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Abstract 

The lensing properties of superconducting cosmic strings endowed with a 
time dependent pulse of lightlike current are investigated. The metric outside 
the core of the string belongs to the pp-wave class, with a deficit angle. We 
study the field theoretic bosonic Wilten model coupled to gravity. and we 
show that the full metric (both outside and inside the core) is a Taub-Kerr­
Shild generalization of that for the static string with no current. It is shown 
that the double image due to the deficit angle evolves in an unambiguous way 
as a pulse of lightlike current passes between the source and the observer. 
Observational consequences of this signature of the existence of cosmic strings 
are briefty discussed. 

PACS Numbers: 98.80.Cq. 11.17.+y. 12.1S.Cc 

J~ 
strings [2] have so far been calculated in the special framework of zero [3,4] or time indepen­
dent currents [5,6] so that it is widely believed that observation of strings in the universe 
might be achieved through the now well known double image effect, i.e. the deflection as­
sociated with the missing angle in the conical metric surrounding a string. An interesting 
observation would therefore consist in two exactly identical stars (or galaxies) separated by 
a fixed angle (usually assumed of the order IO-'rad ,.." 2.4", i.e., for strings generated at 
the grand unified phase transition), or perhaps an aligned series of such twin images (7). 
However, because the probability that two nearly identical stars be separated in the sky by 
pure coincidence in exactly the way one expects for cosmic strings is rather high, there is in 
fact a demand for a more convincing signature. As we shall see, a lightlike current may in 
principle provide such a signature. 

In this paper, we study the gravitational field created by a lightlike current-carrying 
string. For the case of timelike and spacelike currents, which have been studied before [5,6}, 
all known solutions are stationary [8]' In the lightlike case, however, we shall see that the 
stationary solution has peculiar asymptotic behaviour, in the sense that all light rays are 
gravitationally bound by the string. Therefore, the problem of asymptotic light deflection 
is not well posed in this metric. This is just as well, since in realistic situations, we do not 
expect the current to be stationary. In particular we can consider a pulse of lightlike current 
travelling along the string at the speed of light. Such pulses may be generated when a long 
string interacts with a bounded extemal source. In this case, the motion of the double image 
with time due to the nonstationary gravitational field must be examined. 

The article is organized as follows: in a first section, we derive the metric surrounding a 
lighlike current carrying cosmic string by boosting a spacelike current metric, and show how 
the resUlting gravitational field can be generalized to a time-dependent exact solution of the 
Einstein-Maxwell equations. In section II we address the question of finding the correspond­
ing solutions in the underlying field theoretic model. For definiteness, we use the bosonic 
Witten model [2] coupled to gravity. We show that the introduction of a lightlike current 
does not modify the vortex profile. Also, the effect of the current on the metric is accounted 
for by means of a single function which satisfies a linear differential equation. In order to 
understand the effect of a lightlike current on a possible observation of light deflection by a 
string, we use the fact that our solution can in fact account for time-varying fields, 80 we 
consider a finite pulse of such a current. We then work out analytically the characteristic 
features of the geodesic motion in this metric, and eventually calculate numerically, in the 
last section, the actual effective motion (meaning as seen by a geodesic observer) of a point 
source initially aligned with a string and an observer when a pulse of lightlike current passes 
between the source and the observer. We conclude by considering the astrophysical obser­
vational possibilities and discussing a possible mechanism for generating pulses of lightlike" 
current in cosmic strings. 
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I. THE EXTERIOR METRIC. 

In this section, we shall obtain the gr&vit&tion&l field surrounding a cosmic string c&rrying 
& lightlike current, tre&ting the source as &n infinitely thin distribution. One easy W&y to do 
so is by the limiting procedure (9] of boosting the metric of the sp&celike current case - which 
is known (5,6,10] - to the speed of light in the direction p&r&llel to the string (&lternatively, 
one could &lso boost the timelike current metric, both procedures being equiv&lent). 

In the case of spacelike current, for a static cylindric&lly symmetric configuration with 
the string lying &long the z-axis, the metric outside the core of the string is [5,10] 

d,' =g(-de + dr') + r'/,.,'d8' + dz'j' 	 (1) 

Here, I == [Cl(r/r.)m + c2(r/r.tm
]' and 9 =(r/r.),m

2 I, where r, is the thickness of the 
core of the string. The nonvanishing component of the electromagnetic field is given by 

F. = 2m.JCiC21 	 (2) 
,. 	 GI/'r' 

where G is Newton's constant. The various parameters Cit C" m and.., should be determined, 
in principle, in terms of the microphysic&l parameters characterizing the vortex by matching 
the exterior metric (1) with the solution of Einstein's equations inside the core of the string 
(i.e., for r < r.). In practice, this can be difficult ifthe gr&vit&tional field is strong. However, 
for weak fields, one c&n &rrive &t the relations (6] 

m' =	4GI' + O(G'), 
1 Gil' 

CI =2'[1 + -I-(U - T - I')] + O(G), 

(3) 

1 Gil'C, =2'(1 - -I-(U - T - I')] +O(G), 

1 
1 =1- 4G(U + 2'/') +O(G'). 

Here, U, T &nd I are, respectively, the fl&t sp&ce v&lues of the string's energy per unit 
length, tension nd current (see, e.g., Refs. [4,6) for a discussion of the limiting procedure 
consisting in taking well-defined fl&t space integra.ls of the stress energy tensor and current 
as the source of the weak gravit&tion&l field). 

Treating the string as &n ide&lized distribution of zero thickness, the components of the 
string's energy momentum tensor &re given by T;", = T"",6(:.r:)6(y), [1',,, =t,:.r:, y, z), where [5] 

I' P 
T"", =di&g(U'2'2,-T). 	 (4) 

A boost in the z direction 

z' =z cosh A + tsinh A, 

(5) 

f =tcoshA +zsinhA, 
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tr&nsforms Eq. (1) into 

d.' =gd,' +,'fl'''' +O'(] - g)(dz' +df - 2~dzdt) +gdz' -]df. (6) 

where a == cosh' A, {J E sinh' A nd we h&ve dropped the prime on the coordin&tes. Also 
the current, which was purely sp&celike J" =(O,O,O,/)6(:.r:)6(.), [I' =t,r,',z], transforms 
into J'" = (J7JI, 0, 0, y'Ol)6(:.r:)6(.), and becomes null as a - 00. The (t, z) components of 
the stress tensor ( .. ) tr&nsform into 

T!. =diag (U, -T) + (U - T) ({J -..fOP)-..fOP {J 	
(7) 

(a, b = z, t), &quiring non di&gonal pieces. It is clear that if we want the components of JI" 
&nd T!. to be finite, the limit a - 00 cn only be taken by letting I and (T - U) go to zero 
&t the s&me time, in such a W&y that the products 

(8)I: E..;ol and (U' - T') E (1 + 2{J)(U - T) 

remain finite. 
Upon so doing, we find 

(9)d,' =-dudv - V(r)du' + dr' + r'1'd" 

where we have used null coordinates u == t - z &nd v = t + z. Using Eqs. (3) &nd (8), the 

function VCr) c&n be written as 

r , r (10)V(r) = 8G(U' - 1'*) In - + 8G/~ In -;r, r, 

also we cn write 

(11)1 =1 - "G( U' +T'). 

From Eq. (2), the electromagnetic tensor in the new frame is 

r.. = _2/! 	 (12) 
r. r ' 

and the energy momentum of the string is given by 

T;", =U'; T' diag(1, 0, 0,-1) + (U' - T')6"u6I1V' (13) 

where we have used Eqs. (7) and (8). 
Typically [11], the degeneracy (U - T) is of order l'/e', where e is the electromagnetic 

coupling. Therefore, from Eq. (8) 

U'-T,....,I;. 
e 

In cosmologic&l applic&tions, In(r/r,)...., 100. Since e' ...., 10-', both terms in Eq.(10) will 
be of the s&me order of magnitude. 
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Although the metric (9,10) has been obtained using the linearized relations (3), we shall 
see that it is actually a solution of the full Einstein-Maxwell equations, with electromagnetic 
field given by Eq. (12). This fact, which is also encountered in the Aichelburgh-Sexl case (9], 
has a simple mathematical explanation. As a - 00, we let I and (T - U) to zero, and so 
we are boosting a metric for which (in the limit a - 00) the linear approximation becomes 
exact. 

For later use, it is convenient to generalize Eq. (9) to the case where, instead of having a 
stationary null current flowing along the string, we have a localized pulse of current which 
is travelling in the positive z direction at the speed of light. The metric (9) belongs to the 
class known as pp-waves (12] 

(11 2 =-dudv - H(u, r)du2+ dr' + r'-y2d9'. (14) 

For the metric (14), the only nonvanishing component of the Ricci tensor outside the core is 

1
R..u =2'0H(u, r) =811"GTuu . (15) 

The only component of the electromagnetic energy momentum tensor is 

uu p'( ) I"T".m. = -1 F. Fur _ U- ur - --...!... (16) 
n 11" r2 .4 

Taking the ansatz 

H(u, r) = p2(u)V(r), (17) 

with VCr) given by Eq. (10), it is clear that the Einstein equation (15) is satisfied outside 
the core. 

In the core of the string, our metric (14) should be matched with an interior solution. 
Instead of that, we shall treat the source as infinitely thin, with support only at r = O. In 
a space with a deficit angle 211"( 1 - -y), we have 

XIn r = 211"-y6(z)6(,), 

where (z,,) = r(cos9,sin9) and Xis the Laplacian in the (r,9) plane. Then, one can see 
that the source corresponding to (14-17) has the form 

, _ U' +T'd' ( ) 2) I1",.., - -2- lag 1,0,0, -1 + P (u -y(UI - T )6pu6"". (18) 

The first term, corresponding to the Goto-Nambu string, is responsible for the deficit angle. 
The second term, caused by the non degeneracy (U' - T'), is modulated by the function p(u) 
that gives the profile of the pulse of current. From V,.F"" = 411"J", we have 

JII = l!-yp(u)(I, 0, 0, 1)6(z)6(,). 

If p(u) has compact support, the metric (14) represents the gravitational field of a pulse of 
current travelling in the positive z direction. 
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U. WITTEN MODEL COUPLED TO GRAVITY 

In the previous section, we treated the superconducting string as an infinitely thin dis­
tribution along which a pulse of lightlike current flows. The question remains, however, of 
whether it is possible to find the corresponding solutions in the underlying field theoretic 

model coupled to gravity. 
For definiteness, we shall consider the Witten bosonic model (2], consisting of two complex 

scalar fields and associated U(I) gauge fields (~,B,.) and (E,A,.). The Lagrangian is given 

by 

c = -iID,.~I' - iID,.EI' - 1!1I"Fp.,F"" - 1~1I"H,..,H"" - V<I~I,IEI>. (19) 

Here, D,.~ = (V,. + iqBp)~, D,.E = (VI' + ieA,.)E, F,.., = 8,.A., - 8.,A,. and H,.., = 
8,.B., - 8.,B,.. The potential 

V(I~I,IEI> = '\;(I~I' - ,n' + (<I~\' - '1')IE\' + :'IEI4 + ~!IC1I' 
is chosen so that the field ~ undergoes spontaneous symmetry breaking. Since the vacuum 
manifold is nontrivial, ~ will admit vortex (string-like) solutions. E develops a conden­
sate in the core of the string, but vanishes ouside. The field A,. is then identified with 
electromagnetism, which is unbroken outside the string. 

To find the gravitational field of a superconducting cosmic string with lightlike current 
in the model (19), we shall proceed in two steps. First, we shall consider the metric for the 
static and cylindrically symmetric configuration in which no current is flowing in the string. 
This configuration is also invariant with respect to boosts parallel to the symmetry axis [13]. 
Then, we shall see that the metric for the current-carrying case is just a Tauh-Kerr.Schild 

generalization of the previous one. 
In the case where there is no current, we can make the following ansatz for the fields and 

the metric [13,14] 

~ =cp( r)et
"' E =C1(r )ei

." (20) 

d,2 = -e·(r)dudv + dr' + e'(r)d9' (21) 

the only nonvanishing component of B,. is taken to be 

(22)B. = B.(r), 

and, for the time being, we set A,. =0 and" =const. The equations of motion for the fields 

then reduce to 

' B: + (a.' - "2b )B; = 411"qcp'(n + 9B.) 

cp" + (a.' + 2'b' 
)cp' - e-'cp(n + 9B.)' = V•• (23) 

b'C1" + (a.' + "2)C1' = V.... 
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These have to be supplemented with the Einstein's equations for a(r) and 6(r). The energy­
momentum tensor's nonvanishing components are 

1 ( B(2) 1
T" = '2 tpf2 + (112 + e-' 4~ - '2 [e-'(n + qB,)''P' + 2V] (24) 

1 [ Bf2] 1T" ='2 (n + qB,)''P' + 4~ - '2e' ('Pf2 + (112 + 2V) (25) 

Tv. =9vvC(r), (26) 

where .c(r) is the Lagrangian 

C(r) =-~ [tpf2 + (112 +e-'(n +qB,)''P' +e-'!:]- V. (27) 

Einstein's equations then take the form [13] 

4R.,,,e-a =a" + (a' + ~ )a' =81rG(T,r + e-'T,,) 

-2R"e-' =h" + (a' + i)b' =81rG( -4e-a Tvll + T,r - e-'T,,) (28) 

-2R,r =2a" + b" + a12 + 6; = 81rG(-4e-G Tvll - Tr, + e-'T,,). 

Actually, the third of Eqs. (28) is not independent of the other two [13]. Therefore, Eqs. (23) 
and (28) form a system of five coupled differential equations for the five unknown B" 'P, (I, 
a and h, with boundary conditions 'P(O) =0, 'P(oo) = ", BHO) = 0, B,(oo) = 0, (1'(0) = 0, 
(1(00) =0, a'(O) =0, a(oo) = 0 and e"r' _ 1 u r _ O. 

These equations are far too complicated to solve analytically, even in flat space (4 =6 = 
0), where they have been studied only numerica.lly [11]. However, it is gener&lly believed 
that such solutions should exist, and that, at least for G,,' <: I, their asymptotic properties 
can be inferred from what is known to be true in the flat space cue [11). In this cue, the 

energy density is concentrated within a region of radius rc - >.;1/',,_1 and, for r > rc, the 
energy density falls off exponentially. Therefore, when gravity is considered, we expect that 
the metric should behave u a vacuum solution for r > r c' Static cylindrically symmetric 
vacuum solutions fa.ll into the class given by Eq. (1), with c, =O. If, in addition, we demand 
boost invarlance along the axis, we must take m = 0 or m =-2. For m = -2, the metric 
is of Kuner type and has the property that a circle around the axis at r _ 00 hu zero 
length. Such metric is considered unphysical from the point of view of strings. For m =0, 
the exterior metric is just flat space with a deficit angle which is given by [13] 

a8 =21'(1 - 1) =81'GI' + O[(GI')'], (29) 

where 

I' == 41' loo e-'GTvvrdr. (30) 
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The only difference with the Nielsen-Olesen case is that we now have the condensate (I 
in the core of the string, which will modify the value of T... [see Eq. (26)], and hence p., but 
the metric is still buic&lly flat space minus a sm&ll wedge. 

Now, to introduce a lightlike current on the string, we take the &nsatz (20) and (22) for 
ct, E and B,., but we introduce a nonvanishing gauge field A,. &nd u-dependent phase ,p. 

A,. =A(r)p(u)6..,. , ,p =,p(u). (31) 

As we sh&ll see below, this is consistent with an ansatz for the metric of the form 

d,' =_eat') (dudv + H(r, 8, u)du') + dr' + e'(')d8'. (32) 

The equation for A,. following from (19) is 

V,.F: =·beJ." (33) 

where J., = (I'(,p,., + eA.,) is the electromagnetic current. Eqs. (33) and (31) with the 
metric (32) require 

,p... =A:p(u) 

where A: is a constant, and 

A" +(a' + 2'6' 
)A' =4I'e(l'(A: +eA). (34) 

It is interesting to observe that the introduction of the fields (31) &nd the new term g.... in 
the metric do not affect the form of Eqs. (23). As we shall see, the equations for a and 6 
are also unaffected and therefore, the null current does not change at all the profile of the 
vortex (unlike the cue of spacelike or timelike currents). 

To write down Einstein's equations, we use the fact that, as mentionned before, the 
metric (32) is the Taub-Kerr-Schild generalisation of (21). A direct application of Taub's 
formalism [15) (see, e.g. Eq.(3.23) of Ref. (16» yields the new Ricci tensor 

Ii.,.., =R,.., +R... 6,...6". , (35) 

where R,.., is the old Ricci tensor, given in terms of 4 &nd 6 by Eqs. (28), and 

- 1 aR.... =2HR... +"ie DH. (36) 

Also, it is euily verified that the new energy-momentum tensor can be written as 

t,.., = T,.., +t ....6,...6". , 

where T,.., is the old energy-momentum tensor, given by Eqs. (24-26), and the new component 
is given by 

_ AI2 
Til" =p'[(I'(A: + eA)' +T) - eaHC,. (37) 
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The trace T: is unaffected, and so the Einstein equations (28) are unchanged, as 
promised. However, a new equation, corresponding to the uu component, has to be consid­
ered: 

~ee[OH + H(R,.r + e-'R,,)J = 811'GTuu . (38) 

Using (28), we have 

Rrr + e-'R" =3211'Ge-eTuII =-1611'GC. 

Hence, from (37) and (38), one arrives at the simple linear equation for H 

1 A~ 
'2eeOH =811'Gp2[0"(k + tA)2 + TJ. (39) 

The general solution to this can be obtained as the sum of a particular solution plus the 
general solution of the homogeous equation 

OHIt =0. (40) 

To find the particular solution, we take the ansatz 

H =p2(u)V(r), 

which implies 

1 A~ 
'2ee~v =8'KG[0'2(k + eA)' + TJ, (41) 

where ~ =e-(e+6/2)or(ee+6/'or) is the Laplacian in the transverse plane. Note that (41) 
is just an ordinary differential equation. Note also that outside the core, a _ O. 0' _ 0 
and Eq. (39) reduces to (15) of the previous section. Also, if the thickness of the core is 
small with respect to all other relevant length scales, then it is justified to replace the term 
O"(k + eA)' in the right hand side of (39) by a delta function distribution. 

To summarize the results of this section, we can say that the lightlike current actually 
decouples from the background fields forming the static string, since the introduction of the 
null gauge field has no effect on 0' I !.p, a and b. Its only effect on the space time geometry 
can be accounted for by solving the linear ordinary differential equation (41). 

As mention ned before, to the particular solution given by (41), we can add any solution 
of the homogeneous equation (40), H,,( r, fJ, u). Such solutions can accomodate an additional 
gravitational wave, as weD as a cosmic string transverse wave travelling in the same direction 
as the nuD current [16]. 

m. GEODESICS. 

In the stationary case, i.e., when the metric takes the form (9), one can find three 
constants of motion for geodesic test particles 
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u 
p- == '2 
p+ == '2v 

+ 2p_V(r) (42) 

LII == (1- 4Gp)r'; 

where p == leU' + T') = l(U + T) [p can be expressed in terms of underlying fields 
through (30)]. In (42), a dot denotes derivative with respect to an affine parameter A. 
For convenience, we take A == TIm, where T is the proper time, and m is the mass of the 
particle. Using the constraint ZliZ" =-m', we have 

L'
;.2 + =i + 4p~VCr) = -m' + 4p+p_. (43) 

r 

and the problem reduces to the motion of a Newtonian particle in a potential VCr) given 
by (10). 

Note, however, that the stationary metric has peculiar asymptotic properties. In par­
ticular, since the potential grows logarithmically with radius, the motion in the r direction 
will be bounded even for light rays (m' =0). Therefore, the problem of asymptotic light 
deflection is not well posed because we do not have asymptotic regions where light rays 
would propagate along straight lines. 

Of course, this extreme behaviour wiD not arise if, instead of the stationary metric, we 
consider a finite pulse of current, because then the metric is flat before and after the passage 
of the wave. For simplicity, we can take a pulse with a step function profile. The metric is 
given by (14) with 

H(u, r) =9(u)9(a - u)V(r), (44) 

where a is the duration of the pulse (not to be confused with the metric function in the 
previous section). The geodesic equation for the 'fI coordinate reads 

dd (4p_H + v) =4p~[c5(u) - 6(11 - u)JV(r).
A 

Therefore, p+ defined in (42) is only piecewise constant in this case, undergoing jumps when 
the particle enters and exits the wave. 

Denoting by r) the coordinate radius where the wave hits the particle (at u =0) and by 
r, the radius at which the particle emerges from the wave (at u = II), we have 

6p+ == p~) - p~) =-p_!:,.V, (45) 

where 6V == VCr,) - Vert) and p~) and p~) are the values of (v/2) before and after 
the particle has interacted with the wave. Without loss of generality, we take dzldt = 0 
as an initial condition. If 'fl. == dzldt 'I 0 initially, we can always perform a Lorentz 
transformation to a new frame where such component of the velocity wiD vanish [under this 
Lorentz transformation, H(u, r) - "H(u, r) and a - ,,-)/'11, where" == (1 - '0.)/(1 + v.»). 
Then, in the new frame, p~) =p_, and, from (45), we find that the velocity of the particle 
parallel to the string (after the wave has past) is 
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dZ) _ -dV 1( dt 2 - 2=AV ~ i[V(r1) - V(r2)], (46) 

(typically, d V <: I). Hence, the particle receives a boost in the z direction whose sign and 
magnitude are completely determined by rl and r2. In particular, if the particle is initially 
at rest, it will be attracted towards the string by the passing wave, so that r2 ~ rl [i.e., 
V(r2) ~ V(rl)1 and the boost will be in the positive z direction. On the other hand, a 
light ray in the (.%, y) plane will be deflected in the z direction by the wave, but the sign 
of the deflection depends on whether the interaction with the wave happens when the ray 
is a.pproaching the string or when the ray has already surpassed the string and is moving 
away from it. In the former case, the deflection is in the positive z direction, whereas in the 
latter it is in the negative Z direction. 

In the next section, we shall numerically treat the motion of null geodesics in the space­
time given by (44), but for the rest of this section, we shall concentrate on a special case 
which can be treated analytically, namely the shock wave case [12] 

H(u, r) = a6(u)V(r). (47) 

This can be considered as limiting case of (44) when the thickness of the wave is much 
smaller than other relevant dimensions in the problem (such as the impact parameter or the 
distance of the wave and of the observer to the string). 

It will be convenient to use cartesian coordinates in which the metric (14) reads 

d,2 =-dudv - Hdu2+ dX2+ dy 2 , (48) 

where X = r cosbl), Y = r sinbl), with -11' ~ I ~ 1', 80 that there is a wedge of angle 
21'(1-,) missing in the (X, Y) plane (see fig. 1). We shall take the source to be sufficiently 
far away so that the incident rays are parallel to the X axis. The geodesic equa.tions read 

u= 2p_ = cte 

X=_!j8H.udu (49)2 8X

. 1 j8H
Y = -i 8y udu 

and vcan be obtained from the constraint 

z"z" =-m2 
(50)• 

Using (47), we have 

" Xo
X = Xl - ap_ V'(ro)-6(u) 

ro 
(51) 

. Yo
Y =-ap_ V'(ro)-6(u). 

ro 

Here, Xl is the initial velocity, V' =dV/dr, Xo and Yo are the coordinate where the particle 

hits the wave, and ro = JXl + Y;. For light rays lying in the (X, Y) plane, we have 

Xl =-2p_. From (50), 
1· . 2

V =-2[X2 + Y - 4ap~6(u)], 
p-

with X and Y given by (51). 
Denoting by I the deflection in the (X, Y) plane and fP the deflection in the z direction, 

we have, to first order in V, 

fP ~ !av.'Xo (52)2 o­ro 

I ~ -21aV~Yo + 1'(1- ,)sign(Yo), (53) 
ro 

where the last term in the r.h.s. of (53) corresponds to the deficit angle created by the static 
string. 

An interesting question, from the observational point of view, is to find out what is the 
eKect of the wave on the double image caused by the static string. As we shall see, the two 
images undergo app~rent motion, describing (almost) closed trajectories in the sky. 

For simplicity, we shall take 

r
VCr) = n In-, (54) 

r. 

where n =8G(U' - T') + 8GI: In(r/r.), with r a cosmological scale. This is a good 
approximation to (10), since in the course of the scattering, !n(r/r.) changes only by a 
small percentage. 

From the geometry of fig. I, it is clear that the deflection angle is given by 

1= Yo+I'(I-,)Xo 
I+Xo ' 

where I is the distance of the observer to the string. Comparing with (53), we have 

an Yo Yo -lI'(1 - ,) 
(55)2" ri = I+Xo 

This equation gives the locus of points at which the raya received by the observer have 
been scattered by the wave. From it, we can obtain Yo =Yo(Xo), and, substituting in (52) 
and (53), Xo can be eliminated to obtain the curve fP =fP(I). Since (55) is a complicated 
expression, it is difficult to carry out this procedure in general. However, we can easily 
obtain the answer in two limiting cases. 

The first limiting case is when 

an <./1'2(1 _ ,)2, 

In that case, we can replace Yo by 11'(1 -,) in (52) and (53) to find 
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, aa aa[ I, [ ]'I{) + 9-4Gp:zr---- ~ --- (56)
16Gpl7r 16Gpl7r 

tha.t is, the double ima.ges wiD describe circles of a.ngular radii aa/[16Gpl7r). 
The second limiting case which ca.n be solved is when the deficit a.ngle ca.n be neglected, 

")' =1. In tha.t case, we ha.ve 

I{)' + 9' _ 1aa (57)-2T' 
The ima.ge describes the following tra.jectory. Initia.!ly, it moves upwards to an angular 
distance (aa/21)J/' from its initial position without moving sideways. Then it splits into 
two ima.ges which describe semicircles of ra.dius (aa/21)J/'. Fina.Uy, the two ima.ges merge a.t 
the bottom of the circle a.nd eventua.Uy go ba.ck to the original position. However, for a.U its 
bea.uty, this pa.Uern wiD not arise in situations involving rea.listic cosmic strings. Typica.Uy, 
the effect of the deficit angle is a.!wa.ys comparable, if not much luger, than the effect due 
to the current. The rea.son is tha.t, although a. cosmic string ca.n in principle support a.n 
a.rbitrarily Ia.rge lightlike current, it is difficult to think of a. mechanism to generate currents 
much stronger than the ucritical current", defined by the condition a - Gp. We sha.U return 
to this question in the concluding section. 

Equa.tions (56) a.nd (57) correspond to the case of a. shock wave. If the duration of the 
wave is a :$> Max[Gpl, (aal)J/'). then the shock wa.ve a.pproxima.tion is no longer a. good 
description, since the duration is large compared with the impa.ct parameter b. In such a. 
case, one ca.n see from Eqs. (46) a.nd (49) tha.t to first order in a the deflection a.ngles are 
of order A9 ..... a a.nd AI{)"'" a In(a/b). 

IV. MOTION or A POINT SOURCE. 

In the previous section we considered the a.ppa.rent motion of double ima.ges in the sky due 
to the light deflection ca.used by a.n impulsive wa.ve. However, we neglected the fa.ct tha.t due 
to the gra.vita.tiona.! field, the observer a.nd the source wiD undergo geodesic motion, which 
wiD a.lso contribute to the a.ppa.rent motion. Here, we sha.U include this effect, studying 
the actua.! motion of a. point source a.s seen from the observer. Also, we sha.U consider a. 
wave of finite duration a. We shaD assume tha.t initiaDy the source a.nd the observer a.re 
both in a. plane orthogona.! to the string, a.nd tha.t neither of them is a.t infinite dista.nce. 
We are therefore looking at the particular configuration shown in Fig. 2, where the a.ngles 
of observation a a.nd ~ are defined a.s the usua.! a.zimutha.! a.nd polar angles. It turns out 
tha.t it wiD be simpler to use, instead of the forms (42) a.nd (43) for the geodesic equa.tions 
where the constant of the motions are explicitely exhibited, the fun second order differentia.! 
equa.tions directly derived from the metric (14) with H(u, r) given by (17): 

" ,', 18H, ')'
r =r")' 9 - 2Tr(t - z , (58) 

" 2, ,

9= --9, (59) 

r 
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"" 18H(,., 8H.(, ')t=z=--- t-z) --rt-z. (60)
28v 8r 

Here a. dot stiD mea.ns differentia.tion with respect to the a.ffine pa.ra.meter ,\ a.!ong the geodesic 
under considera.tion a.nd we ha.ve explicitely ma.de use of the conserva.tion of ti, We consider 
the case where the nuD current is of consta.nt a.mplitude over a. compa.ct support, i.e., the 
function H(u, r) is given by (44). 

Now, there is a. problem with the set of coordina.tes we ha.ve been working with to derive 
Eqs. (58), (59) a.nd (60). Indeed, a.s the wa.ve rea.ches the observer, the Ia.tter wiD experience 
motion in the z direction [see e.g., Eq. (62) below). To a.void this unphysica.! "fra.me dra.gging" 
effect, it is convenient to pick a. pa.rticula.r coordina.te system in which the observer a.nd the 
source a.re a.t rest. Assuming a. fr~falling observer of mass M for which we neglect the 
motion in the radial direction, we have, a.ccording to Eqs.(14) 

tiv+Hu'=M', (61) 

a.nd since Eqs. (42) ten us that v is proportiona.l to the proper time T = M,\, we a.re free to 
choose v =T so that Eq. (61) transforms into 

dv 
dv =1 - H. (62) 

Incidenta.Uy, this equation also tens us that dz/du = -(1/2)H so the motion in the z 
direction after the wa.ve has pa.st is 

Az ~ -aV(l)/2, (63) 

where l is the distance from the observer to the string. We see that setting 

1i =v + JHdv a.nd i =~(1i - v) 

(v being uncha.nged in the new fra.me) implies 

di d1i dv
-=--I=-+H-l
dT dv dv 

which vanishes a.t the observer's a.nd a.t the source's locations according to Eq. (62). 
Dropping the tildes, we now ha.ve the foDowing equation to solve numerically: 

- _ 18'P., 18P"t = z = --r +--r
28r' 28r' 

(64) 

where 

P == JH(v, r)du, (65) 

while Eqs, (58) a.nd (59) stiD hold. 
That the approxima.tion of negleding radial motion is va.lid can be checked by considering 

the actua.! radial displacement experienced by the observer. According to Eq, (58) with the 
previous choice v =T, and assuming the observer to be initiaDy a.t rest, one has 

r = _!J" 8H tidv ~ _! 8V {Va(v) if u ~ a 
2 8r 2 8r a for v ~ a • 
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.... 

where we neglected variations of VCr) with u, since this effect is of higher order. Thus, at 
most, the correction in r reads 

~ ~ ~ 
r -1- 2G(U' - T')T - 4GI?ln(l/r")T -/(l - GPI') 

with Gil- - 10-· as discussed earlier. Therefore, since in practical application, one expects 
a -< I, the motion in the radial direction can be confidently neglected. 

We have investigated numerica.lly the solutions of Eqs. (58), (59) and (64) for various 
values of the parameters describing the pulse, and the results are displayed on Figs. 3, 4 
and 5. On theses figures, we have assumed a GUT string of core radius r. = lO-eGMpc, 
and the internal string parameters have been enhanced to 4G(U' - T') =4Gp =10-4 and 
8G/! =10-e in order to magnify the corresponding lensing effect. The string is located 
at I = 25Mpc from the observer and d = 100Mpc from the source (see Fig. 2), and the 
duration of the pulse is a = IOMpc. This particular example provides an illustration of a 
generic situation. 

We are mainly interested by what the observer actually sees, that is, with the notation 
of Fig. 2, we want to know the variations of the angles a and; with time, i.e., we calculate 

the values of e == arctan(lO/i)loh and; == 'K/2 - arctan(Vi' + fl8'/: )106. as a function of 
the time of arrival of each light ray. The predicted observations are the following. Initially, 
the observer sees the usual double image (the two parallel straight lines on Fig. 4) until the 
wave reaches the first deflected ray. Then, the two images appear to move away from each 
other, while in the same time moving upwards (Fig. 3). After a time characteristic of the 
pulse duration (or of the impact parameter if this is larger than the pulse duration), the 
images begin to go down and eventually towards each other, and finally they reach a new 
position in the sky as the wave has passed. Put together, Figs. 3 and 4 yield Fig. 5 which 
shows the actual apparent trajectory of the source. 

The source is seen to follow two open symmetric curves, i.e., the final location of the 
source in the sky is not the same as the initial one. This can be understood as follow: as the 
wave passes through the observer and the source, they both reach new positions in space, 
but because they were not initially at the same distance to the string (only case for which 
we expect closed curves at this level of approximation), they have not travelled the same 
distances in the z direction, the variation in z being Az ~ -aV(r)/2 as discussed earlier. 
Assuming the source to be farther than the observer implies that the latter has travelled 
more than the former which is thus seen below its initial location. More precisely, the actual 
angle of observation will be;o - aoln(d/I)/(d+/), with a as defined previously on Eq. (54). 
In addition to this effect there is a (rame rotation effect: since the observer moves in both 
radial and z directions, its frame is being rotated (pa.rallel transported), so that he will see 
the source at an angle ;,i..., - ~ + (10/1 because of this rota.tion. In practice, ;,..... will be 
negligible due to the large denominators, and the curves will be almost closed. 

Another possible way to measure the effect o( the wave is through the redshift of the 
source: since each light ray experiences a different gravitational potential, one would expect 
to observe the source with a frequency that should vary while the wave passes. For the 
purpose of calculating this effect, let us define the redshift Z by the relation 
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z = "em.".d - ""'.crvc4 u"pI'
- II 'uc4 = urnm" """UYI! (66) 

cm 

Here u" is the four- velocity of the observer or of the source, whereas pi' is the four-momentum 
of the light ray. We have u"P'" = i-Ii JduIJH/IJr. Fig. 6 shows this redshift as a function 
of the time of arrival of the light rays with, for comparison, the corresponding angles e 
and; - 'K/2, and assuming the same parameters (d, I, 4, U, T, 1 and r.) as on previous 
figures. The redshift (solid line) is seen to be strongly correlated with the deflection in the; 
direction. It should be clear that simultaneous measurements of effective motion of double 
images (Figs. 3 to 5) together with the reshift variability shown on Fig. 6 would provide 
an unambiguous signature of the existence of cosmic strings endowed with superconducting 
currents. 

The characteristic time scale during which the source is actually moving in the sky can 
be evaluated as roughly the wave duration if this one is large enough (see Fig. 7). However, 
one may expect astrophysical situations in which 4 is much smaller than any other length 
involved in the problem. In particular, for the idealized shock wave case of Eq. (47), the 
observation time should be of the order of the impact parameter 6 - Gpl. In practice, the 
actual time during which the motion of the source takes place is thus 

t"...... - Max [a, 6], 

which, in the case of a GUT string located at a few Mpc from us, would be of a few years. 
This can be seen more precisely on Fig. 7.6 where the time variability of the angle; is shown 
for various values of the wave duration 4: on these curves, it is clear that the characteristic 
time in which the signal reaches its maximum is essentially independent of 4, and in (act 
reflects only the distance of the string to the observer. 

Finally, let us ask the question of the dependence of these results with the various 
geometric parameters d, I and 4. As long as d :. I, the results do not depend strongly on 
d and we can take d. - 00 as we did in the previous section. For fixed d. and 4, the effect 
decreases with increasing I. Also displayed on Fig. 5 is the previously discussed result (or 
I =25,50 and 100 Mpc, with a fixed value 4 =10 Mpc of the wave duration. The effect 
decreases with increasing I, although only by a (actor of order 1. Since we are in the case 
in which the duration o( the wave is much longer than the impact parameter 6 .... Gpl, the 
angular deflection is of order a in the e direction and of order a In(4/6) in the; direction, 
as discussed at the end of the last section. If the source is much closer to the string than 
the observer is, i.e., in the limit I :. d the angular deflectioll would be suppressed by a 
geometrical factor of order d/I. 

CONCLUSIONS. 

We have derived an exa.ct solution of the Einstein's equations that describes the gravi­
tational field surrounding a lightlike current carrying cosmic string. The current can be of 
arbitrary shape and time dependence. In the thin string limit, the exterior metric belongs to 
the general class of pp-wave solutions. This exterior metric can be matched with the solution 
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of the Witten model coupled to gravity in the core of the string. The resulting metric is just 
a Taub·Kerr-Shild generalization of the metric of a cosmic string with vanishing current. 

An interesting feature of the solution is that both the function A(r) characterizing the 
electromagnetic field and the function H(u, r, 9) describing the gravitational disturbance 
obey linear equations [see Eqs. (34) and (39)]. This fact can be understood heuristically as 
a consequence of the Lorentz invariance of the "seed" solution and the lightlike nature of 
the perturbation. Indeed, as mentioned before, under a Lorentz transformation of velocity 
V, pa.rallel to the string we have H - KH and A - 1'0 1/2 A, where It = (1 - v, )/(1 + v,), 
Physically, this reflects the fact that the source is redshifted for v, > O. Therefore, by 
making v, sufficiently close to I, we can make H and A as small as we wish. Thus, it is not 
surprising that these quantities should obey linear equations. This also explains why the 
profile of the vortex and the metric functions a(r) and b(r) of section II are unchanged by 
introducing the Iightlike current. 

We calculated the motion of light rays for the case of a puIse current of finite duration a 
and constant amplitude characterized by the parameter a given in Eq. (54). In addition, we 
have the parameter Gp. characterizing the mass scale of the cosmic string (typically we have 
a ;5 Gp. ..... 10-· for GUT strings), and the geometric parameters d and I, which give the 
distance from the string to the source and the observer respectively. We restricted attention 
to the case when source and observer are colineal with the string and are initially in a plane 
orthogonal to the string axis, obtaining the following results. 

The initial image is the usual double image before the Iightlike current passes, and each 
one of the double images describes an (almost) closed loop in the sky as the wave passes. 
For d > I, the angular size of the loop is of order a in the direction perpendicular to the 
string and of order a In(alb) in the direction parallel to the string. Here b ..... Gp.l is the 
typical impact parameter and we are assuming a ~ b. We have also seen that the images 
experience a blueshift and a redshift which is strongly correlated with the apparent motion 
in the direction paral~el to the string, and which is also of order a In( alb). For sources very 
close to the string, such that d < I, the magnitude of the angular deflection is decreased by 
a geometrical factor roughly of order dll, although for obvious reasons, the redshift effect is 
unaffected by this factor. 

These results only apply if the duration of the pulse is large compared with the impact 
parameter, that is, if a > Max [Gp.l, (aO'I)1/2]. In the opposite limit, the pulse can be 
approximated by a delta function shock wave. Sending the source to infinite distance, the 
apparent motion of the double images can be calculated analytically. When the effect of 
the deficit angle is dominant with respect to the effect of the passing wave (more precisely, 
when aO' < I(Gp.)2), the double images describe circular motion in the sky, of angular radius 
given by aal(161fGp.l). 

The time scale needed for the image to go around the curve reflects the impact parameter 
as well as the duration of the pulse. The effect grows to an angular size of order a in a 
characteristic time of order lGp.. If a > lGp. the effect persist for a time of order a, and 
then decreases again in a time scale of order lGp.. For instance, a GUT string endowed 
with a short pulse of GUT lightlike current located at a few Mpc from us, would deflect 
an infinitely far source in a few years time, and along a curve of angular aperture of the 
order 10-·rad, a phenomenon which should be within the reach of observational detection 
limits. In fad, an observation of this kind requires quite particular conditions due to the 

scarcity in the number of strings that we expect out to such distances [11]. Nonetheless, 
we believe that the low observational probability is largely compensated by the uniqueness 
of the signal: such an observation would provide a clear proof of the existence of cosmic 
strings, and show that they are of the superconducting current-carrying kind. 

Let us estimate this observation probability more precisely by proposing a mechanism 
through which lightlike currents can build in cosmic string, namely the interaction of such 
a string with a galaxy, or any region having an electromagnetic field. In the original Witten 
model [21, the currents built in such a way are small compared with the GUT scale. However, 
in models with spontaneous current generation [181 one may be able to build up saturation 
currents in such a way. If this interaction region is finite, and if the string can be approxi. 
mated as straight across it, then a current will be induced [21, which can be represented by 
means of a phase fundion ( along the string as J" ex (-(,.,0,0, (,.). Now, away from the 
interaction region, where the external electromagnetic field vanishes, the general solution 
for ( (to first order in e) is [19] 

( = (I(Z - t) + (2(Z + t), 

and must be constant if no interaction takes place. So, far from the interaction region, one 
has two waves of null current, one travelling in the positive z direction and the other in the 
negative z direction, both at the speed of light, and with a duration of the order of the size 
of the interaction region. As mentioned before, the null current does not affect the profile 
of the string, and so there is in principle no limit to the amount of lightlike current that 
a string can carry. However, since in the interaction region the current will be typically 
spacelike or timelike, and such currents achieve saturation, it is clear that we cannot build 
up lightlike currents whose strength a is much larger than Gp.. 

We see therefore that a requirement for observing a string's Iightlike current pulse is 
that there exist string loops crossing galaxies say, and whose size would exceed that of the 
interaction region. Now we know that the string loop distribution is such that [11] 
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N ..... Rt2 ' 

for the number N of loops of size R located in a sphere of radius I. Here, t is the age of 
Universe (1010 yr) and II ~ 0.01 is a parameter obtained by numerical simulations. The 
coherence length of a string due to wiggles is rGp.t, where r ~ 100 [20] and so we want 
R to be at least this value. Moreover, the impact parameter b ..... Gp.l being the typical 
duration of the effective motion of the source, we require it to be b ;S 100 yr so as to be 
able to actually measure the effect. This means that we require I ;S 100 yr IGp.. Thus, the 
expected number of events can be estimated as 

v 10-24 10-2• 

N ~ F(Gp.)4 ~ (Gp.)4' 

which can be quite small for GUT strings, but otherwise increases tremendously for lower 
mass strings, and is of order one for Gp. ..... 10-T• This shows that lighter strings would 
perhaps produce a detectable (at the level of arc seconds) double image moving according 
to our calculations with a correspondingly varying redshift. 
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It should be mentioned that this work has been involved with a lightlike current wave 
separating two regions of the string where there was no current. Lightlike currents may 
also exist at the boundary between spacelike and timelike currents. The time evolution of 
such lightlike currents and their gravitational effect is left for further research. We should 
also say that for cosmic strings without currents, time dependent exact solutions have been 
studied in the past, e.g. in Refs. (16,21]. In these cases, the positions of the double images 
are also time dependent, although the actual apparent motion is qualitatively different from 
our case. 

Finally, one may consider solutions describing the collision of two pulses of lightlike cur­
rent travelling in opposite directions. Before the collision the metric is a trivial superposition 
of two solutions like the one we have considered in this paper, but during and after the col­
lision the solution will contain interesting non-linear effects. In particular, since the metric 
in the impulsive case resembles very much the Aichelburg-Sexl metric [9] (representing the 
gravitational field of an ultrarelativistic body), and it is known that the head on collision of 
two such shock waves generates trapped surfaces [22], it would be interesting to study the 
possibility that the collision of such lightlike currents would produce black holes. 
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FIGURES 

FIG. 1. Light deflection in the transverse plane in the shock wave case with the source at 
inflnity. 

FIG. 2. The configuration under study as a lightlike-current wave of duration II passes along a 
string located at a distance l of the observer and d of the source. 

FIG. 3. Azimutal angle. (see Fig. 2) of the source as seen from the observer as a function 
of the time when the light ray reaches the observer. The string parameters [i.e., the parameters 
appearing in the potential (10)] have been set to 8GI! =10-e, 4G(U' - T') =4Gp =10-4

• 

FIG. 4. Polar angle e (see Fig. 2) of the source as seen from the observer as a function of the 
light ray arrival time with the same string's parameters as on the previous figure. The presence of 
two similar curve simply reflects the double image expected in the non· carrying case. 

FIG. 5. Effective observation of the source in the f{J - e plane (see Fig. 2). Both images in 
the positive and negative e directions behave symmetrically, and the source is seen as a function 
of time to move upwards at first, then down and up again until it reaches a final location slightly 
below its initial location. This figure has been obtained with a distance from the source to the 
string d =100 Mpc with a wave duration II =10 Mpc, and the distance from the observer to the 
string takes the values l =25 Mpc (full lines). l =50 Mpc (dashed lines), and l =100 Mpc (dotted 
lines). 

FIG. 6. Redshift of the source (full line) as a fundion of the time of arrival of the light rays. 
The dashed line represents the angle e and the dotted line the angle. - 'Ir/2. 

FIG. 7. Influence of the wave duration II on the resulting observation. (0), the angle e versus 
time, and (6), the azimuthal angle. also versus time; this represents various values for 0, namely 
o =1 Mpc (full lines), II =5 Mpc (dashed lines), and 0 =10 Mpc (dotted lines). It can be seen 
that although variations in the e direction are strictly correlated with the wave duration, the same 
is not true in the. direction for which the rising time is in fact comparable in all cases, reflecting 
basically the value of the impact parameter as discussed in the last section. 
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Figure 3 
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Figure 4 
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