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Abstract 

In the following report we want to review nonlinear problems in accelerator physics. Theoretical 

tools and methods are introduced and discussed, and it is shown how these concepts can be applied 

to the study of various nonlinearities in storage rings. The first part treats Hamiltonian systems 

(proton accelerators) whereas the second part is concerned with explicitly stochastic systems (e.g. 

electron storage rings). 
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1 Introduction 

As synchr:;ron radiation sources and as colliders, storage rings have beco~e. a~ important to~l in 
physical research. Colliders are devices which allow two beams of ~tra.relatIvI~tlc charged partIcles 
circulating in opposite directions to be accumulated, stored and collided. (see FIgure 1) 

(b)(0) 

Figure 1: storage rings 

The technical components of such an accelerator are magnets, a toroidal vacuum chamber and 
accelerating rf structures (ca.vities). UsuaJl.y the stored beams consist of bunches, each of them con­
taining 1010 to 1011 particles. The size of these bunches ranges from a tenth of a/millimeter to a few 
centimeters. Some details of the electron-proton storage ring HERA at DESY in Hamburg are listed 
below: . 

electron - ring proton - ring 
circumference 6.336km 6.336km 

energy 26/30GeV 820GeV 
No. of bunches 210 210 

3 X 1010particles/ bunch 1011 
bunch - width at interaction point 0.27mm 0.29mm 
bunch - height at interaction point 0,017mm 0,095mm 
bunch - length at maximum energy 30mm 440mm 

An accelerator constitutes a complex many body system - namely an ensemble of 1010 to lOll 
charged ultrarelativistic particles subject to external electromagnetic fields, radiation fields and various 
other influences such as restgas scattering, space charge effects and wakefields. 

Although collective phenomena, as for example instabilities, are very important for the performance 
of an accelerator we restrict ourselves in this lectureto·i the classical single particle dynamics, i.e. we 
study the equations of motion of a single. charged ultrarelativistic particle under the influence of 
external electromagnetic fields a.nd radiation effects. In general these equations are nonlinear [1] [2]. 
The main nonlinearities are due to beam-beam interaction, due to nonlinear cavity fields or due to 
tra.nsverse multipole fields. These multipole fields are either introduced artificially, e.g. by sextupoles 
which compensate the natural chromaticity or they occur naturally as deviations from linear fields 
due to errors. 

Because of these nonlinearities a storage ring acts as a nonlinear device schematically sketch~d 
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in Figure 2._ ain is some initial amplitude (position, momentum given by the injection conditions) 

QJ*n--..-...t".. IL...-_S_T_O_R_A_GE_.:---­_ RING • °fin 

Figure 2: storage ring as a nonlinear device 

1010and afin is the amplitude after N ( 108 - ) revolutions in the ring. In accelerator 'physics one 
often tries to define different zones according to ain. For small amplitudes up to a certain boundary 
alin - the linear aperture • the storage ring behaves more or less like a linear element (at least for 
the time scales of interest, i.e. 10 - 20 hours storage time). For larger amplitudes the behaviour 
becomes more and more nonlinear and eventually at adyn - the dynamic aperture - the particle motion 
becomes unbounded. One problem of acceler~tor physics is to make quantitative predictions of these 
different zones, or stated in a different way, to cal~ulate quantities such as the linear aperture alin or 
the dynamic aperture 4dyn. Furthermore one wants to know how these quantities depend on various 
machine parameters and the type of the nonlinearity. A better and - from a practical point of view 
- more relevant question is: what is the lifetime "of the particle, or what is the probability for the 
particle to hit the vacuum chamber (first passage time) if it is injected into a certain volume in phase 
space. In order to solve these problems, v~ious numerical and analytical tools have been developed, 
some of which will be described in the following. f 

This survey lecture is organized as follows: In" the first part we will consider storage rings where 
radiation phenomena can be neglected, i.e. accelerators for protons or heavy ions. In HERA for 
example the radiation losses of a proton are a factor 10-1 less than the losses of an electron. Thus 
these storage rings can be modelled mathematica.lly by nonlinear (in general nonintegrable) Hamilto­
nians. Nonintegrable means that the corresponding "nonlinear equations of motion cannot be· solved 
analytically. As we will see later the phase space dynamics of these systems shows a very rich and 
complicated structure. The questions we want to answer in the first part are: 

• what does the Hamiltonian for the particle dynamics look like? 

• what is in principle possible in these systems? (qualitative theory) 

• which analytical (Le. perturbative) tools are available for a quantitative study of these problems? 

In the second part of this survey we will treat systems where radiation effects or noise effects are 
important. Because of the stochastic emission of the radiation, radiative systems can be modelled by 
explicit stochastic dynamical systems. A staightforward way to extend deterministic systems to include 
noise effects and explicit stochastic phenomena is" to write down stochastic differential equations. In 

(.­

this lecture we will illustrate some of the subtleties related to stochastic differential equations including 
Gaussian white noise, and we will mention and illustrate some applications in accelerator physics. 

This lecture cannot cover the whole subject exhaustively, we can only sketch the basic ideas and 
illustrate these ideas with simple (sometimes oversimplified) models. For many details we have to refer 
the reader to the references. Our main aim is to show that the single particle dynamics of storage 
rings represents an interesting field for nonlinear dynamics with a practical background. 

4 



2 Hamiltonian dynamics 

2.1 Hamiltonian for coupled synchro-betatron motion 

Starting point is the following relativistic Lagrangian for a charged particle under the influence of an 
electromagnetic field described by a vector potential A [3] : 

2 . r e·· -g ­£. =-moc 1­ - + -(rA)
c2 c 

(1) 

with 

• e=e1ementary charge 

• c=speed of light 

• mo=rest mass of the particle 

• f"=particle velocity 

Usually one cllanges to a Hamiltonian description of motion and one introduces the curvilinear 
coordinate system depicted in Figure 3 [4]. c 

Sz 

~__--__PQrticle motion 
I 

I 
.design orbit 

o 

Figure 3: curvilinear coordinate system 

It consists of three unit vectors e.,. ,e:lH lz attached to the design orbit of the storage ring. s is 
the pathlength along this trajectory. For simplicity we have assunled a plane reference orbit with 
horizontal curvature n only. Using s as an independent variable and introducing difference variables 
with respect to an equilibrium particle on the design orbit one obtains · 

(2) 

where we have used 

• 11 ~ C (ultrarelativistic particles) 

• r= s-ct 

• P 
_ AE 

.,. - JJJO 

• Eo=energy of design particle. 
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The corresponding equations of motion are: -..- .. 

d d 81-l 
-x -P:=-­ods 8xds 
d d 81-l 
-z -pz=-- (3)ds ds 8z 
d d 81-l 
-T -p.,.=--.
ds ds 8T 

A(x,z,s) = (A:(x,z,s),Az(x,z,s),A.,.(x,z,s)) is the vector potential which determines the external. 
electroma.gnetic fields. The transverse coordina.tes (x, z, p:;pz) describe the betatron motion and 
the longitudinal. coordinates (T,p.,.) describe the synchrotron motion. Some examples for the vector 
potential A(x, z, s) are shown below: 

rf ... cavity: 

L· 27r
A.,. = -_. Vo· COS(k-T). o(s - so) (4)

27rk L 

with 

• Vo=peak voltage of cavity 

• L=circumference of storage ring 

• k=harmonic number 
" 

• o(s - so)=delta function (localized cavity) 


bending (dipole) magnet: 


e 1

-A.,.=--(1+It.x) (5)
Eo 2 

with 

• It = ioBz(x = z = O)=horizontal curvature of design orbit. B%=z-component of magnetic field 

quadrupole: 


e 1 2 2)
-A.,.=-go·(z -x (6)
Eo 2 

with 

• 90 = -Eo. (8/;):=%=0= focusing strength- of quadrupole 


multipole (sextupole): 


e '1 ( 3 2)- •A.,. =- - . Ao' x - 3xz (7)
Eo 6 

with 

• AO = -Eo' (8;,,):=z:0= strength of sextupole­
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mu1tip_~)~ (octupole): 

e 1 ( 4 2 2 4)- . AT =- .f.lo· Z - 6x Z +X (8)
Eo 24 

with 

• f.lo = -Eo . (8;~:£ )2:=z=o=strength of octupole 

Further examples for other types of electromagnetic fields can be found in [4J. 
Generally, by c..xpanding the square ~oot in equation (2) and the vector potential A(x, z, s) into a 

Taylor series around a reference orbit, various examples of nonlinear motion can be investiga.ted.The 
linear part of the Hamiltonian is given by [51: ­

1io(x, z, T'P2:,PZ,PT; s) = 
1 2 1( 2( ) (») 2 1 2 1 2 12'P2: + 2' I'\, S +90 s .~. + 2P: -290(s), Z - 2"V(s). T2 - I'\,(s) . X· PT ' (9) 

wh~r~ V(s) = Vo,Sp(s-so) with o.,,(s-so) = I::~:!:~o(s-(so+n.L») describes a,loca.llzed cavity at 
poslt~on So and where DO( s) characterizes the (periodic) focusing strength of the magnet system 1t 
descrIbes :hree coupled linea.r Floquet oscillators [5].. · 0 

Two sImple exa,mP.les of nonlinear motion are given below: 
Example l:Nonbnear Cavity 

1-l(X,Z,T,P2:,PZ,PT;S) = 
1 2 1 2 1 1 " 
2"P" + 2"P' + 2"9o(S) •(z2 - %2) + 2"K2(s). Z2 - K(S). Z • P.. +V(s). COS(T) 

(10)
IntrodUcing the dispersion function D defined, by 

D"(s) =_(1'\,2(S) +go(s». D(s) + I'\,(s) 
with (11) 

(.), =!!.. 
~a ili ~ 

e canonical transformation [6] [ J 
momenta P2: P p-) , 7 ,[8) (depending on the old di 

' %, , coor na.tes:e Z T and thT ' , , e new 

F2(X, z' T,P2:,P%,PT; s) = 

P2: •(x - PT . D(s» +p- • D'( ) - 1 
T s· X +PT • T +ii. 

r ... . Z - -2 •D(s). D'(s) 'P-T2and the corresponding tran .t'. • " (12)slonna.tlon rules , 

(13) 


P2: =P:r +fiT . D'(s) 

P% == p%
{ 
PT =PT' (14) 
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one obtains the H 01 0 0 
- .- . a.nu toruan In the new va · hI (_

rIa es :c Z T - - -), , ,PZ,P%,PT as follows 

-H(x, z, r,PX,P%,PT; 8) :: 
1_2 1 
2"Px + 2"(gO(8) +",2(s» x2+ ~ -2 1 _ 

1 
0 

2P%- 2"gO(s)oz2 

-2""'(8) . D(s) 0 p; +V(s) 0 cos(r +D(s) . __ D'() _ (15)
If th Px s 0:C ) 0 

dec ere IS no dispersion in the cavity region (V 0 D _ 
°EuPled frlom the betatron motion (x z p- p-) [9il - 0), the synchrotron motion (r,j1 ) is completely 

xamp e 2:multipole '. , Z,:Z J. 
T 

As a second example of nonli 0 ' ,

o h near motIon w °d' 
WIt the following Hamiltonian: c cons} er the influence of transverse multipole fields 

1{(z,Z,p."P., s) =~P; + ~P; - ;0 ·A.-(z, z, 8) 
(16) 

The equations of motion are given by . 

d _ 
Clj z - Pz 
a; Z:: p% 

d P _ e afr e B ( )di x - "EO x:: -'EO. %:c, Z, 80 (17) 

d P _ e' 81r - e B ( )a; % - "EO' % -"EO' x z, z, s , 
I 

The magnetic field components Bx and B% are 'usually expressed in terms of the skew and normal 
multipole expansion coefficients a and b according t,o : 

00 

(B% + iBx) = Bo' I:(bn +ian)' (x +iz)n-l (18) 
n=2 

It is an easy exercise to verify, that these simple examples (15) and (16) contain the standard map 
[10] [11]: 

fen) = fen - 1) +PT(n) 
(19){ PT(n) = PT(n - 1) +V . sin(f(n - 1)) 

and the quadratic map of Henon [12]: 

zen + 1) ) = ( cos(t,b);· sin(t,b) ) . ( x(n) ) + ( 0 ) (20)( P2!( 'Ii + 1) - sinet,b) cos ( t,b). pz(n) x 2( n + 1) 

as limiting casesoThese maps are extensively' studied in nonlinear dynamics and show a very complex 
behaviour .Regula.r and chaotic motion is intricately mixed in phase space.For the quadratic map of 
Henon this is illustrated in Figure 4. 

Thus one can c""'<pect, that the original system as described by (2)' also shows highly nontrivial 
behaviour. 

In order to get a better understanding of this complex dynamical phase space pattern, we will 
briefly repeat some facts from the qualitative theory of nonintegrable Hamiltonian systems. 
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L--__~------L"'-"~--~--~~-----

'Px' 
1.5 ..... 

t' 

1.0 

O.S 

0.0 

-0.5 

"X:~... 
-1.0 1.00.0 O. !:'.- 1. r,:-. -1.0 -0.5" 

Figure 4: Henon map (20) for an angle q, =0.7071 

2.2 Qualitative theory of nonlinear Ham.iltonian systems 

Excellent and detailed reviews can be found in [101, [11],[13],[14],[15],[16]. 
The easiest way to investigate weakly perturbednonintegrable Hamiltonian systems is via a map. 

The reduction of a Hamiltonian system to a nonlinear mapping has been a well-known procedure since 
Poincare (1890). Consider for example a two-dimensional Hamiltonian system without explicit time 
(or 8-) dependence 1-£(qt, q2,PbP2). The corresponding phase space is four-dimension8.1, and since 1-£ 
itself is a constant of the motion, the physically accessible phase space is three-dimensional. Consider a 
"surface :E in this three-dimensionru-not necessarily Euclidean- space as depicted for example in Figure 
5. The bounded particle motion induced by the Ha.miltonian 1-£ will generally intersect this surface 
in different points (Po, PI, ....Pn ••• ). If one is not interested in the fine details of the orbit but only in 
the behaviour over longer time scales it is sufficient to consider the consecutive points (Po, Pl .... ) of 
intersection. These contain complete information on the Hamiltonian system. In this sense one has 
reduced the Hamiltonian dynamics to a mapping of :E to itself, which is in general nonlinear (Poincare 
surface of section technique). The Hamiltonian character is reflected in the symplectic structure of 
the map. Symplectic means tha.t the Jacobian J of the map is a symplectic matrix with 

, JT. S .J =S (21) 

where JT is the transpose of J and where S is the symplectic unity 

( 
i")" Q. (22)

-1 Q. 

( 1 designates the unit matrix). Similar mappings ca.n also be derived for Hamiltonian systems with" 
explicit periodic time (8-) dependence (this is normally the case in storage rings). 

Another important fact and, after the work of Chirikov [11] one of the few beacons among an 
otherwise still dense mist of diverse phenomena, is the KAM-theorem (Kolmogorov,Arnold,Moser see 
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for examp~e [10]). We will. only. illustrate this theorem in the two-dimensional case and instead f 
concentrating on mathematIcal rIgour we .will discuss its physical implications. 0 

Figure 5: P«?incare surface of section method 

Consider first the bounded motion of a two-dimensional autonomous (not explicitly time (s-) 
dependent) Hamiltonian system which is integrable. Roughly speaking, an n-dimensional system 
1f.(qi , Q2, .•., qm PI, P2, ... , Pn) is integrable if there exists a canonical transformation to action-angle 
variables (11 ,12, ... , In, 9t, 92, ... , 9 n ) such that the' transformed Hamiltonian depends only on the n 
(constant) action variables (II, 12, .•. , In) alone. For the two-dimensional case under consideration this 
implies, that 1f.(ql, Q2, Ph P2) is transformed into 1f.(It,I2) with the corresponding equations of motion: 

tIl = 0 , ' 
;r; 12 = 0 

1; 9 1 = ~ = wI(II,I2) = const (23) 

t 9 2 = W. = W2(II,I2) = const 

The motion is restricted to a two-torus, parametrized by the two angle varia.bles 91 and 9 2 , as 
depicted. in Figure 6. 

I, (n) 

Figure 6: surface of section method for a two-dimensional integrable system 

As surface of section one can choose the (11 - 9 1) plane for 92=constant. In this surface of section, 
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which may be chosen to be just the plane of the page, the motion of the integrable two-dimensional 
system looks' very simple. During the motion around the torus from one crossing of the plane to the 
next the radius of the torus (action variable) does not change (see (23)) 

(24) 

and the angle 0 t changes according to (see (23)) 

(25) 

where T is just the revolution time in O2-direction ,from one intersection of the plane to the ne.."{t, 
namely 

T = 271" • 
W2 

(26) 

Thus, for an integrable system one obtains the so-called twist-mapping: 

{ 
It(n) =It(n -1) 

0 1(n) =€ll(n - 1) + 21[" a(lt(n)) (27) 

The term a =~ is called the winding number and is the ratio of the two frequencies of the system. 
In general a will depend on the actions. If a is irrational, the 0t(n) forma dense circle while if a 
is rational the Eh (n) close after a finite sequence of revolutions (periodic orbit or resonance). Thus, 
there are invariant curves (circles) under the mapping which belong to rational and irrational winding 
numbers. What happens now if a perturbation is switched on, Le. if 

ll(n) =It(n ~ 1) +£. /(It(n), 0 l (n - 1)) (28){ 	 0 t (n) = 0 t (n -1) +21[" a(lt(n)) +£. g(lt(n), 0t(n - 1)) ? 

In particular, can one still find invariant curves? The KAM-theorem says that this is indeed the 
case if the following conditions are fulfilled 

• perturbation must be weak 

• 	a = ~ must be sufficiently irrational, Le. la - il 2: :J+~ with p, q integers, 8 > 0 and k(e:) -+ 0 
for £ -+ 0 

together with some requirements' of differentiability and periodicity for f and g. For further details see 
for example [10], [16]. Under these assumptions most of the unperturbed tori survive the perturbation 
although in slightly distorted form. 

The rational and some nearby tori, however, are destroyed, only a finite number of fixed points of 
the rational tori survive - half of them are stable (elliptic orbits around this fixed point), half of them 
are unstable (hyperbolic orbits).This is a consequence of the Poincare-Birkhoff fixed point theorem 
[13]. , I :, 

The hyperbolic fixed points with their stable and unstable branches, which generally intersect in 
the homoclinic points, see Figure 7, are the source of chaotic motion in phase space, i.e. motion 
which is extremely sensitive to the variation of initia.I conditions. From a historical point of view it is 
interesting to note, that these facts were already known by Poincare 100 years ago [13]. 

The motion around the elliptic f1X.ed points can be considered as motion around a torus with 
smaller radius and the arguments used till now can be repeated on this smaller scale giving rise to the 
- now well known - schematic picture shown below (see Figure 8 ,"chaos-scenario" of weakly perturbed 
two-dimensional twist maps). 
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f 
-. • *' 

...... 


p.
I 

homoclinic points 


Figure 7: homo clinic intersections of stable and unstable branch of fixed point Xo 

'.; irrational torus 

per\urba lion . 

~ 

unperturbed 
System 

perturbed Systern 

Figure 8: chaos scenario 

Thus, the phase space pattern of a wealdy perturbed integrable two-dimensional system looks 
extremely complicated. There are regular orbits confined to tori with chaotic trajectories delicately 
distributed among them. As the strength of the perturbation increases more and more KAM tori 
break up giving rise to larger and larger chaotic regions. This onset of large scale chaos has been the 
subject of many studies [10],[17]. For the standard map (see equation (19)) the situation is depicted 
in Figure 9. 

One comment is pertinent at this point. - two-dimensional systems are special in that the existence 
of I(AM circles implies exact stability for 'orbits starting inside such an invariant curve. Since these 
trajectories cannot escape without intersecting the I{AM tori, they are forever trapped inside. 

The situation is much more complex and less well-understood for higher-dimensional systems like 
our storage ring (six-dimensional, explicitly s- dependent Ha.miltonian system). The KAM theorem 
predicts three-tori in six-dimensional phase space, four-tori in eight-dimensional phase space etc. In 
this case chaotic trajectories can in principle alwa.ys escape and explore all the a.ccessible phase space 
although the motion can be obstructed strongly by existing tori. Chaotic regions can form a connected 
web along which the particle can diffuse, as has been demonstrated by Arnold (Arnold diffusion see 
for example [10], [17]).We will come back to this point later. 
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.- G.2900 

--.... -'11.7175 

3.11150 

1.5725 

0.0 

Figure 9: (PT - f)-phase space plot of the standard map (19) showing global chaos for V = 3.3 

Figure 10 shows examples ofregular and chaotic trajectories in a. realistic model of a storage ring 
[18],[19]. We· have used the characteristic Lyapunov exponent .A to distinguish between regular and 
chaotic motion [10], [20],[21]: 

(29) 

1.0 I.' 

0.' I.' 
0.0 0.' 

-o.S -1.0 

-1.0 .-1.0 

-'.0 -1'.0 0.0 1.0 2.0 -t.O 
 0.0 2.0 '.0 

MOIIIlOHIIIII. , ...st SPIICt IIOIl1l••TllIl. """Sf spnct 

'.000 
. 0.'00 

0.010 

0.00' 

'f!,,! 
'~:.82 
'1!82 
Ii!"~ 
1':.81 

0.0 . 't!81 
. 0.0 1000.0 

O"llIlICt 01' 'MJtICfOlll'" III ,NIlS( S'ACt: OIStIlllCf 01' 'UJtCIOIIU:, ,. PIIIItr: "ACt: 

Figure 10: regular and chaotic trajectories in a realistic model of a storage ring and the evolution of 
the distance of two adjacent initial conditions 
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d(t) describes how the (Euclidean) distance between two adjacent phase space points evolves with 
time and Clto) is the initial distance. In a chaotic region of phase space this distance will grow 
exponentially fast and a non-zero Lyapunov-exponent A is a quantitative measure for this separation. 
For the details of an explicit numerical calculation of the characteristic Lyapunov-exponents (for 
continuous and discrete dynamical systems) the reader is referred to [10], [20],[21]. 

Another method derived from the homo clinic structure of nearly integrable symplectic mappings 
is due to Melnikov, and this method belongs to one of the few analytical tools for investigating chaotic 
behaviour. It is applicable to dynamical systems of the form: 

(30) 


where F usually describes a Hamiltonian, system. The perturbation eO, which may also be weakly 
dissipative, is periodic in s, and the unperturbed system 

~ xes) =I(x) (31)
ds 

has a homoclinic. orbit belonging to a saddle point xo. Homoclinic orbit means smooth joining of the 
stable and unstable branch of the saddle or hyperbolic fixed point (see Figure 11). The Melnikov 
method enables a kind of directed distance between the stable and unstable branch of the perturbed 
saddle X5 to be calculated and thus allows the existence of homo clinic points to be predicted, a 
prerequisite of chaotic dynamics. A derivation of the Melnikov function and further details and 
applications can be found in [22]. 

homoclinic orbit 

Figure 11: homoc1inic orbit belonging to saddle Xo 

Remark: 
High resolution 3D-colour graphics can' be a very helpful tool for visualizing the dynamics of 

nonlinear four-dimensional mappings [19] [23]. Toy models like 

x(n + 1) =R· zen) + f(x(n)) (32) 

14 



with 

x(n) ) 
zen) = pz(n) (33)zen)( 

pz(n) 

and 

sin ( 4» o 
cos(4» o 

(34)o cos(O) sin~1/) ) 
o - sin(O) cos(O) 

and 

j(x(n» = ( ~(z(n+1J'Z(n + 1» ) 
(35) 

U(x(n +1), zen +1» 
(f = f(x, z» 

can help to get a better understanding of the break-up mechanism of invariant tori and the role periodic 
orbits play in this process [23],[24]. «n+ 1) periodic orbits are defined by: z(n+ 1) = T(i(n» = x(O) 
where T is some nonlinear (symplectic) map). 

In the last chapter we have seen that the single particle dynamics of a proton in a storage ring can 
be modelled by nonintegrable Hamiltonians. The qualitative theory we have briefly sketched predicts 
a very rich and complicated phase space structure - regular and chaotic regions are intricately mixed 
in phase space. 

When applying these concepts to accelerators one is immediately faced with questions such as: 
What is the relevance of chaos for the practical performance of a storage ringf How do KAM tori break 
up as the strength of the nonlinearity increasesf Can we somehow estimate the size of the chaotic 
regions in phase space f What is the character of the particle motion in this region f Can it be described 
by diffusion-like models f Is it possible to calculate escape rates of the particle if it is in such a chaotic 
region of phase space f 

A quantitative analysis of these and other questions makes extensive use of perturbation theory 
and numerical simulations of the system. 

2.3 Perturbation theory 

Perturbation theory for weakly perturbed integrable Hamiltonian systems is a vast field and an active 
area of research, which we cannot treat exhaustively in this survey lecture. We will only illustrate 
some of the basic results and ideas. Before we enter into detail we will briefly repeat some facts from 
the linear theory of particle motion in storage rings (linear theory of synchro-betatron oscillations [5]) 

In simple cases, as for example pure :1:- or %-motion without any coupling, the system is described 
by Floquet oscillators of the form: 

1 2 1 () 21t(q, p, s) = '2 .p + '2 .go 8 • q (36) 

with p = Pz, Pz, q = :1:, % and 90(8) = 90(8 +L) periodic function of circumference L. 
It is well known that these Floquet type systems can be solved exactly. Using the optical functions 

a(8),/3(8) and "(8) defined by the following set of differential equa.tions: 
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= 
-
d 

a(s) = -j(s) + f3(s) . 90(S) (37) 
ds 

d 
- f3(s) = -2· a(s) (38)
ds 

d (39)- j(s) = 2· o(s) . 90(S)
ds . 

one can find a canonical transformation to action angle variables 1 and e such that the Hamiltonian 
in equation (36) is transformed into [25]: I ) 

il(e,' I) =21r' . Q'. I (40)
L 

with 

1 rL ds' (41)
.' Q = 21r' . Jo f3(s') 

(Q is the so-called tune of the machine) and 

1 = L.. {l +(P(s). P +a(s))2} (42)
2f3(s) . q 

(1 is called Courant-Snyder invariant see [26]). 
In realistic cases there is always some coupling between the different degrees of freedom and the 

situation is more complicated. In these cases machine physicists rely on the ,~ne-tum matrix M 
relating some initial state phase space vector g(Sin) to the final state vector g(SJin) a.fter one complete 
revolution around the ring: 

(43) 

In general yis six-dimensional and consists of the phase space coordinates Z,Z,T,pz,Pz,p"". Thellnear " 
one-turn map M(Sin +L, Sin) contains all the information about the system. For example the stability 
of the particle motion depends on the eigenvalue spectrum of the (symplectic) matrix M [5] - stability 
is only guaranteed if the eigenvalues lie on the com'plex unit circle (see also Figure 12). 

What happens now if we perturb such a linear . system with. some nonlinear terms? How can we 
extend the linear analysis to the nonlinear case? 

In simple models we can start with a perturbed Hamiltonian 

1l(q,p, s) =llo(q,p, s) + e ·1l1(q,p, s) (44) 

U sing the action angle variables of the .:Unperturbed system one can apply conventional Hamil­
tonian perturbation theory [25],[27], which 'wewillsketch in a moment. The advantages of such an 
approach are that one easily gets simple· analytical expressions for interesting machine parameters of 
the perturbed system in terms of the unperturbed quantities. The price one has to pay, however, is an 
over-simplification of the problem. Realistic machines with all their nonlinearities and perturbations 
are extremely complex and cannot be handled efficiently in such a way. In such a case one should try 
to extend the concept of the one-turn map to the nonlinear case .. This "contempox:ary" approach of 
Hamiltonia.n-free perturbation theory for particle dynamics in storage rings has been strongly advanced 
by E.Forest [28] and a recent description can be fourid in [29]. 
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Figure 12: eigenvalue spectrum of a six-dimensional symplectic matrix 

The basic idea of perturbation theory. (common to both the direct Hamiltonian approach and the 
contemporary Hamiltonian-free approach) is to find - in a way to be specified - J\ew variables, such 
that the system becomes solvable or at least easier to handle in this new set. 

Let us first consider the Hamiltonian formalism. Various realizations exist for this kind of pertur­
bation theory:Poincare-von Zeipel [25],[27],[30], Lie methods [31], [32], and normal form. algorithms 
[33],[34]. 

Here we will illustrate the Poincare-von Zeipel method. 
Assume our Hamiltonian is of the form 

1i(i],jf) =1io(i],jf) +e ·1il(Q,j1) (45) 

where the vectors for the coordinates and momenta qand p may have arbitrary dimension ( 3 in the 
storage ring case) 

Pl 

q= p= 

Pn. 

Introducing the action angle variable vectors iand eof the unperturbed system 1io 

(46) 

(47) 
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the Hamiltonian (45) can be rewritten in the form: 

?i(i, 9) = ?io(i) + c ·?i1(i, 9) -(48) 

The problem would be trivial, if we could find a transformation to new variables j =(J1•••Jn )T 
and 1$ = ('tfJ1'" 'tfJn)T such that the transformed Hamiltonian depends only on the new action variables 
J1 •••Jn alone. Since most Hamiltonian systems are nonintegrable [13],[14] this cannot be done exactly. 
The best one can achieve is to push the nonlinear perturbation to higher and higher orders in c i.e. 
after a sequence of N canonical transformations 

is transformed into a form given by : 

'Fi( J1N), l$(N») =flo (J1N») +-cN+1, • RN(l$(N), j(N») 

{ 
'Fio(J1N») = r;{!:o ci '?ib')(J1N») (49) 

'FibO)(J1N») =?io(J1N» . 

where 

j{N) = fCN) = (50) 

are the new variables after N transformations. Neglecting the remainder cN+1 • RN (which is of order 
c

N+1 
Le. one order higher than the first part in equation (49)) the system is then trivially solvable. 

For example in first order of perturbation theory this is achieved by a canonical transformation 
(depending on the old coordinates 9 and the new momenta J) 

(51) 

where Sl(9, j) is given by: 

S (0 i\ 1 '"" ?i1 it(J)... ..
1 0, J) = -"':" L..J .: _ •exp(tn. 9) (52)

~ n:pO w • n 

wdesigna.tes the frequency vector 

W(J)=~y) (53) 

and ?i1tn(j) is defined by the Fourier e.."q>ansion of ?i1 (e, i) 

?i1 (e, J) = I: ?i11it(J)· e..xp(iii. e). (54) 
it 
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However, there is a serious problem concerning the convergence of our perturbative approach: even 
if we excluae the nonlinear resonances it ~ W = 0 in equation (52) the infinite sum always contains 
ni'S such that the denominator in equation (52) can become arbitrarily smaJl (smaJl divisor problem) 
making this whole enterprise very doubtful. GeneraJly these expansions diverge. Nevertheless the 
hope is that these expansions can be useful as asymptotic series and one hopes that the new invariants 
(J1 , •••I n ) calculated in this way approximate in some sense our original system. However, for finite 
perturbations, there is no proof for the accuracy, if any, lof such an approximation. So some care is 
always needed when one applies perturbation theories of this kind. A careful analysis of the conver­
gence properties of (52) leads immediately to the heart of,the KAM theory and requires sophisticated 
mathematical tools, which are far beyond the scope of this survey lecture. 

Let us now briefly illustrate the perturbative techniques for mappings [28],[35],[36],[37],[38]. 
As mentioned already in the introduction, an accelerator' acts as a nonlinear device and an initial 

state phase space vector jj(Sin) is nonlinearly related to the finaJ. state Y(SJin) by a symplectic map 

jj(SJin) = M(jj(Sin)) • 

Let us assume this map can be Taylor expanded up to some order N with respect to Y(Sin) 

(55) 

Yi(SJin) = I: Aij •Yj(Sin) +I: ,Bijk •Yj(Sin) •Yk(Sin) +.... 
j jk 

(56) 

with the transfer matrix or aberration coefficients Ai" Bijk etc. 
Dragt and Finn [39],[40] have shown that Lie algebraic techniques can be very efficient for handling 

maps like (56). The factorization theorem [37] for example states that M can be expressed as a product 
of Lie transforms 

M = e=ft: ••• e:JIc : •• (57) 

where : Ii : denotes a Lie operator related to a homogeneous polynomial of degree i in the variables 
Yi(Sin) and: I : acts on the space of phase space functions 9 via the Poisson bracket operation of 
classical mechanics [27] 

:/:g=.{/,g} (58) 

Example ' 
The map e:r.r: gives the known expression for a sextupole in thin lens (kick) approximation [37], 

[38]: 

(59) 

because 

e=;..r(.sin): X(Sin) = X(Sin) 
(60){ e:rz3 

(8in): pz(Sin) =pz(Sin) +a· x2(Sin) 

In principle one could now try to construct the one-turn map for a nonlinear accelerator using these 
Lie algebraic tools. However, beyond an order N = 3in the Taylor expansion, this becomes incredibly 
tedious and complicated. So we will discuss a more efficient way of obtaining Taylor expanded maps 
for one turn later. 
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The advantage of using maps in the form (57) is formal and lies in the Lie algebraic tools that are 
available for-treating these systems. There is an elegant extension of the normal form theory to such 
cases [41]. The problem is -roughly stated- that given a map M one has to determine a map A such 
that 

N= A·M ·A-1 (61) 

is as simple as possible. Simple means that the action of the map is simple. We can easily illustrate 
this fact with the following map which describes the action of a single multipole in kick approximation 
[35],[42] 

x(n +1)) (COS(21r' Q) sin(21r' Q) ') ( x(n) ) (62)( P%(n +1) = - sin(21r . Q) cos(21r' Q) . P%(n) + t . x"(n) 

In comple.."'( notation z =x + ipz equation (62) can be rewritten as: 

z(n + 1) =exp(-i· 27t . Q). {zen) + ~: . (z(n) + z*(n»P} (63) 

where z* designates the complex conjugate of z. 

Finding a map A implies that one transforms to a new set of variables 


z ---+ e (64) 

such that equation (63) takes the following form in the new variables~ 

e(n +1) =exp{-in(e(n). e*(n))} e(n) + 0(£2) + ... (65) 

. Now, up to order t, the action of the map is very simple - it is just a rotation in the e-plane with a. 
frequency (winding number) n which depends on the distance from the origin (see Figure 13): This 
kind of perturbative analysis has been developed in detail in [28], [35] and has led to a powerful 
strategy for investigating the nonlinear motion of particles in storage rings. We will come.back to this 
point after the description of numerical simulations in the next section. 

Z-PLANE ,":PLANE 

Figure 13: normal.form theory of maps 
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2.4 Numerical simulations and particle tracking 

The main idea of numerical simulations is to track particles over many revolutions in realistic models 
of the storage ring and to observe the amplitude of the particle at a special point So [43], [44]. Give~ 
the initial amplitude y(so) =(x(so), z(so), T(SO),P:r(so),Pz(so),p1'(so)) one needs to know y(so +n· L) 
for n of the order of 109 (corresponding to a storage time of a particle of about 10 hours in HERA). 
Different methods and codes have been developed to evaluate jj(so +n • L). Among others there are 
COSY INFINITY [45],TEAPOT [46],MARYLIE [47],TRANSPORT [48], RACETRACK [49]. We will 
not go into the details of these codes - much more ,vill be said about these things in other contributions 
to this workshop - we restrict ourselves to some general remarks and facts instead. 

An ideal code should be fast and accurate. It should allow for six-dimensional phase space calcu­
lations, thus allowing all kinds of coupling between the syricllrotron and betatron oscillations. Error 
simulations of the storage ring should be possible. as well as the calculation of interesting physical 
quantities such as tunes, (perturbed) invariants, nonlinear resonance widths etc. 

One way of achieving this is by naive element to element tracking. 

non­

linear Iinear


EJ. B·.. ·····...... -
So So+N L 

Figure 14: beam line 

One has to solve the corresponding equations of motion for each element (linear or nonlinear). In 
each case the symplectic structure of the underlying.Hamiltonian system" has to be preserved by using 
suitable symplectic integra.tion schemes [50], [51]. Such a code would be accurate but also extremely 
slow especially for large colliders like HERA and the SSC. A modification of these element-to-element 
tracking' codes is the so-called kiclc approximation.Nonlinear elements described for example by terms 

?il =E an,m(s). xn . zm 
n,m 

in the Hamiltonian are replaced by 

7-l1 = 2: iin•m .:en • zm •opes - sd 
n.m 

where Si denotes the localization of the nonlinear kick. These codes can speed up the calculations 
considerably and they also preserve the symplectic structure of the underlying equations automatically. 
However, one has to check carefully the accuracy of this kind of approximation. 

Recent developments in particle tracking and nume:dcal simula.tions use differential algebra tools 
as developed by M. Berz and described hi other contributions to this workshop. 

A typical numerical investigation of particle motion in nonlinear storage rings then comprises the 
following steps: 

1. specification of the storage ring model by a Hamiltonian 7-l 

2. numerical integration of the corresponding equations of motion for one complete revolution using 
sym plectic integrators 
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3. extraction of the Taylor expanded form of the one-turn map (see equation (56)) from this cal­
culcition 

4. 	use of this map for long-time tracking and for a perturbative analysis (to get physical quantities of 
interest such as invariants, perturbed frequencies and tunes of the synchro-betatron oscillations, 
nonlinear resonance widths etc.). 

Step 3 is elegantly solved by using the powerful differential algebra package developed by M. Berz 
[52], [53] [54], [55], [56]. Figure 15 shows a flow chart for this approach. 

MODEL: 
:.~.= (q1···~ q". P1···· pJ . 

.NUMERICAL INTEG'RATION 

I 
DIFFERENTIAL 

ALGEBRA 

~(SJ =M~(sJ) 

·rAYLOR EXPANSION 

'z. (~J =~ Z, (SJ + ~" Z, (SJ ~ (SJ'+' •••. 

S.. =S",+ L '. 
ONE TURN MAP '. . 

LONGTIME ,PERTURBAnON 
TRACKING THEORY 

Figure 15: particle,tracking 

Let us conclude this section by mentioning some problems related to tracking'namely the unavoid­
able rounding errors of the computers and the limited CPU time. The rounding errors depend on the 
number system used by the compiler and they can destroy the symplectic structure of the nonlinear 
mappings. Thus these rounding errors can simulate non-physical damping (anti-damping) effects [57]. 
In order to estimate the order of magnitude of these effects, one can switch to a higher precision struc­
ture in the computer hardware or software and observe the differences. Another way is to compare 
the differences between forward tracking of the particles and backward tracking [58]. 
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The limited CPU time could be improved by developing special tracking processors [59]. Special 
processors=have been successfully used in celestial mechanics for studies of the long-time stability of 
the solar system [60]. 

Besides these technical problems there are also some physical problems related to the evaluation 
and interpretation of the tracking data. For example fast instabilities with an exponential increase 
of amplitudes beyond a certain boundary (dynamic aperture) can easily be detected, whereas slow, 
diffusion-like processes which are very important for an understanding of the long-time dynamics are 
much more difficult to detect. 

Nevertheless, tracking is the only way to obtain realistic estimates for the dynamic apcrture up to 
lOS - 106 revolutions, but it is very difficult and sometimes dangerous to extrapolate these data to 
longer times (109 revolutions or more). Furthermore, tracldng is always very important for checking 
perturbative calculations because of the divergence problems in perturbation theories as mentioned 
a.bove. We conclude this chapter on Hamiltonian systcms with some final remarks. 

2.5 Remarks 

As mentioned already in the introduction, in accelerator physics one often tries to define different 
zones or regions corresponding to the importance of the nonlinearities. For sma.ll nonlinearities· the 
accelerator behaves more or less like a linear element. A quantitative measurc for this quasilinear 
behaviour is the so-called smear, a concept developed during the design studies for the sse [61]. Thls 
quantity indicates how much the invariants of the linear machine are changed due to the nonlinear 
perturbations (see Figurc 16). Another measure could be the amplitude dependence of the tunes. In 
the weakly nonlinear region one would expect tha.t perturba.tion theory is the adequate theoretical 
tool. . 

linear machine 
Invariant " 

N
number of turns 

nonlinear machine 
Invariant 

. 
----~----------~ 

...., jSMEAR 
------------~----

N 
number of turns 

Figure 16: concept of smear 

For stronger nonlinearities the dynamics becomes more and more nonlinear and chaotic i.e. sensi­
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tively dependent on the initial conditions. A quantitative measure for the onset of large scale chaos 
can be derived from Chirikov's resonance overlap criterion. One estimates the resonance widths and 
resonance distances and the criterion roughly states that no KAM tori survive in the region where 
resonance overlap occurs which leads to a completely chaotic particle motion in this area of phase 
space. The formal steps for applying this criterion are carefully described in [11] and [62]. Direct 
application to the standard map (19) for example yields a critical nonlinearity parameter of V ~ 2.47, 
which is in qualitative agreement with numerical simulations (see Figure 9). 

The problem of beam-beam interaction in storage rings is an example where this method has been 
applied extensively by Tennyson et. al. [63], [64], [65]. 

An interesting and important question is: how does the particle motion look in this extended 
chaotic region of phase space? Can it' be described by a diffusion-like process and can probabilistic 
concepts be used successfully in this context [66], [67]? ' 

In order to illustrate some of the ideas and techniques used in this case we choose the following 
simple model [10], [11], [17]: 

1-l("'I, "'2, Jl, J2, t) =.­
~ . (J1 + J?) + e . ( COS"'1 - 1) . (1 + J-L • sin "'2 + J-L • cos t) (66) 

which in extended phase space (J1 , J2,P, "'I, "'2, z =t) can be written as : 

K,(Jh J2, P, "'1, "'2, z) = 
~ . (Jr + Ji) + P + e .' ( cos "'1 - 1) - jJ • £ • sin "'2 - jJ • £ cos z +2 I 

jJ~ £ (sin("'2 - "'1) +sin ( "'2 +"'1) +cos("'1 - z) +cos("'1 +x) j (67) 

/C represents now an autonomous system in six-dimensional phase space. The primary resonances of 
the system (67) and the corresponding resonance widths are given by: 

(68) 

For small £, J-L the energy surface is approximated by 

(69) 

and the resonance zones are given approximately by the intersection of the resonance surfaces (68) 
with the unperturbed energy surface (69), see Figures 17,18. 

If £ :> £ • J-L, J1 = 0 is the dominant resonance (guiding resonance). The motion (transport, 
diffusion) along the guiding resonance and the resonances which intersect it is called Arnold diffusion, 
see Figures 17,18. 

For p. =0 the Hamiltonian in equation (67) is integrable (nonlinear pendulum) and a constant of 
the motion. For J-L 1: 0 the Hamiltonian is nonintegrable and the separatrix of the J1 = 0 resonance 
will be repla.ced by a chaotic layer. Furthermore, we expect some diffusive variation, of the energy in 
this case. One can calculate this variation approxima.tely [10], [11], [17]. 

Using 
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-.' 
ll.1-I.( J1, J2, 'f/Jh 'f/J2, t) = 

100 d1i 
001dt- = £ • J.L sin t . (1 - cos 'f/Jl)dt (70) 

-00 dt -00 

(see equation (66» and replacing 'f/Jl(t) by the unperturbed separatrix expression 'f/J18z(t) the evaluation 
of the resulting Melnikov-Arnold integral [11] gives: 

2 2:2 {11"}< ( 6.1-1.) >~ 811" •J.L • exp -- (71),Vi 

p 

Figure 17: encrgy .surface of unperturbed systcm (69) 

Figure 18: projection of resonance curves on (Jl - J2) plane 

Equation (71) is an estimate for the short time Vaiiation of the energy of the system for trajectories 
deep inside the chaotic layer of the J1 = 0 resonance.Further details can be found in [10], [11], [17]. 
This kind of analysis has been a.pplied in accelerator physics by Bruning see [68]. 

As mentioned already, the outstanding problem of accelera.tor physics is· the long time stability of 
particle motion under the influence of various nonlinearities such as magnetic multipoles, rf fields and 
be3.IIl-beam forces. 

In perturbation theory one usuaJly approximates a nonintegrable system by an integrable (solvable) 
system. Whether this approxima.tion really reflects the "reality" of the nonintegra.ble case has to be 
checked very carefully especia.1ly because integrable systems have no chaotic regions, in phase space 
a.nd because the dominant instability mechanisms are related to chaotic diffusion or transport [69]. 
For two-dimensional systems chaotic transport is in general only possible by breaking KAM tori (but 
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see also [70]).For higher-dimensional systems the chaotic layers can form a connected web along which 
diffusion like motion is always possible. 

To extract information about the long time stability of particle motion from numerical simulations 
is also a difficult task as mentioned above. So-called survival plots (see Figure 19) [71] can be helpful 
in getting some insight into the problem. 

'.
" 

ioO 
0.0 2.5 5.0: 7.5 10.0 12.5 

x = Y IniUal Belnlr,on Amplilude (mm) 

Figure 19: survival plot for the SSC, Le. number of turns of the particle befor~ loss versus initial 
betatron amplitude of the particle 

An ideal and realistic - but mathematically very complicated - approach would be to consider the 
perturbed system 

and to find some rigorous estimates for the time variation of the actions f -for example to predict a time 
T for which the variation of f is less than some fixed upper limit. This is the spirit of Nekhoroshev's 
theory [72]. First promising attempts to apply these ideas to accelerator . physics problems have been 
made by Warnock, Ruth and Turchetti see [73],[74], [75] for more details. 

Since there are no exa.ct solutions available for the complicated nonlinear dynamics in storage rings 
and in order to check and test the theoretical concepts and tools described above, existing accelerators 
at FERMILAB, CERN and at the University of Indiana have been used for experimental investigations 
of the particle motion. Summaries of thes~ r~su1ts and further details can be found in [76],. [77], [78]. 
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As an example of an experimentally observed ·phase space plot of a nonlinear machine we show 
Figure 20179]. 

Figure 20: measured transverse phase space plot near a Q:c =15/4 nonlinear resonance in the IU CF 


Figure 21 summarizes the status of the art of the nonlinear particle motion in storage rings. 
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Figure 21: nonlinear dynamics of storage rings 

In the next cha.pter we will investiga.te e.."ICplicitly stochastic systems i.e. systems ,subject to noise 
or stochastic forces. 
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3 Stochastic dynamics in storage .rings 
-.­

In the first part of this lecture we have shown how the single particle' dynamics of proton storage 
rings can be described by nonintegrable Hamiltonians. These systems show a very complex dynamics 
- regular and chaotic motion is intricately mixed in phase space. We have mentioned the concept 
of Arnold diffusion and chaotic transport and we have asked whether probabilistic methods can be 
applied successfully in this context. 

In the second part of our survey we want to investigate systems where probabilistic tools are 
necessary, because we want to study the influence of stochastic forces and noise. In this case the 
equations of motion, which describe the dynamics, take the form: 

,I 

d --­dt x(t) = f(x, t; e(t)) (72) 

or in the discrete time (mapping) case 

x(n +1) = j(x(n),[(n)) (73) 

where [(t) or f(n) designates some explicit stochastic vector process with, known statistical properties. 
Our aim will be to study the temporal evolution of£(t) or £(n) under the influence of these explicit 
stochastic forces. We will call this. kind of (probabilistic) dynamics stochastic dynamics in contrast to 
the (deterministic) chaotic dynamics investigated in the first part of this review. Questions we want 
to answer in the following are: 

Given the statistical properties of the, random forces, what are the statistical properties of x(t) 
or £(n)? How can we treat these systems mathematically? And how can we calculate, for example, 
average values < Xi(t) > or correlations < Xi(t) Xj(t') >f 

This. part of the review is organized as follows. At first we will summarize some basic results· of 
probability theory and the theory of stochastic processes. Then we will concentrate on stochastic 
differential equa.tions and their use in accelerator physics problems. In the case that the fluctuating 
random forces are modelled by Gaussian white noise processes (which is quite often a very good 
approximation) we will illustrate the mathematical subtleties rela.ted to these processes. 

Examples of stochastic differential equations are 

1. Langevin equation approach to Brownian motion 

d 
-
dt 

'0 = -'7' '0 +e(t) (74) 

with 11 particle velocity, '7 friction coefficient and e(t) iluctuating random force 

2. stoci'tastically driven harmonic oscillator 

(75) 

3. spin diffusion or Brownian motion on the unit sphere [83] (see Figure 22) , 

:t SCi) =li(t) x Set) (76) 

where 11(t) denotes a fluctuating field. 
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Figure 22: Brownian motion on the unit sphere. 

As we will see later, single particle dynamics in accelerators is a rich source for stochastic differential 
equations. Before we start with a syst~matic study of these systems we have to repeat some basic 
facts, 

3.1 Summary of mathematical facts 

Fundamental concepts of probability theory are the random experiment (e.g. throwing dice) and the 
probability space. This space consists of the sample space nof outcomes w of the random experiment, 
a sigma algebra of events A Le. a family of sets defined over n such that 

1. n E.A ,. 
2. for every Ai E A, Aj E A ' 

3. for Aj,; =1,2, ... with Aj E A 
co

U Ai E A 
i=1 

(where A denotes the complement of A with respect ,to 0) and a probability measure Pr defined over 
A: 

Pr : A --+ [0,1]. 

Pr is a measure for the frequency of the oC:curance of an event in .A and it satisfies the following 
axioms: 

1. Pr(4)) = 0 

2. Pr(O) =1 

3. Pr(Ai U Aj) =Pr(Ai) + Pr(Aj) for Ai n Aj = 4>: 

( 4> is the empty set and designates the im~ossibleevent whereas 0 is the certain event). 
The aim of probability theory is not the calcUlation of the probability measure of the underlying 

sample space 0, but it is concerned with the calculation of new probabilities from given ones [80]. 
A rigorous treatment needs sophisticated measure theoretic concepts and is' beyond the scope of this 
review. We will restrict ourselves to Borne basic fa.cts and results which will be needed later. Detailed 
presentations of probability theory can be found in the references [80], [81], [82], [84], [85], [86], [87], 
[88]. In the following summary we will closely foll0'Y the book of Horsthemke and Lefever [80]. 
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3.1.1 Random variables (r.v.) 

The first notion we need is that of a random variable (r. v.) X. A random variable is a function from 
the sample space n to R Le. X: n --+ R with the property that 

A == {wIX(w) ~ x} E.A 	 (77) 

for all x E R. This means that A is an event which belongs to .A for all x. 
Remark: One should always distinguish carefully between the random variable ~1' (calligrahic 

letter) and the realization x of the r.v., Le. the value X takes on R. 
In the following we will only consider continuous r.v. which can be characterized by probability 

density functions p,y(x )dx which - roughly stated - give th,e probability of finding X between x and 
x +dx Le. ' 

p,y(x)dx = Pr({wlx ~ 1'1'(w) ~ x +dx}) 	 (78) 

or in shorthand notation 

p,y(x)dx = Pr(x ~ X ~x +dx) 

Given this probability density one can define expectation value, moments and mean square devi­
a.tion or variance of a r.v .: 

1. expectation value of a random variable X 

(79) 

2. 	moment of order r 


d r (CO

E{X'"} =< X'" > ~ J-co x'"px(z)dx.-	 (80) 

3. mean square devia.tion or variance 

(81) 

As an exa.mple we consider the Gaussian distribution, which because of the central limit theorem 
(see the references), plays an important role in statistics. This distribution is defined by (see also 
Figure 23): 

(82) 

In this case equations (79), (80) and (81) yield 

. E{X}=m (83) 

E{( 8X)2} = (72 (84) 

E{(8X)'"} = { 0, for r ~ 1 odd (85)(r -I)!! . (7'", r even 

where we have used the following definition (r - I)!! =1· 3·5· ..... (r - 1). 
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A Gaussian variable is thus completely specified by its first two moments. 
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Figure 23: Gaussian distribution 

Extending these considerations to the multivariable or random vector case .rY1 , •• dYn requires the 
notion of joint probability densities Le. 

PXs •••X" (Zt, ... zn)dzt ...dzn = 
Pr(zt ~ Xt ~ Zt + dzt, ..• , Zn ~ .r1:'n ~ zn+ dZn). (86) 

Moments, cross correlations, covariance matrLx etc can then be defined. For example in the two· 
dimensional case X = (1'1:', y)T mixed moments are defined by: 

.' 
E{X' . Y"} = L: L: z' · yl'px,y(z, y)dzdy (87) 

Another important definition we will need is the conditional density function px,Y(xly). Condi­
tional probability p(AIB) means the probability that event A will take place, knowing with certainty 
that another event B has occured. For random varia.bles the corresponding density is given by: 

Px (X\lI) =PX,y(z, y) (88)
.y PY(lI) 

or similarly 

pX,y(x, y) = P..y,y(xly) •py(y). (89) 

In the multivariable case one has accordingly: 

PX1 ...X"(Zt,,,zn) "= 
P..Y1 •••X" (Xl.lX2 •••Xn)· PX2 ...X,,(X2Ix3 ••• Xn) • 

•••px,,_l,x,,(xn-tlxn) •px,,(xn). (90) 


3.1.2 stochastic processes (s.p.) 

Next we introduce stochastic processes (s.p.) with the following definition: a fa.mily of random vari­
ables indexed by a parameter t, Xt , is ca.lled a random or stochastic process (t may be continuous or 
discrete). A stochastic process thus depends on two arguments (t,w). For :fixed t, ".rtt is a. ra.ndom 
variable whereas for fIXed w and continuous t , .rY(.)(w) is a real valued function of t which is called 
realiza.tion or sample pa.th of the s.p. (realiza.tions are designa.ted by x(t». 
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Generally, stochastic processes Xt are defined hy an infinite hierarchy of joint distribution density 
functions - ­

p(Xl, tl )dXI 
P(XI' tl; X2, t2)dxl dx2 

(91) 

and are a complicated mathematical object. A proper treatment requires the so-called stochastic 
calculus see for example [82]. 

In a similar way as for random variables we can define moments and correlation functions. For 
example 

E{."Yt1 Xt2 } =< x(tt)X(t2) >=00 100 . 
(92)= -00 -00 XIX2P(XI, tl; X2, t2)dxl dz.21

is called the two-time correlation function of the stochastic process Xt • Higher order correlations are 
obtained analogously 

I' 

(93) 

One way of characterizing a stochastic process is by . looking at its history or memory. The com­
pletely independent process is defined by .' 

P{Xl' tt; ... ; Zn, tn ) = II
n 

P{Xi' ti) (94) 
i=l 

i.e. only the one-time distribution density is needed to classify and determine this process. 
The next simplest case is the so-called Markov process. It is defined by 

(95) 

with 
(96) 

Equation (95) implies that if the present state is known, any additional information on the past 
history is totally irrelevant for predicting the future evolution. 

Markov processes are completely specified by the transition probability density p(xn' tnlxn-h tn-l) 
and the one-time probability density p(x, t). Because of (95) and (90) we have: 

P(Xn' tn ; ••• ; Xl, tl) = 
= P{Zn, tnIZn-t, tn-t) · P(Zn-h tn-ilzn-2,tn-2)' .... p(:t2' t21:tt, tt)· p(:th ttl. (97) 
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The transition probability densities fulfill the following nonlinear functional rela.tion (Chapman­
Kolmogorav equation): 

p(X3, t3lxl, tl) = 
=L: P(Z3, t31z2, t2) •p(Z2' t21z l. tl)dz2 (98) 

Examples of stochastic processes are: 

1. Ga.ussian stochastic processes I'l't 


I'l't is specified by 


p(x, t) 

p(x}, tl; X2, t2) 


If all the m-th order clistributions are Ga.ussian i.e. 

p(:!:}, h; ... ; :!:m, t m ).= 

(211')-m/2. (detl0-1/2•exp{_}(£_m)T .A-1 • (£ - iii)} (99) 

with niT = (mx(tl), •.. , mx(tm )) and A =Aij = E{(Xti - m,y(ti))(Xt ; - mx(tj))}, I'l't is called 
a Gaussia.n stochastic process. . 

2. The Wiener process Wt which plays an importa.nt role in probability theory and which is defined # 

by: 

(100) 

The Wiener process is a.n example for an independent increment process. This can be seen as 
follows: defining the increments 

(101) 

and 
. lit;. = ti - ti-l (102) 

we obtain 

(103) 
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i.e. the random variables ~Wti are statistically independent. Furthermore one calculates in this 
case =: 

E{Wt } = 0 (104) 

E{WtWa } =min(t, s) (105) 

E{W;} = t. (106) 

A typical path of a Wiener process is shown in Figure 24. These paths are continuous but 
nowhere differentia.ble. 

Figure 24: typical path of a Wiener process 

3. Gaussian white noise process Zt. It'is a completely random process with ,. 
" p(Z1' t1; •••; Z,,' ttl) = 11 P(Zi) (107) 

1=1 

i.e. independent values at every instant of time. It has 

E{Zt} = 0 (108) 

and the two-time correlation function is given by 

E{ZtZ,}= 6(f- s) • (109) 

Since Zt is Gaussian all odd correlations vanish automatically (see equation (85)) and the even 
correla.tions are given by [84] 

E{Ztl' ..• . Zt2n} = E 6(til - ti2)' ... .6(ti2n_l - ti2n) (110) 
,Pi 

where the sum is taken over (2n)!/(2" n!) permutations. Gaussian white noise is a mathematical 
idealization and does not occur in nature. It plays a similar role in the theory of stochastic 
processes as the Dirac a-function in functional analysis. One can' show, that in a generalized 
sense [80] Ga.ussia.n white noise is the derivative of the Wiener process. 

The last concept we need is that of a Markovian diffusion process. This is a. Markov process with 
continuous sample paths. Diffusion processes play an important role in physics and in the conte.~t of 
stochastic differential equations with Gaussian white noise, as we will see in the next section. The 
temporal evolution of these diffusion processes is described by the so-called Fokker-pianck equation. 
This is a linear partial differential equation for the transition density p(z, t(%o, to) or the one-time 
density p(%, t). 
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3.1.3 stochastic differential equations (s.d.e.) 

As mentioned already stochastic differential equations are the natural extension of deterministic sys­
tems, if one wants to include noise effects 

dtd x(t) = f(x, --
tj e(t)) · 

Often at) is modelled by a Gaussian white noise process. This approximation is well justified if 
the fluctuating forces show only short-time correlations compared to other typical time-scales of the 
system. Introducing Gaussian white noise in dynamical systems is related to some mathematical 
problems which we want to illustrate now. In order to keep the notation as simple as possible we will 
restrict ourselves for the moment to scalar equations of motion (multiplicative stochastic processes 1) 
of the form 

dt 
d 

Xt = f(Xt ) +g(Xt ) • Zt (111) 

where Zt designates Gaussian white noise and where we have switched to the notation ,introduced 
above in order to make clear that we are 'treating stochastic processes. 

Before we start our investigation let us repeat what Horsthemke and Lefever have written in this 
context: 

The transition to Gaussian white noise sounds rather harmless but it is actually at this point 
that dangerous territory is entered, which contains hidden pitfalls and traps to ensnare the unwary 
theoretician ... if one succeeds in avoiding the variot1.8 traps, either by luck, intuition or whatever, one 
captures a treasure which might be bane or boon: the white noise 

The mathematical problems are related to the irregular behaviour of white noise and one has to 
ask which sense can be given to equations like (111). Remember, the sample paths of a Wiener process 
are continuous but nowhere differentiable, so what is the meaning of 1; in (111)? 

We will not go through all the mathematical details, we only want to illustrate the subtleties, so 
that readers who are confronted with this problem are reminded of being careful when using stochastic 
differential equations with white noise. Excellent presentations of this problem can be found in [89],[90]. 

After these remarks we try to give a sense to the stochastic differential equation by rewriting it as 
an integral equation 

(112) 


which is eqivalent to 

Xe =.to +10' J(X.)ds +10' g(X.)dW •. (113) 

As before W. denotes the Wiener process. The second integral on the right hand side of equation 
(113) - a kind of a stochastic Stieltjes integral - is the main reason for the mathematical problems. 
Let us quote again Horsthemke and Lefever : 

The problem is though a sense can be given to this integral and thus to the stochastic differential 
equation in spite of the extremely irregular nature of the white noise, there is no unique way to define 
it, precisely because white noise 'is so irregular. This has nothing to do with the different definitions 
of ordinary integrals by Riemann and Lebesgue. After all for the class of functions for which the 
Riemann integral as well as the Lebesgue integral can be defined, both integrals yield the same answer. 
The difference between the definitions for the above stochastic integral, connected with the names of 
Ito and Stratonovich , is much deeper; they give different results. 

1the external noise is coupled in a multiplicative manner to Xt the statistical properties of which are sought 
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This difficulty can be illustrated as follows: 
Consider- a stochastic integral of the form 

(114) 

IT (114) would be Riemann integrable the result would be 

1( 2 2)8t =2"Wt -Wto (115) 

As in the Riemann case we try to evaluate (114) by a limit of approximating sums of the form 

(116) 

with a partition of the interval [to, t] 

and 

or 

with 0 S a S l. 
U sing the stochastic calculus (the proper calculus to treat stochastic processes as mentioned above) 

one can show that the limit of 8 n for n -+ 00 depends on the evaluation points T}n) or a [80], [81] 

(117) 

Thus, the stochastic integral is no ordinary Riemann integral. However, an unambiguous definition 
of the integral can be given· and thus a consistent calculus is possible - if Ti(n) is fixed once and forever. 
Two choices are convenient 

• a =0, Ito definition 

• a = t, Stratonovich definition. 

Thus, a stochastic differential equation has always to be supplemented by a kind of interpretation 
rule for the stochastic integral. In both cases mentioned above one can show, that the solutions of the 
corresponding equations are Markovian diffusion processes. In the Ito case 

(I) dXt = f(Xt, t)dt +u(Xt, t)dWt (118) 

the corresponding Fokker-Planek equa.tion for the transition proba.bility density p(z, tlzo, to) reads 
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(119) 

whereas in the Stratonovich case 

(8) dXt = I(X" t)dt +g(X" t)dWt (120) 

the Fokker-Planck equation is given by 

8 
8tP(:e, t,:eo, to) = 

8 	 1 8 8=- 8:e [/(:e, t) . p(:e,tl:e~,to)] + 2". 8:e[g(:e,t). 8:e(g(:e,t)p(:e, t\:eo, to))] (121) 

or equivalently by 

8t
8 

P(:e, tl:eo, to) = 

8 18g(:e, t) 
=- 8:e ([/(:e, t) +2 8:e . g(:e, t)] •p(:e, tl:eo, to)) + 
821 2 •+2 "8:e2 [g (:e, t) · p(:e, tl:eo, to)] • (122) 

Equations (119) and (121) have to be supplemented with the initial conditions 

p(:e, tl:eo, to)t=to =6(:e - :eo) 

and suitable boundary conditions for :e. 
The Ito calculus is mathematicaJIy more general but leads to unusual rules such as 

1
t 1( 2 2 1( )

to W.clW. = 2" Wt - Wto ) - 2' t - to 

and some care is needed when one transforms from one process Xt to 'Rt. = h(Xt ). For further de­
ta.i1s and a discussion of the relationship between Ito and Stratonovich approach (which preserves the 
"normal" rules of calculus) the reader is referred to the references. 

Remarks: 

1. 	The one-time probability density p(:e, t) of a Markovian diffusion process Xt also satisfies the 
Fokker-Planck equation (119) or (121). 

2. 	In the case of purely additive noise where 9 does not depend on Xt there is no difference between 
the Ito and Stratonovich approach, so both stochastic differential equations define the same 
Markovian diffusion process. 
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3. 	Since Gaussian white noise is a mathematical idealization and can only approximately model 
real stochastic processes in nature, there is always the question how to interpret equation (111) 
in practical problems. In most physical cases one will rely on the Stratonovich interpretation as 
is suggested by a theorem due to Wong and Zakai [80] which roughly states: 

if we start with a phenomenological equation containing realistic noise wln
) of the form 

(123) 

where all the integrals can be interpreted in the usual (e.g. Riemann) sense and if we pass to 
the white noise limit ' 

(124) 

so that a stochastic differential equation of the form 

d 	 d 
-	 Xt = f(Xt ) +g(Xt ) • - Wt (125)
dt 	 dt 

is obtained (remember that Gaussian white noise is the derivative of the Wiener process Zt = 
1t Wt ) the latter has to be interpreted as a Stratonovich equation. 

4. 	The above considerations can be extended to the multivariable case where Xt, f(Xt ) and Wt have 
to be replaced by vector quantities and where g(Xt ) has to be replaced by a matrix. Now,the 
stochastic differential equation takes the form . 

(126) 

The Ito interpretation leads to a Fokker-Planck equation for the transition density p(i, t\xo, to) 
of the form 

!p(x, tlxo, to) = 

= - E t[!;(x, t). p(x, tlxo, to)] + 
i :1:, 

+~.~ 8~i • 8~,.[{ll'<X,t)9..T(X,t)}ii ,p(x, tlxo, to)] 	 (127) 
',J 

whereas the Stratonovich interpretation gives 

:tp(x, tlxo, to) = 

= - E 88. [!i(x, t) · p(x, tlxo, to)] + 
i :1:, 

1
+-2 •E {J{J. {gik(X, t){J{J ,[9ik(X, t) •p(i, tlxo, to)]} 	 (128) 

ijk :1:, :1:, 
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Examples 

1. Wiener process 

dXt =dWt (129) 

with the corresponding Fokker-Planck (diffusion) equation (f =O,g =1) 

(130) 

2. The Ornstein Uhlenbeck process (see also equation (74)) 

dVt =-11Vtdt + u . dWt (131) 
. 

leads to the following Fokker-Planck equation (f = -11,9 =u) 

(132) 

3. StochasticaJIy driven harmonic oscillator as an example of a multivariable system: 

dXlt ) _ (0 1). ( X1t dt ) + ( 0 ) (133)( dX2t - -1 0 X2t dt dWt 

In this case one obtains as Fokker-Pla.nck equation 

Summarizing, we can say that stochastic differential equations are the natural extension of de­
terministic systems if one wants to study the influence of noise. Often these noise processes are 
approximated by Gaussian white noise, a mathematical idea.lization, which has to be treated with 
great care. However, the mathematical subtleties related to stochastic differential equations with 
white noise are outweighed by the results which are available for these Markovian diffusion processes 
namely the Fokker-Planck equation [86]. 
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3.2 Stochastic dynamics problems in accelerator physics 

After this - admittedly - very sketchy summary of mathematical results we will now investigate where 
stochastic differential equations arise in the single particle dynamics of accelerators [91]. 

At first we will study the particle motion in electron storage rings where radiation effects play an 
important role. Classically, radiation is taken into account by the following modified Lorentz equation 
[92], [93] : 

d (E ~ e :. B"'( ...) rY"') R"'rod(...)-d 2"' T J = - .TXT, t + e· t\T, t + T, t (135)
t c c 

with 

• jj(if, t) magnetic field 

• l(r, t) electric field 

• Brod(r, t) radiation reaction force 

• E energy of particle 

Because of the stochastic emission of the radiation, Brod(r, t) is modelled by a stochastic force, 
which we divide into its average part and its fluctuating part according to 

(136) 

The average part is identified with the classical Lorentz-Dirac radiation reaction force, see for 
example [94] 

22 ... d 2 e 4' •• 2 "'I ••• 2< Rro (r, t) >= - - . - . "'I •r· {(r) + - .(r . r) } (137)
c5 c23 

with "'I =~. moc­

< Brod(if, t) > leads in general to the so-called radiation damping. The fluctuating part in equation 
(136),which mainly effects the energy variation in equation (135) is usually approximated by Gaussian 
white noise [5],[93],[95]. 

Thus, in the curvilinear coordinate system of the accelerator one generally obtains a system of six 
coupled nonlinear stochastic differential equations of the form [5]: 

! Y(s) = i(fi,s) +T(fi,s)' 6C(s) (138) 

with yr = (x, z, T,p:z;,pz,P.,.)' 6C(s) designates a Gaussian white noise vector process. 
Interesting physical questions one wants to answer are : 
What are the average fluctuations of the particle around the closed orbit (beam emittances) f What 

is the particle distribution p(fi, s) i.e. what is the probability for finding the particle between fi and 
fi+dfi at location s f Is there a stationary solution of this density i.e. what is lim._oo p(fi, s) f What 
is the particle lifetime in the finite vacuum chambers of the accelerator (time to hit the border) f 

These questions have been extensively studied in the linear case [92], [93], [95],[96], [97] 

d 
ds fi(s) =(A(s) + 6A(s». fi(s) + C(s) + 6C(s) (139) 
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A designates the Hamiltonian part of the motion (six-dimensional coupled synchro-betatron oscilla­
tions) [5]; c5-A(s) describes the radiation damping due to < Rrad > (see equation (137)); c5c is the 
fluctuating part of the radiative force and c denotes some additional field errors of the system. In 
this case one obtains compact and easily programmable expressions for the important beam param­
eters (beam emittances) [95], [96]. Furthermore, the corresponding Fokker-Planck equation for the 
probability distribution can be solved exactly [98], [99], [100]. 

An investigation of the nonlinear system is much more complicated and is an active area of research. 
Nonlinear systems such as an octupole-dipole wiggler or the beam-beam interaction in electron storage 
rings have been analyzed by various authors [101], [102], [103], [104], [105], [106]. Let us consider the 
latter case in more detail. The main problem is to understand the motion of a test particle under the 
influence of the nonlinear electromagnetic fields of the counter rotating beam [107] (see Figure 25). 

ralE!ctorvof beam A 

Figure 25: deflection of a test particle in beam A in the field of the counter rota.ting beam B 

This so-called weak-strong model of the beam-beam interaction is mathematically described by 
the following set of equations [107] (perturbed Hamiltonian system) : 

1. z(s) = J/;;p 1l(z,z,Pre,Pz,s)
d 8 s
([; Pre(S) =-lfi 1l(z, Z, Pre, Pz, S) - ire· Pre + dre· r (140)1. z(s) = -I;; 1l(z,z,Pre,Pz,s)11. pz(s) = -I; 1l(z,z,Pre,Pz,s) - iz ·pz + dz · r 

The Hamiltonian 1l(z, Z, Pre, Pz, s) consists of the linear part and the nonlinear potential due to the 
beam-beam interaction 

.. 

.'. 
' 

1l(z,Z,Pre,Pz,S) = 
p2 z2 p2 z2=,; + Kre(s)· "2 + ; + l(is). '2 + U(z,z)· Op(S -80). (141) 

This nonlinear term is given by [107] 

N" . re (00 1 - exp{- 2(11+9 - 2(1~2+9} 
(142)U(z, z) = i . Jo (20'~ +q)1/2 ~ (20'~ +;)1/2 · dq. 

In equations (140), (141) and (142) we have used the following definitions: op(s - so) periodic 
delta function, re classical electron radius, Nt, number of particles in the counter rotating bunch, (I:c, (lz 
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rms beam sizes of the strong bunch. Radiation damping is described by the two damping constants 
;z,;z and the strength of the stochastic excitation r is denoted by dz,dz. 

These equations have been extensively used in numerical simulations. These simulations are very 
helpful for understanding the complicated interplay of nonlinearity, damping and stochastic excitation 
in lepton colliders. Figure 26 [108] shows such a calculation. The combined effect of quantum :fluctu­
ations and nonlinearity can move a particle starting near the origin in phase space to a (nonlinear) 
resonance island before it is damped again and eventually pushed to another resonance nearby . 

.. 
II • Ja., • 10Hl

", 

Figure 26: (p. - z) phase diagram of a simulation 

An interesting and important question in this context is : 
How does the distribution function p(z,z,Pz,P.,s) of a stpchastic system like (140) evolve with s 

or time? 
The corresponding Fokker-Planck equation would be a five-dimensional partial differential equa­

tion, and because of the highly singular behaviour of its coefficients (delta functions), this equation 
would be extremely complicated to solve.In this case stochastic mappings are more suitable. In the 
following we will sketch an algorithm for calculating the temporal evolution of the density function for 
such a stochastic map. This algorithm is based on an idea of Gerasimov and gives much faster results 
than direct numerical simulations (see also [109]). 

We will illustrate this approach with a simple two-dimensional model of the beam-beam interaction. 
The details are described in [110] and in a PhD thesis of Pauluhn [111]. 

The considered model is given by (see also [65]): 

zen + 1) ) _ ( cos(27rQ) f3 •sin(27rQ) ) . ( z(n) )
( pz(n + 1) - -b' sin(27rQ) cos(27rQ) pz(n) - Izpz(n) + u(z(n» + dzr (143) 

r is now a random variable, Q is the tune of the storage ring, f3 is the beta-function at the 
interaction point and u(z(n» is given by 
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u(x(n» = _4".e . x(n) . 1- exp(-~)
2	 (144)(3 	 3: (;) 
20' 

with ebeam-beam strength parameter [107]. 

The main steps of this algorithm are: 


1. 	discretization of the two-dimensional phase space 

2. 	use of the microscopic dynamics (see equation (143)) to calculate the transition rates Aij between 
the discretized bins of the phase space 

3. use of this (stochastic) transition matrix Alj as macroscopic propagator for the time evolution 
of an initial particle distribution 

Figure 27 shows how an initially constant and homogeneous distribution evolves with time (after 
1000, 3000, 15000, 99000 turns respectively). These results are in excellent agreement with direct 
numerical simulations [111]. 
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Figure 27: evolution of the density function for the stochastic map (143) (here denoted by p(z,P:e, t» 
as a function of time 
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Spin dynamics in electron storage rings constitutes another interesting application of stochastic 
differential-equations in beam dynamics. In this case the orbital equations of motion (138) 

:8 y(8) = iCy, 8) + T(y, 8) . 6C(8) 

have to be supplemented by the spin equation of motion, the so-caJled BMT equation (Bargman, 
Michel, Telegdi see for example [3]) 

d.... .. 
- S =n(i) x S (145)
d8 

where the field ndepends on the orbital degrees of freedom. Since (138) is a stochastic differential 
equation, we end up with a kind of spin diffusion or random motion on the unit sphere [83]. 

The linearized spin -orbit motion in electron storage rings has been studied in [112], [113] and the 
reader is referred to these references for further deta.ils. 

U nti! now we have seen, that radiation is a natural source for noise in electron accelerators. 
However, there are also other sources for stochastic forces such as rf noise, power supply noise, random 
ground motion or restgas scattering. These influences can also be present in proton (Hamiltonian) 
systems and some of these sources could for example be included in the vector potential Aof equation 
(2). 

The influence of rf noise on the beam dynamics in storage rings has been investigated extensively 
by several authors [114],[115], [116], [117], [l18].In the smooth approximation (oscillator model) [7], 
where one averages K(s)D(s) and V(s) over the circumference L of the storage ring one obtains the 
following Hamiltonian (see equation (15» . 

il(f,p,.) = 

1 -2 L e • Vo 21rk_=-2P.· p,. + 21rk • ~. cos ( L' r) + 
L e . 6Yo 21rk e . Yo 21rk 

+21rk • ~. COS(L' f)- 6f· E;;' sin(T of) (146) 

with 

P. = - · LL It(s) . D(s) · ds
L 
1 

0 
(147) 

and 

1 {L
VO =L 0 J V(s)· ds. (148)

o 

6Vo and 6f denote the auiplitude and phase noise (for example Gaussian white noise) of a cavity. The 
corresponding stochastic differential equations now read 

1. f = -p.. p,. 
(149){ 1. p,. = i;;' (Vo + 6Vo)' sin(¥. f) + eZo.ar!' 6f· cos(ar!' f) 

Using perturbation methods the corresponding Fokker-Planck equation has been solved in [114], 
[115], [117]. An alternative to this perturbative approach would be a numerical integration of the 
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exact Fokker-Planck equation or a direct numerical treatment of the stochastic differential equations 
(149). Numerical methods to solve stochastic differential equations are described in detail in a recently 
published book [119]. These methods have been applied in [lllJ, [120J. 

If one treats the cavity as as a strongly localized element, one should investigate the stochastic 
map, in this case the standard map with explicit stochasticity and an interesting problem, one is then 
faced with, is: 

How is the interplay between deterministic chaos and explicit stochasticityf 
Only few results are available for this case [121], [122], and these stochastic nonintegrable Hamil­

tonian systems remain a challenging and interesting problem not only in accelerator physics. 

4 Summary and conclusions 

The main aim of this review was to illustrate the problems of nonlinear beam dynamics in storage 
rings and to introduce some of the concepts and tools to study these systems. Although a lot of 
facts are known and powerful techniques - especially in the Hamiltonian case - have been developed, 
designing new accelerators (like the SSe) remains a challenging problem of nonlinear dynamics. The 
design of such a machine requires a lot hf numerical simulations, the knowledge of the basic facts of 
the qualitative theory of dynamical systems and perturbative investigations. Besides these theoretical 
issues, future accelerator developments have to rely on the experience with existing machines and on 
special nonlinear dynamics experiments performed with these machines. 
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