 0.39.10 ·2 -0.21.10 ·2 -0.36 . 10 .• ~10 .• 2.24. 10 ·4 

15 3.060 11Qz =344 0.38.10-2 -0.13.10-2 -0.62. 10 ·3 10-7 1.9. 10-4 

Table B.l: Characteristics of high-order resonances in model I of HERA as a function of starting 
amplitudes z and z, for the working point Qz = 31.27, Qz =32.30. 

x z Resonance 8"],g/81; 8"]'g/81z81z 8 2g/81; h QI 
0.000 3.300 7Qz ­ 3Qz =122 0.40.10-2 -0.12.10-2 0.70.10-3 0.1. 10-16 1.6.10 9 

3.080 0.000 10Qz + Qz 345 0.34.10 -2 0.18.10 -5 o.70.~ 0.28. 10 ·1. 9.8.10 -6 

7.150 0.000 11Qz ­ 344 0.29.10 -2 -U.IO ­ 10 ·4 0.23· 0.11- 10-7 6.2.10-5 

3.025 1.100 10Qz + Qz =345 0.34.10-2 -0.89.10-4 -0.21 . 10­ 0.60· 10-12 4.5.10-7 

6.820 2.480 11Qz =344 0.29 ·10-:.1 -0.14.10-3 -0.45.10 -3 0.72.10-8 5.0.10-5 

10.835 3.940 3Qz + 4Qz =223 0.16.10-2 0.68.10-3 -0.14.10-2 0.39. 10-4 5.7.10-4 

Table B.2: Characteristics of high-order resonances in model I of HERA as a function of starting 
amplitudes z and z, for the working point Qz = 31.27, Q,z = 32.295. 

x z Resonance 8 2g/81; 8 2 g/81z81z 8 2 g/81; h QI 
0.000 1.700 9Qz + 2Qz =346 0.41.10-2 -0.32.10-2 0.10.10-3 0.28.10-28 2.5.10-15 

0.000 2.680 7Qz ­ 3Qz =122 0.50.10-2 -0.33.10-2 0.29.10-3 0.13. 10-18 2.2.10-10 

0.000 3.100 8Qz + 3Qz =347 0.56.10-2 -0.35 ·10-"], 0.54.10-3 0.20. 10-23 6.2.10-13 

0.000 3.900 6Qz ­ 2Q,z =123 0.68.10-2 -0.43.10-2 0.17.10-2 0.25.10-14 3.0.10-8 

~455 0.000 10Qz + Q,z = 345 0.32.10-2 -0.26.10-2 -0.11.10-3 0.19.10-11 7.1. 10-7 

7.095 0.000 Qz + 6Qz =225 0.29.10-2 -0.18.10-2 -0.29.10-3 0.66. 10-13 4.4.10-8 

.205 0.000 11Qz = 344 0.29· 10~~0-2 -0.30.10-3 0.11.10-7 6.2.10-5 

5.775 2.100 Qz + 6Qz = 225 0.38· 10­ . 0-2 0.44.10 ·6 

6.490 2.360 10Qz + Qz =345 0.39.10-2 ::-0.19. 10-2 -0.32 ·10­ 0.27·10-H 3.1.10-5 

8.085 2.940 11Qz =344 0.37.10-2 -0.13.10-2 -0.51.10-3 0.43.10-7 1.4.10-4 

10.120 3.680 7Qz = 219 0.28.10-2 -0.47.10-3 -0.89.10-3 0.60.10-5 5.1.10-4 

Table B.3: Characteristics of high-order resonances in model I of HERA as a function of starting 
amplitudes z and z, for the working point Qz 31.27, Qz = 32.29. 
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x z Resonance o~g/oI; o~g/oIzoIz 02g/or; h QI 
0.000 2.448 -3Qz + 6Qz =100 0.5. 10-2 -0.4.10-2 0.1.10-2 0.4. 10-10 3. 10-6 

0.000 2.592 6Qz ­ 2Qz =123 0.5.10 ·2 -0.4 .10-2 0.15·10-l 0.27. 10-14 2.7.10-8 

0.000 2.692 9Qz + 2Qz 346 0.5. 10 ·2 -0.5.10 ·2 0.2.10-2 0.3·10-l3 8. 10-13 

0.000 3.636 Qz + 9Qz =322 0.8. 10 ·2 -0.1. 10 1 0.1.10 1 0.36.10-7 1.5.10-4 

0.000 3.660 -2Qz + 5Qz =99 0.8. 10 ·2 -0.1- 10 ·1 0.1.10 ·1 0.8. 10-7 2.10-4 

0.000 3.672 5Qz ­ Q% =124 0.8. 10 ·2 -0.1.10 ·1 0.1 . 10 ·1 0.3·10-1:.'. 3.10-7 

0.000 3.680 8Qz + 3Qz =347 0.8.10-2 -0.1.10-1 0.1.10-1 0.1.10-19 3.10-11 

0.000 3.996 -6Qz +5Q% -26 0.9 ·10-l -0.15.10-1 0.18.10-1 0.35.10-15 2.4.10-8 

4.059I 0.000 7Qz - 3Qz = 122 0.3.10 ·2 -0.27.10 ·2 -0.44.10 ·4 0.5.10-12 3.6.10-7 

5.841 0.000 -4Qz + 7Qz = 101 0.34.10-2 -0.26.10-2 -0.7.10-4 0.2.10-10 2.10-6 

6.765 0.000 11Qz =344 0.38.10-2 -0.27.10 ·2 0.45.10 ·5 0.15.10- 7 9.10-5 

10.560 0.000 4Qz + 3Q% =222 0.13.10-1 -1. 10-2 0.25. 10-2 0.4.10-8 6.10-6 

5.489 1.996 7Qz - 3Q% =122 0.37.10-2 -0.25.10-2 -0.34.10-3 0.1.10-6 1.7.10-4 

6.215 2.260 -4Qz + 7Qz =101 0.35.10-2 -0.24.10-2 -0.6.10-3 I 0.16.10-6 1.6.10-4 

7.568 2.752 3Qz + 4Q% =223 0.29.10-2 -0.23.10-2 -0.17.10-2 0.56.10-6 5.6.10-4 

9.856 3.584 2Qz + 5Q% =224 -0.85.10-3 -0.35.10-2 -0.80.10-2 0.39.10-4 3.2.10-3 

10.540 3.832 Qz + 6Q% =225 -0.3.10-2 -0.5.10-2 -0.12.10-1 0.35.10-4 4.10-3 

10.920 3.972 7Q% =226 -0.5.10-2 -0.6.10-2 -0.15.10-1 0.32.10-5 2.10-3 

Table B.4: Characteristics of high-order resonances in model IT of HERA as a function of starting 
amplitudes z and z. In model IT the 20-pole coefficients b10 in the quadrupole magnets are a factor of 
ten larger than the actual values (see chapter 5). The chosen working point is Qz = 31.27, Qz. = 32.30. 
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Appendix C 

J acobi-Anger Expansion 

The generating function of the Bessel coefficients is given by [81] 

00 

!z(t-!) "tleJ ( ) e 2 t = L...J Ie Z • 

Ie=-oo 

An immediate consequence is the Jacobi-Anger expansion 1 2 

00 00 

izsin8e = Jo(z) + 2 L J21e(z) cos(2k8) + 2i L J2k+1 (Z) sin«2k + 1)8), 
k=l k=O 

which allows the following conversion 

where in the last st~p use has been made of the relation J_k(x) = (-l)leJk(x). We have thus 
derived the formula applied in section 3.3. 

IC. G. J. Jacobi, Journal fiir Math. xv. (1836), p. 12. [Ges. Math. Werke, vi (1891), p. 2]. 

2C. T. Anger, Neueste Schriften der Naturf. Ges. in Danzig, v. (1855), p. 2 
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Appendix D 

Melnikov-Arnold Integral 

Following [39] the Melnikov-Arnold integral Am(A) refers to the following expression 

(D.1) 


where 
(D.2) 

corresponds to the motion along the pendulum separatrix. The integral depends on the two 
parameters m and A. If m is an integer, it is possible to specify a solution in terms of residues. 
Note that the integral can be rewritten as [39] 

(D.3) 

(DA) 

The integrand has poles at 
1. . £; Ztp == --'t1r - 21r'tn, or n E . (D.S)
2 

Assuming that A > 0, we can close the integral contour in the lower complex half plane, for 
instance along the lines Bl(t) == ±T , ~(t) < O. The integral along these lines is, however, not 
zero, but oscillating as sin( !m1r - AT) for T ~ 00. The definition of the Melnikov-Arnold 
integral consists in neglecting these periodic oscillations and retaining the aperiodic part only 
[39, 46, 47, 48]. Introducing the new variable z == t - t p , an evaluation of the residues yields 

A( \) 21ri _~ l' ern-I ( -iA% (1 + e% )m) ~ -21rAn 
~ '" == - e ;.} 1m e z L-.J e . (D.6)

im(m - 1)1 %-0 dzm - 1 1 - e% . n=O 

In particular, for m == 2 one finds 

(D.7) 
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Appendix E 

Fokker-Planck Equation 

The Fokker-Planck equation was introduced by A. D. Fokker [82] and M. Planck [83] early in 
this century. Here it is derived from some basic principles and assumptions in accordance with 
[85]. More rigorous discussions and additional informations can be found elsewhere [84, 85]. 

If the emittance growth is caused by a process which can be described by a random force, 
the distribution function f at a time t + T is related to the distribution at time t by an equation 
of the form 

(E.1) 


Here W,..( E, J.L) is the probability for a change in emittance E by an amount J.L after a time 
T. Equation (E.1) is an identity, which can be formulated for all stochastic processes. For 
a very large class of processes another important property applies: the Markov assumption. 
In this case the distribution at a specific time t completely determines the future evolution, 
independent of the situation at former times. 

To allow a description by a Fokker-Planck equation, the following additional mathematical 
conditions have to be satisfied. For all 6 > 0: 

(E.2) 

(E.3) 

(EA) 

The last two limites are understood as being uniform in E, J.L and T. If these equations apply, all 
higher order expressions of the same form, like < (LlE)3 > / ~t ..., must vanish. The physical 
interpretation is as follows. Equation (E.2) excludes jumps in the emittance, i. e. sample tra­
jectories show continuous emittance changes onl-y. The quantity A(E) defined in (E.3) describes 
a systematic drift, and B(E) introduced in (EA) a superimposed diffusion. Specifically, if B(E) 
is zero, the motion is purely deterministic. 

Differentiation of equation (E.1) with respect to time yields 

(E.5) 
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If the integrand is expanded with respect to J.L where J.L occurs in the combination f - J.L and if 
implicit use is made of conditions (E.2) to (E.4), equation (E.5) simplifies to 

which is the Fokker-Planck equation. 
The importance of the Fokker-Planck equation lies in the following fact. If, for a specific 

process under consideration, the mean change and mean squared change of the emittance during 
a small time intervall can be calculated, the Fokker-Planck equation describes the long-time 
evolution of the distribution. In this spirit it has for instance been employed in [86] to derive 
the electron beam lifetime due to quantum fluctuations and damping. Similarly it has been 
used in chapter 8 to discuss the effect of multiple proton gas scattering. 
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Appendix F 

Diffusion Equation 

The Fokker-Planck equation, for later convenience expressed in terms of action instead of 
emittance, reads 

8 8 < 6.1 > 1 82 < (6.1)2 > 

8t f (l, t) = - 81 6.t f(l, t) + 2" 812 6.t f(l, t). (F.1) 


Under certain conditions the Fokker-Planck equation can be reduced to a diffusion equation 
(46]. To show the connection, a universal relation between the mean action change per unit 
time < 6.1 > /6.t and the mean squared action change < (6.1)2 > /6.t is derived in this 
chapter, valid for an arbitrary nearly-integrable Hamiltonian system. 

In many cases it is justified to assume a randomization in phase (compare also the discussion 
of the Lyapunov exponent method in chapter 2). This assumption requires the absence of large 
island structures. The evolution in the action variable (or in the emittance) is comparatively 
slow and can be obtained by phase averaging of the equations of motion [46]. 

The change of action during the time 6.t is expressed by a Taylor series of the form 

. 1 .. 2 
6.1 = I . 6.t +-I . (6.t) +... (F.2)

2 

From the equations of motion we have 

8H
I (F.3)

8</> 
82H 8H 82H 8H 

I -
8</>2 81 + 8</>81 8</> 

8 (8H 8H) 8 (8H)2 (FA)
- 8</> 81 8</> + 81 8</> 

Inserting these expressions into the expansion (F.2) and performing an average over the angle 
</>, denoted by brackets < ... >, it is found 

< 6.1 > 1 8 ((8H))- -- - . 6.t + O«6.t)2 ) (F.5)
6.t 2 81 8</> 

< (6.1)2 > 
6.t - ((~!)) . ~t +O«~t?). (F.6) 
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Use has been made of the equality < 8f/8</> >= 0 for an arbitrary function f of z = v'2i cos</> 
and p = -v'2i sin </>. Equations (F.5) and (F.6) provide an interesting relation between the two 
coefficients in the Fokker-Planck equation, which reads 

< d1 > _ ~ 8 < (d1)2 > 
(F.7)dt - 281 dt 

It allows to reduce the more general equation (F.1) to a diffusion equation of the form 

8f =!... (D(I)8
f 

) (F.8)
8t 81 81 

with the diffusion coefficient D(I) defined by 

D(I) = 1 < (d1)2 > . (F.9)
2 dt 

Equation (F.8) is the basis of the diffusion model proposed in chapter 3 and has been employed 
to describe the emittance growth due to persistent current field errors and due to the beam­
beam interaction in chapter 5 and 6, respectively. 
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