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Abstract 

Conformational properties of polymers. like average dihedral angles or molecular a-helicity, display a 

rather weak dependence on the detailed arrangement of the elementary constituents (atoms). We propose 

a computer simulation method to explore the polymer phase-space using a variant of the standard multi

canonical method, in which the density of states associated to suitably chosen configurational variables is 

considered in place of the standard energy density of states. This configurational density of states is used in 

the Metropolis acceptance/rejection test when configurations are generated with the help of a hybrid Monte 

Carlo algorithm. The resulting configurational probability distribution is then modulated by exponential 

factors derived from the general principle of the maximal constrained entropy by requiring that certain aver

age configurational quantities take preassigned (possibly temperature dependent) values. Thermal averages 

of other configurational quantities can be computed by using the probability distributions obtained in this 

way. Moments of the energy distribution require an extra canonical sampling of the system phase-space at 

the desired temperature, in order to locally thennalize the configurational degrees of freedom. 

As an application of these ideas we present the study of the structural properties of two simple models: 

a bead-and-spring model of polyethylene with independent hindered torsions and an all-atom model of 

alanine and glycine oligomers with 12 aminoacids in vacuum. 

Keywords: Polymers; Statistical Mechanics; Information theory; Computer simulations. 
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I. INTRODUCTION 

The study of the Statistical Mechanics of polymers, consisting of monomers of specific nature, 

is becoming more and more important in chemical and biological technologies. Polymers like 

proteins,1 nucleic acids,2 polysaccharides3 and synthetic materials,4 display features that strongly 

depend on their detailed physico-chemical properties like, for instance, the degree of flexibility 

of specific chemical linkages, the charge density on the monomer atoms and the structure of the 

hydrogen bond network between monomers either close or far away in the sequence. 

The prediction of the structure, or family of structures, characteristic of a sequence of 

monomers in well specified experimental conditions is, nowadays, one of the most investigated 

structural problems posed in this field. 5,6 

The enormous complications associated, even within classical physics, with the atomistic de

scription of the specific interaction among the elementary components of the polymer can only be 

handled by numerical simulations. Clever algorithms have been devised to efficiently explore the 

configuration space available to the system and different types of ensembles have been invented 

and numerically implemented, starting from molecular dynamics (MD) and Monte Carlo (MC) 

methods. As is well known, MD and MC simulations explore the micro-canonical ensemble and 

the canonical ensemble of the system, respectively. Other kinds of ensembles, which may be 

collectively indicated with the name of generalized ensembles, 7-13 can also be introduced and em

ployed for the study of the thermodynamic properties at equilibrium. In principle, under standard 

ergodicity assumptions, all these ensembles can yield equivalent physical information. 

Despite the fact that many powerful mathematical tools are available today within the poly

mer theory, reliable calculations of only a limited set of statistical averages or configurational 

distributions can be obtained and studied as functions of a few parameters encoding the many 

complications of the polymer structure and inter-atomic interactions. I4-16 Therefore, the idea of 

combining computer simulations with the knowledge of the statistical averages of a few configu

rational quantities, that may be available either from theory or from experiments, emerges. 

The most difficult problem that is encountered in numerical simulations is related to the limited 

and strongly biased sampling of the configurational space occurring when the temperature is lower 

than the critical temperature of the model. By "critical temperature" we generically mean the 

temperature above which the system is in the disordered phase. Below the critical temperature 

the system remains trapped in local minima, within energy barriers that are rarely overtaken by 
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thermal fluctuations. 

Most of the widely used computational methods designed to avoid this problem, like simulated 

annealing17,18, genetic algorithms,19 and stochastic tunnelling20 do not always permit the compu

tation of statistical averages in well defined ensembles (i.e. those that are the statistical representa

tives of the desired experimental conditions), On the other hand, the use of generalized ensembles 

within MD and Me simulation strategies results in a powerful approach to predict the statistical 

properties of atomistic models of complex molecules in a wide range of temperatures and or

der parameter values. Algorithms designed to access ensembles of the multi-canonical type, i.e. 

the kind of generalized ensembles that exploit the information on the (potential) energy density of 

states, are well assessed and made rather effective if used in conjunction with the replica-exchange 

method. In many interesting instances it is possible to computationally monitor order parameters 

of geometrically constrained molecular models of polymers in a fairly large temperature range. 

Problems, however, arise when all the degrees of freedom of the models, which include high

frequency vibrations, are taken into account,21 as it is necessary to do in order to treat condensed 

phases and explicit solvents: large variations of the potential energy are observed associated with 

these modes even for tiny configurational changes. Indeed large potential energy changes associ

ated to stiff terms in the Hamiltonian (like bond stretching and bending potentials) or inter-atomic 

contacts cause very low acceptance in the exchange of temperatures between replicas and lack of 

convergence of the multi-canonical weight computation. 21-23 

A. Aim of the paper 

The aim of this work is to design generalized ensembles suited for computer simulations, not 

based on monitoring the system potential energy, but some appropriately chosen configurational 

variable about which theoretical and/or experimental information are available in terms of aver

ages, in some range of the experimentally relevant physical parameters, like temperature or density. 

In a recent paper,24 it has been shown that information on average molecular structural quan

tities can be introduced in configurational random walks by generalizing the standard maximal 

entropy method to find the maximum of the so-called "cross entropy,,25 functional under the con

straint that the statistical average of certain, appropriately selected, configurational quantities, take 

their (experimentally or theoretically) known values. The well-known result of the constrained 

maximization procedure is that the best estimate of the thermal configurational probability is 
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yielded by a "modulation" of the original random walk probability distribution, in terms of a 

factor which turns out to have the usual exponential functional form. 

As an alternative approach to the multi-overlap simulation26 and various kinds of biasing 

potentials,27-30, in this work we will further develop and straighten the approach of ref. 24 by 

imposing constraints coming from assigning well defined values to selected configurational quan

tities on an "improved" configurational probability distribution. The latter is recursively obtained, 

starting from some initial random walk, by successively generating configurations with weight pro

vided by the density of states associated with the selected configurational quantities. At each step 

of the recursion the current distribution is used to get an estimate of this density of states and the 

logarithm of its inverse is in tum used to generate, by a standard Metropolis acceptance/rejection 

algorithm, a less biased probability distribution. The procedure is repeated until stability is ob

tained. In this way, as the recursion goes on, histograms of the configurational quantities used to 

estimate the current density of states become flatter and flatter because the configurations rarely 

reached at the beginning are successively sampled with higher and higher probability, owing pre

cisely to the low value of their weight in the current density of states. 

The principle of constrained maximal entropy is then applied to the configuration probability 

distribution obtained as the last refinement of the above loop. The least-biased estimate of the 

actual probability distribution of the system, which is "nearer" to the latter and fulfills the con

straints relatively to the expectation values of the selected configurational quantities, is obtained 

by maximizing the cross-entropy functional25 under the specified constraints. 

B. The problem of temperature 

A non-trivial issue within the approach we have described is the introduction of temperature. 

Actually, getting the (correct) temperature dependence of the whole set of average configurational 

quantities of a macromolecule is a formidable problem which goes beyond our present capabili

ties. The much more modest aim of this work is to offer a procedure suitable for computing the 

configurational probability distribution of a model system at a given temperature, when, as it is 

usually the case, only a few average quantities, at a small set of temperatures, are known either 

from theory or experiments. 

The problem of introducing temperature in the computational scheme we advocate is solved by 

injecting the necessary information about it in two complementary ways. First of all, in the con
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strained maximal entropy method we can use as inputs for the chosen configurational quantities, 

values taken at the different, possibly available, temperatures.24 This indirectly leads to a T depen

dence of the resulting configurational probability, which, however, is not sufficient to overcome the 

problem of the lack of "canonicity" of the ensuing energy distribution. The reason is that, due to 

complexity of the energy landscape, it easily happens that states of the system which only slightly 

differ in their atomic configurations have instead largely different values of the potential energy. 

It is then natural, as a second step, to try to enforce the correct Boltzmann probability distribution 

by further performing standard hybrid Monte Carlo (HMC) simulations at the desired temperature 

starting with the available set of configurations. According to the details of the procedure, one 

may need to reweight the collected configurations, when computing thermal averages, to get rid 

of possible biases due to the particular acceptance/rejection criterion adopted in the HMC step. 

c. Applications and plan of the paper 

We will discuss the application of the statistical method we have just presented to two simple 

macromolecule models. The first one is a model of polyethylene chain, described as a bead

and-spring chain with independent hindered torsions and no excluded volume. The cosine of the 

dihedral angle between the two planes formed by three consecutive bonds, averaged along the 

chain, is taken as the configurational variable with respect to which the relevant density of states 

is constructed. The temperature dependence of this quantity is known exactly from theory. IS 

The second system we will study is an all-atom model of polyalanine and polyglycine chains 

with 12 monomers in vacuum: the same strategy as in the previous case is used here, except that 

information about the tridimensional structure of the systems is introduced through the knowledge 

of the average molecular a-helicity. From the comparison between the behaviour of potential 

energy and entropy of the two macromolecules, as functions of the value of their average a

helicity, one can extract a quantitative information on the relative propensity of the two systems to 

form a-helical structures. 

The plan of the paper is the following. In section II we will explain the theoretical and the com

putational tools we employ in this work and we will discuss how temperature can be introduced 

in the approach we propose. In section III we will describe the application of our method to the 

study of a polyethylene chain, while in section IV the same computational strategy will be applied 

to all-atom models of polyalanine and poly glycine molecules in vacuum. Conclusions and some 
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considerations regarding future lines of development can be found in section V. Certain technical 

details are given in an Appendix. 

II. THEORETICAL CONSIDERATIONS 

A useful notion of "cross-entropy" can be introduced in situations where partial infonnation 

about the statistical properties of a system is available. As suggested in ref. 25, we may formalize 

the discussion in the following way. Let Wi be the weight of the microscopic state i, corresponding 

to a given macrostate of the system. To fix the ideas we can imagine that the macros tate is specified 

in terms of the value of its total energy, E, the total number of elementary components, N, and the 

volume V, where the components are confined. What we have in mind here is the construction of 

the Statistical Mechanics of the system in tenns of the notion of micro-canonical ensemble. The 

probability, Ph to find the system in the microstate i is 

(1) 


where W is the number of microstates of the system compatible with the assigned values of E, N 

and V. The total entropy of the system is 

S = kBlogW, (2) 

kB being the Boltzmann constant. Let us now suppose that a certain amount of infonnation is 

available at some "mesoscopic" level. Labeling mesostates by the index " we have for their 

statistical weight the formula 

W"{ = LWi. (3) 
iE,,{ 

In analogy with Eq. (2) we will call S"{ = kB logw"{ the entropy of the mesostate 'Y. Using this 

formula, the probability of a mesostate becomes 

w"{ 1 /P,., = Z = Z exp(S"{ kB ), (4) 

where Z is the partition function of the system. From the definition of S,., and Eq. (3) one imme

diately concludes that Z = W. 

The key observation at this point is that the total entropy of the system (Eq. (2» can be written 

in the suggestive fonn 

S = kB log Z = L P"{[S"{ 
"{ 

- kB logP"{]. (5) 
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Despite the fact that Eq. (5) is an identity (to show this use the previous equations for P,., and S,.,), 

it can be exploited to set up a useful variational principle. We can imagine, in fact, to be in the 

following situation. We have some approximate information on the weights, w,." of appropriately 

defined mesostates of the system and preassigned values for a number of thermal averages, (A) == 
(A(k»), k = 1, ... , M. From the knowledge of the quantities w,., we can construct the probability 

(6) 

of finding the system in the mesostate 'Y. The (approximate) information about its entropy is then 

expressed by the quantity S,., = kB logw,.,. 

The problem of finding the least-biased expression of the probabilities P,., that is nearer to the 

P,., and satisfies the conditions 

(A(t») = E P,.,A;t) = a(l) , f. = 1, ... , M (7) 
,., 

is solved by determining the maximum of what, following ref. 25, we will call the "cross-entropy" 

functional 

Sc[P, P] = Ep,.,[S,., - kBlogP,.,] = kB Ep,.,[logw,., -logP,.,] = 
,., ,., 

'P =-kB E P,., log -,., - kB log Z (8) 
,., P,., 

under the constraints imposed by the Eqs. (7). The above is a well posed variational problem, as 

it follows by noticing that the functional Sc[p,15] + kB log i is non-positive (provided P,., and 

P,., are normalized to unit, i.e. satisfy I:,., P,., = I:,., P,., = 1)43 and vanishes when P,., = 15,.,. 
Introducing the constraints (7) through the M Lagrange multipliers, X== (..\(k), k = 1, ... , M), 

the solution for P,., is easily found to be 

- M 
P,., = P: exp [ - E ..\(k)A;k)] , (9) 

Z("\) k=l 

z(\) = Ei\ exp [ - L
M 

.\(k)A~k)] , (10) 

,., k=l 

where the parameters Xare consistently determined by solving the equations 

M 

"" P A (i) = ~ ""P... exp [ - "" ..\(k) A(k)] A (i) = aCt) , f. = 1, ... , M . (11)
~ ,.,,., Z('\) ~ / ~ ,., ,., 

,., ,., k=l 
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Introducing back the solution for 15.., into Eq. (8), one gets for the cross-entropy at the maximum 

- M 
s~m)[al = kB [log Z0) + L ,\(k)a(k)] . (12) 

Z k=l 

The procedure we have followed (sometimes called for short the MEC procedure in the rest of 

the paper) parallels exactly the usual constrained maximal entropy method. Similarly to what is 

done in more standard cases, we assume that any increase of information one might get about a 

system reflects itself in a decrease of its informational entropy, which in our case we identify with 

the cross-entropy functional defined in Eq. (8). Thus within the set of all possible configurational 

probability distributions satisfying the constraints (7), the least-biased one is to be considered the 

one which maximizes our "ignorance", hence Be. 

A. Application to numerical simulations 

To make precise the following discussion and make contact with the previous rather general 

notations, we must first of all specify what is to be meant in this context by the index,. To this 

end we observe that in actual simulations any configurational probability distribution (which is 

a function of the system coordinates) will be necessarily described by a histogram with a finite 

number of entries. Thus, will have to be identified with the index that labels these entries. In 

the following pages, however, for short we will keep using a continuum-like notation where we 

replace, by the set of coordinates, {r}, that specify the state of the system, and the sum over, by 

the integral over all the system coordinate space, i.e. 

(13),-t{r}, 

We now proceed to construct the appropriate probability distribution, p[{r}] (the analog of 

Eq. (6)), that will allow us to go over to the improved one, P[{r}], once equations like (11) are 

imposed within the constrained maximal entropy scheme. The construction of 15 [{r }] will be done 

recursively, starting from an initial random walk distribution, 15(0) [{r }], obtained as discussed in 

ref. 24. The probability associated to random walks was called there "meta" configurational prob

ability distribution, a name that we will occasionally use also in this paper. For completeness we 

recall in the Appendix the construction of 15(0) [{r }]. 
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B. A recursive construction of:P[{r}] 

For reasons explained in the Introduction we want to construct an improved configurational 

probability distribution based on the knowledge of the "A-density" of states, gA(a), associated to 

a given configurational quantity, A [{r } ]. 9A (a) is defined by the equation 

9A{a) =JII dro(a  A[{r}l) , (14) 

which naturally generalizes the usual formula for the density of states 

n{u) = JII dr 0(u  U[{r } 1) . (15) 

Eq. (14) can be further extended to define the cross {A.}-density of states, {A} _ (A(k},k = 
1, ... , M), through the equation 

(16) 

Of course only an approximate knowledge of the density of states is possible, as the number of 

generated configurations is never infinite nor unbiased. This is so because the available CPU

time is limited and there are always constraints and biases in the way the configurational space is 

explored. For instance, in the procedure described in the Appendix there is a maximum allowed 

temperature in the procedure employed to extract the particle velocities, though no upper bound 

to their absolute magnitude. Moreover, different steady states are obtained if different (but always 

time-reversible) algorithms are used to numerically implement the MD steps or the shape of the 

suggesting probability is modified (though keeping it invariant under the sign inversion of the 

particle velocities and independent of the configuration). 

In order to (at least partially) overcome these difficulties, one can envisage an iterative pro

cedure to construct a better probability distribution, j5[{r}], based ona systematically improved 

knowledge of some cross {A}-density of states. For illustrative purposes let us discuss the case 

M = 1. The procedure yielding the required probability distribution is rather straightforward. 

From the random walk distribution, 15(0) [{r }], discussed in the Appendix one starts by constructing 

a zero-th order approximation of the A-density of states, g~)(a), by simply discretizing Eq. (14). 

This is done by partitioning in an appropriate number of bins, say NA, the variability range of the 

quantity A and counting the number of times any given bin value, aU)' j = 1, ... , N A, is obtained 

while sweeping through all the configurations that make up 15(0) [{r } ]. 
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At this point a new sampling of the system configurational space is performed with some 

suggesting probability, P and an acceptance/rejection probability, P~~J, given by the multisug 

canonical-like formula9 

(0)( ') . [ exp[-Q~)(a')]] (17)Pace a ~ a = mln 1, (0) ,
exp[-Qn (a)] 

where Q~O)(a) is an order n polynomial interpolation of log[g~)(a)]. This procedure satisfies the 

detailed balance condition if Psug is invariant under the exchange of its arguments, as explained in 

the Appendix. Furthermore it is so obtained to preferentially accept configurations with previously 

low probability, i.e. with previously low values of g~)(a). 

The configurations collected in this way give rise to a new meta configuration probability 

distribution, 15(1). The set of newly generated configurations can now be used to compute the 

next approximation, g~), to the A-density of states. The latter is then employed to again sample 

the system phase-space with an acceptance/rejection algorithm like the one in Eq. (17), but with 

Q~O)(a) = log[g~)(a)] replaced by Q~l)(a) = log[g~)(a)}. The loop is iterated m times until no 

change in the X's is appreciable while passing from the m-th to the m + I-th iteration. The last 

estimates of the meta distribution and A-density of states will be simply called P[{r}} and gA(a), 

respectively. P[{r}] is finally used in the constrained maximal entropy method described at the 

beginning of this section (see Eq. (9)). 

For the thermal average of the configurational quantity, B[{r}], one finally gets 

(18) 

(19) 

where Nc is the total number of collected configurations and we have set for short bi = B[{ri}] 

and a~k) = A(k)[{ri}]' 

We conclude by noticing that we should have appended an index A also to 15, because in 

any realistic situation this probability distribution would somehow depend on the particular set of 

configurational variables we had decided to consider in the construction. To lighten the notation 

we do not do it. In principle such a dependence would disappear after a fully exhaustive (i.e. 

ergodic) exploration of the system phase-space has been carried out. 
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c. Introducing temperature 

So far temperature has not yet been brought on stage. Introducing the notion of temperature for 

a complex (fully flexible) system, like a polymer, is a delicate issue, because of the observation we 

already made that configurations only slightly different in their atomic spatial arrangement may 

have largely different potential energies. Consequently, as it turns out, it becomes more and more 

difficult to get the correct (Boltzmannian) energy distribution of the total available energy among 

the many degrees of freedom of the system as the temperature increases (despite the fact that at 

high temperature overcoming energy barriers may become easier). 

This is the reason why, within the standard multi-canonical approach, introducing the tempera

ture through the modulation of the energy density of states by the Boltzmann factor does not yield 

sufficiently satisfactory results, as soon as the number of beads (hence the number of degrees of 

freedom) of the polymer exceeds a certain value and/or the temperature is above the order-disorder 

phase transition.21 

It is precisely to overcome this kind of problems that we are proposing in this paper to work 

in a generalized ensemble where configurations are in the first place generated according to the 

density of states associated to some set of configurational quantities, rather than to energy. In 

this way, however, it might seem that the fundamental statistico-mechanical relation between the 

energy of the system and its temperature is put at stake. In fact, for the purpose of studying, say, 

biopolymers, which after all are neither isolated systems, nor do they work at equilibrium, this 

state of affairs may not be a problem and can be dealt with along the lines described below. 

Indeed, in the framework we are developing there is room for the introduction of a sensible 

notion of temperature. We do it in two separate steps. Temperature can be injected in the statistics 

if we know how the preassigned values of the thermal averages depend on T. In this case the 

conditions (7) take the form (.J) = aT. This knowledge will induce a T dependence (X = X({3), 

{3 = l/kB T) on the values of the Lagrange multipliers that are obtained by solving Eqs. (11). 

Through Eqs. (18) and (19) this dependence will be passed to the thermal average of any other 

configurational quantity one wishes to compute. 

The temperature dependence induced in this way is not enough, however, to produce the correct 

T -behaviour of quantities that require an accurate thermalization of all the degrees of freedom of 

the system, like e.g. the moments of the (potential) energy distribution. Thus a local, extra ther

malization has to be carried out. This is done in the following way. Starting from each one of 
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the already recorded configurations (those making up the available meta probability distribution, 

P[{r}]), one performs a number of hybrid MC steps with velocities extracted from a Maxwell

Boltzmann distribution at the desired temperature, T. At the end of the MD moves of each hybrid 

MC step configurations are subjected to a standard Metropolis test with acceptance/rejection prob

ability 

(20) 

where H[{r, v}] is the total (kinetic plus potential) energy of the system. In this way configurations 

are smoothly thermalized at the desired temperature. 

The set of the newly obtained hybrid MC trajectories provides the configuration samples that 

should be used in computing expectation values of potential energy functions, J(U). For such 

quantities formulae exactly analogous to Eqs. (18)-(19) are valid, which we report here for the 

completeness 

(21) 

NHMC M 
Z({3) = L [gA(ai)]-1 exp [ - L A{k)({3)a~k)] , (22) 

i=l k=1 

In Eqs. (21)-(22) NHMC is the number of the collected hybrid MC configurations. The quantities 

Ui = U[{ri}] and a~k) = A{k)[{rill are the values of the potential energy and configurational 

variables, A(k), respectively, recorded along the hybrid MC trajectory. This approach will be 

called thermalized constrained maximal entropy, TMEC hereafter. 

The following alternative thermalization procedure can also be envisaged. Exploiting the 

knowledge of the density of states gA (a) a single generalized-enselT1ble hybrid Monte Carlo tra

jectory31 can be constructed using the acceptance/rejection rule criterion 

- . [1 exp(-fJH[{r2' V2}] - Qn[a(r2)] ]p.ace[{rl, VI } -+ { r2, V2}] - mIn , -, (23) 
exp[(-{3H[{rb VI}] - Qn[a(rl)] 

where Qn(a) is the (already determined) order n polynomial interpolation of 10ggA(a) (see 

Eq. (17)). No use of the constrained maximal entropy strategy is employed here, so no exponential 

factors of the type appearing in Eqs. (21) and (22) will enter in the formulae for thermal averages. 

Thus compared to the TMEC approach, the construction of the generalized-ensemble hybrid MC 

(in the following GEHMC for short) trajectory does not require any a priori knowledge of the 

system, except for the A-density of states, 9A (a), which is supposed to have been estimated either 
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as explained above or by some other possibly more sophisticated algorithm. It should, however, 

be said that the use of the Maxwell-Boltzmann velocity distribution at fixed inverse temperature f3 

produces strongly correlated moves that tend to leave the system trapped in states where gA (a) is 

at a local minimum. 

It is our experience that, although thermal averages of configurational variables do not change 

appreciably if the TMEC equilibration is omitted, energy dependent quantities significantly im

prove their T -behaviour, if the latter step is carried out. It must also be observed that consistency 

requires that the temperature appearing in the Metropolis test (Eq. (20)) be equal to the tempera

ture at which the constraints (Eq. (11)) are imposed. To underline this obvious, but important fact 

we have explicitly indicated in all our formulae the f3 dependence of the parameters X. 

III. SINGLE POLYETHYLENE CHAIN 

A simple polyethylene model was studied in ref. 24, using a straightforward constrained maxi

mal entropy type approach. Here, the same model is summarized and previous results are improved 

according to the random walk refinement and thermalization procedure described in the previous 

section. 

The polyethylene chain we have considered consists of n units representing methylene frag

ments joined by bonds. Bond stretching and angle bending motions are described by harmonic 

springs, while the potential for dihedral angles is expanded as a Fourier cosine sum. The coeffi

cients in the sum are those used for early simulations of united-atom models of alcanes.32 All bond 

lengths, valence angles and dihedral angles along the chain will be considered equivalent, as the 

monomers making the polymer are all identical. 

An exact expression for the average square end-to-end polymer distance (h2 ) of a polymer 

with n methylene units can be given. IS Explicit formulae show that (h2 ) can be written in terms of 

three configurational average quantities: the average of the square bond length, (l2), the average 

of cos (), where () is the valence angle, and the average of cos ¢, where ¢ is the dihedral angle 

between three consecutive C-C bonds. In ref. 24 the average end-to-end square distance was 

extracted from simulations in which configurational random walk probability distributions were 

modulated (according to the constrained maximal entropy method) exploiting only the information 

coming from the temperature dependence of the configurational average of the quantity (cos ¢), 

which is exactly known from theory. The average square end-to-end distance values obtained in 
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this way have been compared to the known theoretical behaviour, finding a rather good agreement 

in the explored range of temperatures (T = 100 K to T = 600 K) and with n up to 40. 

Despite this agreement, the information contained in the probability distribution gathered in 

the simulation proved not to be sufficient to allow for the construction of the correct end-to-end 

distance distribution function. 

As a first step in the direction of constructing the correct configurational distribution func

tion, one can start by simplifying the model, keeping bond lengths and valence angles fixed to 

their equilibrium values (0.1526 nm and 112.4 degrees, respectively). In this situation the use of 

generalized-ensemble Monte Carlo (GEMC for short) methods of the multi-canonical type looks 

adequate. The rigid geometry model was studied in ref. 24, employing the SMMP program. 33 

Results on the configurational distribution densities of the fully flexible model obtained in the 

next section will be compared with those derived using the generalized-ensemble MC probability 

distribution of the rigid model. In the explored temperature range (100 K < T < 600 K) the 

configurational distribution densities of the two models should not be very different. 

A. Constructing the meta probability distribution 

In this section we want to show that by making use of the meta configuration probability dis

tribution, p, associated to some, suitably chosen, configurational variable and constructed as ex

plained in Sect. II, one can get satisfactory distribution functions of configurational quantities, 

even for the fully flexible model of polyethylene, i.e. for the model where the force-field is taken 

to include all the degrees of freedom of the system, namely bond stretching, angle bending and 

dihedral deformation modes. 

As recalled in the Appendix, the initial configurational random walk, p(O), is constructed by 

collecting 105 configurations of the system generated in MD runs each made of 103 iterations with 

a time-step of 1 fs. Every run is performed starting with velocities extracted from a Maxwell

Boltzmann distribution at a temperature randomly chosen in the interval from 0 K to 1000 K. 

Further details of this construction are reported in the Appendix and in ref. 24. It was shown in 

this work that, if the initial random wal~ where all the generated configurations are accepted, 

is used in computing thermal averages, the configurations that are expected to give the most im

portant contributions to the low temperature average of the end-to-end square distance are rarely 

encountered. This fact is signaled by large uncertainties in the computed values of constrained 
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maximal entropy Aparameters. This is how, in this setting, the difficulties of properly sampling 

the system configurational space at low temperatures emerge. 

In the present paper we want to improve, in the physically motivated way we discussed before, 

the initial random walk. As a relevant configurational variable with respect to which we compute 

the associated density of states, we decided to take A = Li cos ifJi/Nd, where i runs over the Nd 

equivalent dihedral angles of the molecule. This quantity was chosen because the cosine of the 

dihedral angle is the most important parameter characterizing the polymer stiffness and elongation. 

As we said, the recursive construction illustrated in Sect. II B uses the 15(0) distribution as the 

initial approximation. Already this zero-th order distribution is capable of adequately sampling 

configurations with (cos ifJ) in the range from -0.8 to O. To go to the next iteration a fifth-order 

polynomial, Q~)(cos ifJ), was fitted through the (thirteen) points making up log[g~)(cos ifJ)] in this 

range. This is done only to have a continuous function as probability distribution for proposing 

configurations in the next iteration. As usual in multi-canonical weight construction, beyond the 

limits of the sampled range the logarithm of the density of states is extended as a linear function 

in the relevant variable (here the average cos ifJ along the chain) with a continuous derivative at the 

matching points. One proceeds in the iteration until convergence is obtained. 

At each step the current meta probability distribution, p(m), is subjected to the exponential 

modulation as required in the constrained maximal entropy method (see Eq. (11)). In this step the 

theoretically known temperature dependence of (cos(ifJ) is exploited. IS As a result, the computed 

Aparameter will be a function of the temperature. 

In Fig. 1 the Aparameters successively obtained, while progressively improving the meta prob

abilities, are displayed as a function of the inverse temperature, f3. It is clearly seen that the gain 

in information sensitivity in going from the second iteration, 15(1), to the third, 15(2), is very small. 

This suggests that the firstly refined meta probability is already adequately sampling the relevant 

part of the conformational space of the system in the 100-600 K temperature range. 

In Fig. 2 we compared the exact (i.e. theoretically computed) dependence of (h2
) on the 

temperature with results coming from different simulations and/or modeling strategies, namely 

generalized-ensemble MC (GEMC), constrained maximal entropy (MEC) and generalized

ensemble hybrid Me (GEHMe). Generalized-ensemble Me and constrained maximal entropy 

methods give comparably good results. This means that, as expected on the basis of the stretch

ing and bending force constants used in the model, the full flexibility is not necessary in order 

to get agreement with theory. On the contrary, data for the fully flexible model, coming from 
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the fixed temperature generalized-ensemble hybrid Me trajectories depart significantly from the 

correct results already below 350 K (see comment below Eq. (23)). 

In the constrained maximal entropy and generalized-ensemble MC cases the increase in the av

erage chain extension visible below 200 K is well reproduced and originates from contributions of 

almost fully extended (all trans) configurations. In order to quantify this effect, in Fig. 3 the distri

bution, P = P(h2), of the square end-to-end distance h2, is plotted for three temperatures, 100 K, 

300 K and 600 K, in panels (A), (B) and (e), respectively. We compare them with the same kind 

of distributions obtained after the thermalization step described by Eq. (23). Differences are small, 

except at the lowest temperature, where the generalized-ensemble Me distribution somewhat de

viates from the other two. This is due both to statistical fluctuations and the smaller flexibility of 

the model which was employed in that case. We recall that bond stretching and angle bending 

modes were frozen at their equilibrium value. The area under the rightmost peak of panel (A) 

in the generalized-ensemble MC distribution yields an estimate of the all-trans population. Next 

peak to the left should be related to the all-but-one-trans population. It can be seen from the dis

tribution at T = 100 K that, due to full bond flexibility, in the constrained maximal entropy and 

thermalized constrained maximal entropy (TMEC) cases there is no clear-cut separation between 

the fully extended (all-trans) configurations (geometrically the square end-to-end distance of the 

all-trans configuration is 24.4 nm2) and those with only one single gauche dihedral angle. 

B. Towards a canonical probability distribution 

As we have previously explained, the evaluation of averages of quantities related to the potential 

energy requires a further thermalization step. The expectation value of the potential energy and its 

2nd momentum at various temperatures have been evaluated by using the TMEe thermalization 

method, summarized in Eqs. (20)-(22). 

More precisely this is done in the following way. One tenth of the 105 configurations obtained 

after the iterative procedure bringing from the initial random walk to the final meta probability 

distribution, p, have been selected and taken as starting points for the hybrid Me thermalization. 

From each such configuration a total of 100 HMC steps were performed at every one of the tem

peratures used in the constrained maximal entropy modulation. In each HMC step the system 

was evolved with short MD runs (10 iterations). In total 106 configurations were collected at every 

single temperature and a sample of uniformly drawn 105 configurations were used for the analysis. 
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In Fig 4 we display as functions of temperature the quantities (U) (panel (A», and (Ul) (panel 

(B», where Ut is the torsional contribution to the potential energy. Ensemble averages are com

pared with the exact results. The agreement is fairly good, with the residual difference decreasing 

as the thermalization length of each hybrid MC run is increased (data not shown). It is also use

ful to compare with the results, also shown in Fig. 4, obtained by averaging U and Ut along the 

generalized-ensemble hybrid Monte Carlo trajectory. We see that the agreement with the exact 

results is very satisfactory and even better than in the TMEC case, despite the fact that, as we 

have seen before, the average molecular size, monitored through the average square end-to-end 

distance, is incorrectly reproduced as soon as T < 300 K (see Fig. 2). This happens despite the 

fact that even at low temperatures the "entropic Q-term" in the acceptance probability (Eq. (23» 

quickly drives the molecule towards the most relevant configurations. The reason is that, when 

the temperature is too low, configurations that still give a significant contribution to the average 

end-to-end distance are not sampled adequately because of the height of energy barriers and the 

fact that the temperature is kept fixed throughout the whole procedure (i.e. both while proposing a 

configuration and in the acceptance/rejection step). Viceversa, by using the approach summarized 

by Eqs. (20)-(22) such significant contributions to the average end-to-end distance are included, 

though at the expenses of a less accurate description of the potential energy moments. 

The main conclusion of this detailed analysis is that distributions of structural quantities and 

energy are quite independent from each other. For instance, going back to Fig. 3, we observe 

that the TMEC thermalization step only slightly modifies the constrained maximal entropy h2_ 

distributions, thus showing that the latter is already strongly constrained by the average value of 

cos if> through the appropriate exponential modulation. Once this information has been injected, 

the settling down of the average potential energy due to thermalization and equipartition has little 

structural effect. 

IV. OLIGOPEPTIDE CHAINS 

The more complex molecular chains become (as, for instance, because of the presence of more 

and more complicated type of interactions, like steric exclusions, hydrogen bonds, electrostatic 

potentials) the larger is the variety of structures that are accessible to the system. Well defined 

structures or structural basins are in thermal equilibrium at any given temperature and the question 

arises whether one may be able to characterize the resulting configurational probability distribu
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tions by monitoring the expectation values of some suitably chosen set of physical quantities. 

In the case of polypeptides some of these equilibrium structures have been identified by min

imizing local steric repulsions or dispersive attractive interactions.34 These simple methods are 

effective in a situation where only a subset of the many variables describing the polypeptide con

formation can be reliably used for its description. In most cases the selected variables are the two 

dihedral angles, C(i-l)-N(i)-Co:(i)-C(i) (¢) and N(i)-Co:(i)-C(i)-N(i+l) ('if;) , of each constituent 

aminoacid. 15,35 Successively the idea has been largely developed by introducing more and more 

details in the description of interatomic forces. 36 

The exploration of atomistic force-fields for polypeptides and small proteins has recently 

achieved quite a remarkable level of efficiency thanks to the important developments in imple

menting various kinds of multi-canonical and replica-exchange algorithms. 37-40 

In this paper we assume that the outcome of experimental observations carried out in different 

environmental conditions on a molecular system or the available theoretical results can be summa

rized in the knowledge of a set of average properties. In this setting we would then like to address 

here the following questions. What is the amount of entropy reduction when such knowledge is 

added to a situation where little or no extra information is available? Can we develop a consistent 

scheme where thermodynamical quantities, like energy and free energy, can be computed once 

certain structural information are known and introduced to constraint the system configurational 

probability distribution? 

Two oligopeptides, Ala12 and GlY12, have been used in this paper as paradigmatic examples 

to investigate our ability in answering the previous questions by the methods of Sect. II. As the 

relevant configurational variable we decided to take the o:-helicity of the molecule, Na, where the 

latter is defined as the number of residues with 2600 S ¢ S 3200 and 2930 S 'if; S 3530 
• 

A. Conformational analysis 

We want to study what are the implications of assuming through experiments (or theory) in

formation are available on (Na ) at two structurally characteristic temperatures. One is taken to 

be Th , i.e. the temperature where the helicity is at its maximum and 12 residues, on average, can 

be identified as being in an a-helix state. Th is a low temperature which corresponds to a highly 

ordered phase, where the order parameter (that we can identify with (Na) /12) is large, i.e. near to 

1. The second temperature, that we will call T" is the temperature where the average helicity is 
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zero, as no residue is found in an a-helix state. 11 is a high temperature which corresponds to a 

low order (disordered) phase where the order parameter is very near to zero. Between these two 

extreme conditions we may assume that the molecule will be found with almost equal probability 

in anyone of its possible configurations. As it has been argued in Sect. II, this situation is ap

proximately described by the "un-modulated" meta probability distribution, P(r), with the latter 

improved making reference to the density of states defined by the average helicity. 

The interaction potential of the system has been modeled as it is usually done in all-atom MD 

simulations of peptides. The AMBER-94 force-field,41 with relative dielectric permittivity €r = 1 

was used. An atom based cut-off of 0.9 nm was introduced for Lennard-Jones and electrostatic 

interactions, while at the same time cut-off errors in the electrostatic interactions were reduced by 

screening (with a screening constant equal to 2 nm- I ) and charge-neutralization for pair interac

tions, according to the algorithm proposed in ref. 42. The Nand C terminal groups were modeled 

as neutral groups adding acyl- and methyl-amide groups at the Nand C termini, respectively. 

We have acquired a trajectory of 105 configurations by constructing a meta probability distri

bution in the manner described in the previous example of polyethy lene, but with cos rP replaced 

by the average molecular a-helicity, Na , as the relevant configurational variable upon which the 

iterative procedure illustrated in Sect. II B is based. This meta probability distribution was then 

modulated through the constrained maximal entropy method by requiring it to lead to the desired 

values of {Na }. The interval 0 to 12 was divided in 100 parts and 100 constrained maximal en

tropy configurational probability distributions were constructed each corresponding to one of the 

values, na , taken by {Na }. Both for polyalanine and polyglycine, one iteration was enough to ob

tain convergence of the procedure. These modulated distributions have been used in the analysis 

that follows. 

As a first step of our investigation, we studied the effect of injecting information concerning 

the average helicity of the molecule on the meta probability distribution, p, with consequent 

cross-entropy reduction, by monitoring how the modulating constrained maximal entropy factors 

affected the final distribution. This was done in three selectively chosen cases: (Na ) = 0 (panels 

A and D of Figs. 5 and 7), no constraint on (Na ), i.e. A = 0 (panels B and E) and (No. ) = 12 

(panels C and F). 

In Fig. 5 we show the histograms of the logarithm of the probability of finding the dihedral 

angles rP and 'lj; of residue 5 of the alanine (panels A to C) and glycine (panels D to G) oligomers 

within intervals of ±10°. The three pairs of histograms correspond to the three different types of 

20 



constraints we have imposed on the value of the oligomer average helicity, as explained above. 

Black squares correspond to values of the logarithm equal to -1. Each successive lighter (gray) 

colour represents a decrease by one unit. 

Naturally, configurations where the modulating factor is large contribute more to build up the 

desired value of the average helicity and these configurations can be considered to represent ade

quately the whole set of statistically relevant configurations. 

The relevant conformations corresponding to no helicity information and to low average he

licity are more widely distributed for glycine than for alanine. For the alanine oligomer certain 

regions of the plot are excluded because of the steric repulsion between methyl groups, while 

others are more densely populated because of the dispersive attraction between methyl groups. 

It is important to remark that the glycine oligomer has access to both the a-helix and the .B-sheet 

(c/J, 'ljJ ,...., 180°) regions, while the latter is empty for the alanine oligomer. 

In Fig. 6 the histograms of the helicity distribution obtained in the three cases considered above 

are displayed for alanine (A-C) and glycine (D-F) oligomers. It may be observed that the distribu

tions corresponding to minimum (A and D) and maximum (C and F) helicity look very much the 

same when comparing the two aminoacids, while the distributions with no helicity information, 

which correspond to un-modulated meta probabilities, show the most significant differences. 

We also see that, even using the un-modulated meta probability distribution, the alanine 

oligomer is partially structured in an a-helix conformation (see also the discussion below), al

though the peptidic linkages in the helical state appear distributed along the chain and are not 

always consecutive. It is remarkable that under identical physical conditions the glycine oligomer 

shows a much lower propensity to form helical structures than alanine does. In the case of glycine, 

in fact, conformations with only one residue in a helical state are the mostly represented ones. In 

other words, when no constraint on the value of the average helicity is imposed, the phase-space 

region where the molecule finds itself in a a-helix conformation is significantly populated in the 

case of Ala12, but not in the case of GlY12. We may interpret this fact by saying that the helix

formation propensity of Ala12 is already partially contained in the nature of the force-field model 

we have employed, irrespectively of the temperature. 

As for GlY12, the presence of a non negligibly small popUlation in the c/J, 'ljJ ,...., 180° region is an 

interesting indication of its larger propensity, compared to Ala12, to form ,B-sheet structures. 

In Fig. 7, configurations randomly selected among those plotted in Figs. 5 and 6, i.e. corre

sponding to the maximum value of the modulating factor, are displayed. The pictures shown in 
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panels Band E represent random samples of the structures of the alanine and glycine oligomers, 

respectively, chosen among the configurations of the unconstrained meta probability distribution, 

i.e. where the modulating factor is constant (..\ = 0). For alanine, most of the structures found 

in the unconstrained meta distribution, display nascent O(i)· . ·H-N(i+4) hydrogen bonds typical 

of an a-helix motif, as well as methyl-methyl contacts. The structure displayed in Fig. 7B pre

cisely represents this kind of situation. The same type of hydrogen bonds are not as frequently 

represented in glycine, where in most of the configurations the molecular chain is definitely less 

structured, as it is seen in Fig. 7E. 

Not sutprisingly, for both Ala12 and GlY12 the constraint of high helicity (panels C and F) 

enhances the population of residues in an a-helix conformation and the importance of struc

tures where the array of backbone hydrogen bonds is almost completely established together with 

methyl-methyl contacts (when the latter are available - alanine). Viceversa, the constraint of 

having low average helicity lowers the population in the high a-helix region and increases the 

population of other regions, more significantly than in the absence of any helicity constraint (no 

information). 

The case of zero helicity (panels A and D) shows that also an order parameter lower than the 

value one can estimate in the case of the unconstrained meta distribution from panels Band C of 

Fig. 6, introduces significant information. As expected, in the case of zero helicity the representa

tive structures rarely display the interactions typical of an a-helix. Since there are not many ways 

to break all of them, given the other structural constraints of the chain, the density of helical con

figurations is reduced by increasing the population of non-helical regions in the l/J/ 'l/J map already 

represented in the unconstrained statistics without creating new adequately populated regions. 

In Sect. IV C the implication of the above analysis for devising a strategy aimed at computing 

free energy differences will be presented and discussed. 

B. Energy and temperature 

The application reported in Sect. III, concerning the different role and use of the constrained 

maximal entropy and thermalized constrained maximal entropy approaches in the study of a sim

ple polyethylene model, suggests that when a collective variable is assigned an average value 

that is temperature dependent, the thermally accessible potential energy values will also be corre

spondingly biased. This circumstance also emerges in the cases of the two oligopeptides we are 
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discussing in this section. 

The average value of the potential energy U has been computed for both alanine and glycine 

oligomers taking, as starting points for the hybrid Me thermalization trajectories, 104 configu

rations, randomly sampled from the random walk probability distribution, recursively refined as 

described in Sect. lIB. Thermalization has been performed at temperatures uniformly distributed 

in the range from 50 K to 650 K, separated by 50 K. Each hybrid Me trajectory consists of 100 

MD runs, where every run is a sequence of 10 iterations with a time-step of 1 fs. 

In Fig. 8, the average of the potential energy, (U), is plotted as a function of Afor the above 

values of T for the alanine (A) and glycine (B) oligomers in vacuum. The values of the potential 

energy are normalized to dRT/2, where R is the gas constant and d = 3Na - 3 is the number of 

degrees of freedom of the molecule, Na being the number of atoms. We can see that for alanine 

(U) tends to be independent of A for temperatures larger than about 350 K, while for glycine the 

same behaviour shows up at lower temperatures. To analyze this phenomenon in further details, 

in Fig. 9 the average potential energy difference, l:1(U} (always in units of dRT/2), between the 

ordered (A corresponding to helicity 12) and the disordered (A corresponding to vanishing helicity) 

states is plotted as function of temperature, for alanine (squares) and gl ycine (circles), respectively. 

We recognize from the figure that l:1(U} for Ala12 is twice the value of GlY12' indicating that 

the alanine oligomer undergoes the helix-coil transition at a temperature lower than the glycine 

oligomer by almost a factor of two. Moreover, for the glycine oligomer the energy difference 

becomes smaller than dRT/2 at T 100 K, while for alanine the same phenomenon occurs at a fV 

somewhat higher value, T 150 K. The above observations suggest that for temperatures beyond fV 

a critical value, characteristic of the molecule, the decrease in average potential energy, consequent 

of having imposed that the average helicity has some given value, is negligible compared to the 

approximate thermal contribution, RT/2, associated with each degree of freedom. Beyond this 

critical temperature, in fact, effects coming from configurational information constraints are no 

longer visible and equipartion takes over. 

Other models of aminoacid oligomers have been studied employing many of the existing vari

ants of the multi-canonical Me simulation strategies.38,4O For the alanine oligomer in vacuum, a 

helix-coil transition temperature in the range 400-450 K was found. A less visible transition for 

glycine at temperatures around 200 K was not related to the formation of an a-helical state but 

rather to a molecular collapse, and an extended a-helix structure was never found for the glycine 

oligomeer. Although the TMEC method proposed in the present paper cannot predict the transition 
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temperature of a given molecule, it allows a fair comparison between different molecules as for 

their propensity to give rise to definite conformational transitions. Compared to previous works, 

in the approach we propose we can rather accurately monitor the coil/helix transition of both ala

nine and glycine oligomers, because extended a-helical structures are significantly represented in 

the modulated configurational probability distributions that we construct. As a result, we can also 

address the problem ofcomputing the change of average potential energy in the transition between 

the two states (see below Sect. IV C). 

When we look at the behaviour of the average helicity, (Net), as a function of A at different 

temperatures, the situation completely changes compared to what we have observed in the case of 

the average potential energy. In Fig. lOwe see that the values of the average helicity corresponding 

to different temperatures (the bunch of curves labeled by TMEC in the figure) only slightly differ 

among themselves, precisely because information on helicity is injected in the meta probability 

distri~ution through the Plaximal entropy modulation factor. At all temperatures thermalizati?n 

produces a small increase in helicity that is completely negligible with respect to the effect of 

changing the preassigned value that constraints the magnitude of (Net). Beyond values of the 

helicity of the order of 6 -;- 8, the MEC curve is only slightly above the TMEC curves at all 

temperatures. 

For glycine temperature does not affect helicity values lower than 6, which shows that the 

constrained random walk (MEC curve in Fig. 10) already gives a rather good representation of 

the probability distribution of chain configurations with low helicity. The most evident difference 

between alanine and glycine oligomers (see Figs. 6) is that, when A = 0, i.e. when no information 

on helicity is provided, helicity is larger for alanine ("" 8) than for glycine ("" 1). This confirms 

again that the propensity to form helical segments is larger for polyalanine than for polyglycine, 

irrespective of the temperature. 

C. Compoting entropy and free energy differences 

In Sect. II we have computed the maximum value attained by the cross-entropy functional, 

once constraints have been imposed on the random walk probability distribution in the form of 

preassigned values for the thermal averages of certain physical quantities. The maximum, s£m) , 
is expressed by Eq. (12). Up to an irrelevant constant, this quantity can be identified with the 

informational entropy associated with that particular state of the system. This is a very important 
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observation, as it allows us to use Eq. (12) to compute entropy differences between pair of states. 

In fact, we recall that, by extending Shannon observation that any new information one can get 

on a system reduces its entropy, the constrained maximal entropy principle relies on the idea 

that the least biased way to exploit the new information is to have the minimal decrease of the 

(informational) entropy. In this context it seems natural to assume that the thermodynamic entropy 

differences between any two states can be evaluated computing the corresponding informational 

entropy difference. 

With these premises, within the simplified approach we have described in Sect. IV A, we want 

to compute the entropy difference between the molecular states hand l, previously defined as 

the states of high and low order of an oligopeptide, respectively. We recall that the state h is 

characterized by a high value of (Na.)h = nh 12 and a low temperature, Th, while state l isf'V 

characterized by a low value of (Na.)l = nl 0 and a high temperature, 11. For the difference f'V 

f).Shl = S(nh) - S(nl), using Eq. (12) with M = 1, we get 

f).Shl = S(nh) - S(nl) = kB[log Z(Ah) + Ahnh - log Z(Al) - Alnd , (24) 

where Ah/l = A(Th/l). Strictly speaking, f).Shl, as defined by the equation above is not the canoni

cal entropy difference, as the canonical entropy should be expressed as a function of the energy of 

the state. We will, however, assume that f).Shl gives a reliable estimate of it, i.e. we will assume 

the validity of the approximate relation 

(25) 


This assumption is suggested by the following line of arguments. 

• 	 If the temperature dependence of the preassigned thermal averages, that determine the con

strained maximal entropy modulation factors of the meta probability distribution, is known, 

we can reconstruct the temperature dependence of (U) (and viceversa) through the formula 

(U(T) ~ (U(A(T)) , 	 (26) 

where A(T) is the value that results from solving the consistency equations for the Lagrange 

multiplier; 

• 	 On the other hand, using the possible knowledge on (U (T) in the constrained maximal 

entropy procedure, together with preexisting conformational information (at the same tem

perature), would not appreciably modify the final form of the modulated meta probability 

distribution. 
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A comment is in order here. The assumption underlying the previous considerations is that adding 

information about (U(T) on the modulated meta distribution tends to affect the latter less and less, 

as the number of configurational constraints increases. Ideally, if one could impose constraints so 

as to completely fix the configuration of the molecule, the expectation value of U (and, indeed, of 

any other physical quantity) could be exactly computed. 

The Helmoltz free energy difference between the states hand l is 

(27) 

which, using Eq. (26), can be rewritten in the form 

LlF = (U(Ah» - (U(AI» - [Th S((U(Ah») -11 S( (U(AI»)] == (28) 

== LlFu + LlFs . 

It is important to reaUze that, once the two temperatures, Th and 11, and the values of a set of 

order parameters, (A) = «(A(k», k = 1, ... , M), at the chosen temperatures, are known (in the 

example we are discussing, where M = 1, the configurational variable, A, on which the whole 

construction is based, is the average molecular a-helicity), one can compute the potential energy 

difference, (U(Ah» - (U(AI», hence LlFu, and the entropy difference S((A)h) - S((A),), but 

not immediately the en tropic contribution to the free energy, i.e. the quantity LlFs. Indeed, the 

entropy difference can be computed by using the modulated meta probability distribution which 

results from the constrained maximal entropy procedure. The potential energy variation can be 

evaluated after thermalizing the modulated meta distribution at the two temperatures, Th and T 
" 

and then separately computing the two potential energy expectation values. 

Despite the fact that one cannot directly access the full Helmoltz free energy difference, one 

can get a useful inequality as for the magnitude of the entropic term, LlFs, using again Eq. (25). 

From Th ::s; 11 and the second law of thermodynamics (entropy is a state function which grows 

monotonically with the amount of "disorder" of the state), one immediately derives the following 

chain of inequalities 

Th [S(nh) - S(n,)] ~ Th [S( (U)h) - S( (U),)] ::s; 


::s; Th S((U)h) -11 S((U),) ::s; 


::s; 11 [S( (U)h) - S((U),)] ~ 11 [S(nh) - S(n,)] . (29) 


The relation (29) thus tells us that the quantity LlFs must fall inside the interval [ThLlS, TLLlS]. 

This inequality can be rather useful in practice. We will, in fact, show below that in some cases 
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it can provide a very tight bound to the possible values of !J.Fs. We will illustrate this point 

in the example of alanine and glycine oligomers. In both cases we will assume the low-order 

state, l, to be characterized by the parameters TI = 450 K and small average molecular a-helicity. 

For simplicity we will take Al = O. In this way the configurations that describe the low-order 

state are those obtained by thermalizing at high temperature, TI = 450 K, the meta probability 

distributions, refined as described in Sect. II B. The state h is assumed to live at Th = 50 K and 

to be characterized by the value of Ah that corresponds to the highest possible helicity. In Table I, 

the computed values of !J.Fu and the bounds for !J.Fs, corresponding to the l -t h (coil-t helix) 

transition, are shown for the two oligomers. In both cases the energetic contribution, !J.Fu, is 

negative, while the entropic contribution !J.Fs is bound by two positive numbers, in accordance 

with what is expected when order increases in the transition. We remark that, although, as we said 

above, '!Ie are not in the position to compute the actual value of !J.Fs, we can nevertheless get 

useful information about it from our approach. We see, in fact, that the entropic contribution is 

negligible in the case of the alanine oligomer and between 2% to 20% of the energetic contribution 

in the case of the glycine oligomer. 

We also notice that for alanine, the energetic contribution is larger in absolute value than for 

glycine, due to the contribution of dispersive attractive interactions between methyl groups that 

are absent in the case of glycine. These interactions are effective also when A = 0, because in this 

situation alanine average helicity is 8, hence substantially larger than that of glycine which stays 

around 1 at all temperatures (see Fig. 6E). 

The fact that !J.Fu is more negative for alanine than for glycine can be explained in the follow

ing way. The decrease of potential energy upon structure formation is expected to be significant 

when the interacting sites in the ordered state have been confined to a limited region of the con

formational space. This is the condition imposed by the constraint on the average helicity, which 

is effective when such interaction sites are structurally present, as in the case of alanine. 

The entropy decrease upon ordering is far less predictable, both because of conformational 

exclusions in the disordered state and residual flexibility in the ordered state. However, from 

Figs. 5 and 6, we realize that, when a high helicity value is forced on the system, the helicity 

distributions of alanine (C) and glycine (F) are very similar, while in the disordered state (B and E) 

glycine displays highly dense population in regions that are unaccessible to the alanine oligomer. 

The sparser conformations of glycine contribute to low helicity and high potential energy (no 

hydrogen bonds), while the less sparse conformations of alanine contribute to helicity in the range 
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6 + 12. Therefore, the fact that the entropic contribution, !:l.Fs , to the Helmoltz free energy is 

larger for glycine than for alanine should be interpreted in terms of a higher "localization" of 

configurations in the conformational map upon ordering when moving from state l to h. 

We end this section by comparing some of our results with those previously obtained on the 

same molecular systems employing appropriately tuned multi-canonical simulation strategies. 38.40 

The most striking difference between the two sets of results in visible in the computed value of 

the potential energy variation in the coil to helix transition. Our result for the alanine oligomer 

is definitely larger (in absolute value) than what was observed by using the ECEPP/2 force-field 

(-650 kJ/mol vs -160 kJ/mol). We interpret this difference as due to differences in force-.field used 

in the simulations, having recognized that the AMBER force-field strongly favours the a-helix. 

However, we wish to observe that no comparison of potential energy variations between alanine 

and glycine oligomers was possible in previous works, because no a-helical state for the glycine 

oligomer was ever detected. 

Qualitatively the physico-chemical description of the transition is quite similar in our approach 

and in that of refs. 38,40 The contribution to the free energy variation due to the potential energy 

is for both systems (Ala and Gly) negative and more negative for Ala than for Gly, while the 

entropic contribution is in both cases positive. The only difference is that the variation of the 

en tropic contribution in the ECEPP/2 multi-canonical simulations is competitive with the variation 

of potential energy contribution. As we explained above, this fact should be attributed to the 

different force-fields that have been employed in the simulations. 

v. CONCLUSIONS 

In this paper we have presented a new computational strategy for the study of statistical proper

ties of polymers, based on a three-step construction of the configurational probability distribution 

of the system. 

1. 	 One starts from a random sampling of the system configurational space, in which configu

rations are generated by MD moves with velocities taken from a Maxwell-Boltzmann dis

tribution at a randomly chosen temperature in the range from 0 to 1000 K. 

2. 	The ergodicity of the resulting distribution is iteratively improved by means of a multi

canonical-like procedure. The main novelty of the present approach is that the accep
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tance/rejection test in this step is based on the density of states, 9 A' associated to a set 

of selected configurational quantities, A, rather than to the density of states associated with 

the potential energy, as it is most often done. At each iteration the current meta distribution 

is modulated by exponential factors which are determined by requiring that the quantities 

A (or other suitably chosen configurational quantities) have certain (possibly temperature 

dependent) values. This modulation is the result of maximizing the cross-entropy functional 

which encodes the amount of knowledge we (pretend to) have on the system. 

3. 	If required, as it is necessary to do if averages associated with the potential energy and its 

moments have to be computed, one proceeds to thermalize at a desired temperature the set 

of configurations collected in the meta trajectory. The thermalization is performed by means 

of (short) hybrid Monte Carlo simulations starting from configurations uniformly sampled 

within the existing meta trajectory. 

Two simple molecular systems have been chosen as examples for the validation of the method. 

A bead-and-spring model of polyethylene with independent hindered torsions, that can be solved 

exactly, and an all-atom model of Ala12 and GlY12 oligomers in vacuum, extensively studied nu

merically. It is remarkable that in both cases, many of the aspects of the Statistical Mechanics of 

the model systems could be adequately explored and elucidated using information on only a single 

configurational variable. The success of the construction is strongly related to the real amount of 

information encoded in such a pivotal variable that should, therefore, be carefully chosen. The suc

cess of the applications we have described shows that when the selected configurational variable is 

known (either through experiments or theory) as function of the temperature or other relevant en

vironmental parameters, the information that is gathered can be used to construct a fairly accurate 

probability distribution of the molecule configurations. 

We have observed that, once structural information have been injected into the meta configu

ration probability distribution, the effect of the thermalization step on configurational averages is 

negligible. Or in other words that the change in the shape of the distributions due to constraints im

posed on structural variables can be more significant than the effect of a mere modification of the 

temperature. The small sensitivity of configurational distributions to temperature can be related 

to the fact that we have neglected all possible temperature dependence in modeling the classical 

force-field of the oligomers: all the force-field parameters do not depend explicitly on temperature 

and they encode almost properties of simple molecules at room conditions. 
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An important outcome of the method is that it consistently allows to estimate the change in free 

energy due to changes in average structural parameters. 

The procedure devised to obtain the meta configuration probability distribution is the most 

critical step in the whole method. In this work the basic new idea was to construct a steady state 

flow within the space of configurations where the weight of each configuration would tend to 

become almost constant for the given force-field. But any other method may be used, provided the 

resulting configurational probability distribution is stationary with respect to the selected process 

of generating and collecting configurations. The key point is that this meta distribution contains 

information about which regions are forbidden and which other ones should become the seed of 

further accumulation of population. 

The main virtue of the method we are advocating in this paper is that it is ready to include in 

the meta distribution a priori information not only in terms of interatomic interactions, but also in 

terms of contributions from complicated mean fields or entropy that can significantly modify the 

density of states. Partial information on free energy variations, that may be available from theory, 

can be included in the construction of the meta distribution via the constrained maximal entropy 

procedure allowing for the identification of the important structures that are compatible with such 

information. In conclusion, instead of asking the numerical approach to yield the whole Statistical 

Mechanics of the system, we propose to combine detailed information coming from numerical 

investigations of the configurational space with the knowledge we might have on the nature and 

the role of selected structural parameters that significantly affect the behaviour of the system. 
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Appendix 

In this Appendix, following ref. 24, we recall the construction of the probability distribution 

15(0) [{r}], which enters as a first step in the iterative construction of Sect. II B. 

Random walk configurations are generated by sequential MD moves of fixed length by taking 

as initial system coordinates the coordinates of the last stored configuration and as initial particle 

velocities the values extracted from a Maxwell-Boltzmann distribution at a random temperature, 

uniformly chosen at each MD step within zero and a high-temperature limit (1000 K in this work). 
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This procedure obeys the detailed balance principle and generates a time independent (sta

tionary) conditional probability, Pc[{rl} -+ {r2}], where {rl} and {r2} are the initial and final 

configurations of each move. Although unknown, Pc is perfectly well defined and generates an 

acceptable initial probability distribution, 15(0) [ { r }]. 

To prove that the above procedure obeys the principle of detailed balance, let PSUg and Pace be 

the probabilities of suggesting and accepting the move {rl} -+ {r2}, respectively. The conditional 

probability Pc of the move is 

(30) 

Different choices for Pace are possible. Let us start by discussing the case Pace = 1, i. e. the case 

in which all configurations generated by the algorithm we have described are accepted. From 

(31) 

where D is the probability of starting with a given set of particle positions and velocities and G MD 

is the deterministic MD propagator, one gets 

(32) 

Since we are recording all the configurations that are generated, we can safely assume that the 

distribution D does not depend on the coordinates, {rl}, and that for every particle the probability 

of having a velocity v is identical to that of having -v. The important observation here is that, if 

all the atomic velocities in the configuration {r2} are inverted, the deterministic MD propagator 

GM D drives the particle positions exactly from {r2} back to {rl}. This is true also for all the time

reversible MD algorithms that approximate the deterministic evolution in actual MD simulations. 

Therefore, every move {rl} -+ {r2} has a corresponding opposite move {r2} -+ {rl} with 

identical probability. This is sufficient for Pc to satisfy the detailed balance principle. 

If Pace #- 1, Pc still satisfies the principle of detailed balance, provided Pace does not depend 

on velocities. Moreover, if we put, as usual 

(33) 


where F[{r}] is a given positive function of the particle coordinates, then the generated probability 

distribution will be related to the probability distribution 1'(0) [{r}], constructed before, by the 

formula 

(34) 
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Table I: Helmoltz free energy differences (in kJ/mol) between the state I (T = 450 K and A = 0) and the 

state h (T = 50 K and average helicity !:::: 12) of alanine and glycine oligomers. Statistical errors on tlFu 

are on the last digit and are shown in brackets. 

AA tlFu 

-650 (3) 1+9 

-480 (4) 10+90 
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Figure captions 

• 	 Figure 1 - The parameter Aof the polyethylene chain as a function of the inverse temperature 

f3 at progressively improved meta distributions: first iteration (MEC-O) solid line; second 

iteration (MEC-1) dashed line; third iteration (MEC-2) dotted line. 

• 	 Figure 2 - Average end-to-end square distance, (h2 
), of polyethylene chain with 40 methy

lene units as a function of the temperature, T: exact result (0); generalized-ensemble (multi

canonical) Monte Carlo (GEMC, 0); maximal constrained entropy (MEC, .6.); generalized

ensemble hybrid Monte Carlo (GEHMC, \7). Errors (not shown) are ±0.16 and ±0.32 nm

for GEMC and MEC data, respectively. 

• 	 Figure 3 - Distribution of the square end-to-end distance, P = P(h2), obtained from 

generalized-ensemble (multi-canonical) Monte Carlo (GEMC, solid line), maximal con

strained entropy (MEC, dashed line) and maximal constrained entropy thermally equili

brated by hybrid Monte Carlo (TMEC, dotted line) simulations. GEMC curves are at T = 
100 K (A), 300 K (B) and 600 K (C), while MEC and TMEC curves are obtained using as a 

constraint the value of (cos ljJ) at the corresponding GEMC temperatures. 

• 	 Figure 4 - (A) Average total potential energy, (U), and (B) square torsional potential energy, 

(U1), as functions of temperature, T: exact results (0); generalized-ensemble hybrid Monte 

Carlo (GEHMC, \7); thermalized maximal constrained entropy (TMEC, .6.). In the TMEC 

procedure, errors (not shown) are ±3 x 10-2 and ±5.5 x 10-2 in units of 10-2kj/mol and 

(10-2kj/mol)2 in panels (A) and (B), respectively. 

• 	 Figure 5 - Logarithm of the probability of finding the dihedral angles ljJ and 'lj; of the residue 

5 of Ala12 (panels A, B, C) and GlY12 (panels D, E, F) within intervals of ±10°. Results for 

the MEC trajectory with the constraint (No.) = 0 are shown in panels A and D; those for the 

MEC trajectory with no constraint in panels Band E and those for the MEC trajectory with 

the constraint (No.) = 12 in panels C and F. Colours are as explained in the text. 

• 	 Figure 6 - Lego plot of the probability, P = P(n), of finding n residues in an a-helix state. 

Different panels refer to the different trajectories and oligomers as described in the caption 

of Fig. 5. 
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• 	 Figure 7 - Typical oligomer configurations randomly selected among those corresponding 

to the maximum value of the modulating factor in the plots of Fig. 5. 

• 	 Figure 8 - Average potential energy per degree of freedom as function of A at different 

temperatures for Ala12 (panel A) and GlY12 (panel B); from top to bottom temperatures are 

50, 150, 250, 350, 450, 550 and 650 K. 

• 	 Figure 9 - Difference of average potential energy between ordered (na = 12) and disordered 

(na = 0) states for Ala12 (squares) and GlY12 (circles) as function of temperature. 

• 	 Figure 10 - Average a-helicity as function of A at different temperatures for Ala12 (A) and 

GlY12 (B); thick curve corresponds to the maximal constrained entropy (MEC) trajectory, 

thin curves to the thermalized maximal constrained entropy (TMEC) trajectory at the same 

set of temper~tures as in Fig. 8. 
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