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Abstract
By solving the full set of quantum constraint equations for the Bianchi I mini-super-
space model in supergravity, it is found that the wave function depends only on two arbi-
trary constants. General solutions to the Wheeler-DeWitt equation or to a corresponding

Dirac square root equation are not permitted. Possible extensions of this work to Bianchi

IX and other Bianchi types are discussed.

1. Introduction

There is a long-standing conjecture that. if one quantizes in supergravity the Bianchi
I mini-superspace model. one will obtain wave-functions obeying a Dirac square root of the
Wheeler-DeWitt equation. Macias. Obregén and Ryan [1] studied this problem, taking a

diagonal Bianchi-I 3-metric:
ds? = (NIN; — N?) dt? + 2N;dt dz’ + ¢~ (e”“’) dziddt (1.1)
ij
where N(t) is the lapse function and N'(t) the shift vector; f;; is taken of the form

Bi; = diag (B4 + V33—, B+ — V3B-, ~28.). These authors postulated the existence of
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a representation in which the supersymmetry constraints take the form
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acting on a two-component wave-function ¥; here 0, and o, are Pauli matrices. The ‘Dirac
equation’ (1.2) then implies the familiar Wheeler-DeWitt equation [2]
2 2 2
(—56(—2,—+5§+7+£j)w=0, (1.3)
for each component of the wave function.

Unfortunately, in [1] the quantum constraints requiring the wave function to be invari-
ant under Lorentz transformations were not solved. We shall see that, when the Lorentz
invariance is taken into account. the general solution for the supergravity wave function in
the Bianchi I case has a very restricted form.

In supergravity, the spatial metric 4, j{i.J = 1.2.3) is described by tetrad components
e®;, with hi; = n®te, ey ;»7%® being the Minkowski metric. Equivalently, one may use the

spinor version e, (For spinor conventions, see [3].) The 4-metric
ds? = (NIN; = N?) dt? + 2Ndt dz' + hyjdzids? (1.4)

describes a general non-diagonal Bianchi-I model. when all the metric components are
taken to be functions of t. - The gravitino field is described by the spinor-valued forms
¥4, 94, again taken to be functions of t. The e, are even Grassmann quantities,

while ¥, and $ are odd. A quantum state may be described by a wave function

\Il-(e““"",», ui*"‘i), or equivalently by a wave function ¥ (C"H’v z/;"',) {3]. The wave function

) "
C o ek ‘I/te'“ i z/l"“‘i) may be expanded in even powers of v1,, in pieces symbolically of the form

7y dV 9% 4%, ¢* and $°. Applying the full set of quantum constraints to ¥, we find below that
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the general solution has the form
' L =L
¥ (e’“,v,u‘;",») = const.; h~2 +const.z h™2(9)®, (1.5)

where h = det (k;;). Thus no %? and ¢* pieces are permitted at all, and the ° and ¢°
pieces are unique up to constant factors. One does not even see the general solution to a

Wheeler-DeWitt equation analogous to (1.3), let alone the square-root structure of (1.2).

2. Solution of the quantum constraint equations
The classical Hamiltonian for supergravity, subject to the spatially homogeneous
Bianchi-I Ansatz (1.4) with homogeneous spinor fields (u’"*,»(t), d;“",»(t)), takes the stan-
dard form for a theory with constraints arising from gauge invariances [3]:
H=NH+paS* 5% pa + Mapd*® + My J¥T (2.1)
Here H is the generator of local time translations, 4 and §*’ are the generators of local
supersymmetry transformations. and J*3 and JA'B' are the generators of local Lorentz
transformations; they are all formed from the basic dynamical variables (e"""i, ¥4, tf;A;) .
The quantities N, p4, 5.4, Mip and My g are Lagrange multipliers. Classically, all the
constraint generators vanish, so that H = 0 etc. Further, the constraint generators form
a first-class ‘algebra’ (the constraint algebra), so that the Dirac bracket of any pair of
generators gives an expression linear in the generators. which vanishes when the classical

constraints H = 0 etc. are imposed.

Quantum-mechanically, the constraint generators become operators which annihilate

physical wave functions ¥:

stv=0, $'v=o, (2.2)

J4By =0, T'%y=0.

The classical Dirac brackets become (anti-) commutators, and the quantum version of the

constraint algebra is the set of consistency conditions for the quantum constraints (2.2).

¥
In particular, the quantum constraint H is related to the anti-commutator of S and 3 ,

and the constraint H¥ = 0 (with suitable factor ordering for H) follows from the other
constraints in (2.2) [4]. (The Bianchi-I constraints neglecting J4Z and T4 are described
in [1]).) Thus it is only necessary to solve the § "‘,3:'4' ,J3B and 74 5 quantum constraints.

As described in the Introduction, the wave function can be taken as ¥ (e‘“'i,vb“‘)

= ’ r - - . -
or ¥ (e"‘" i zb":-). These two representations are related by a fermionic Fourier transform

(3]:
b (A4, 5%) = D7) [0 (44,0 exp (ietennis ) avd, . 23)
using Berezin integration. Here
D(e) = det (ie‘j"e,.;,;.g) . (2.4)

Under the transformation (2.3), the #°, 42, ' v® parts of the wave-function become
$8, 94,92, §° parts, which helps considerably in solving the quantum constraints below.
The constraints J38¥ = 0, 7Y% =0 simply imply that ¥ (e“‘"",-, t,b“i) is 2 Lorentz
invariant function. formed from expressions in which all spinor indices have been contracted
together. In forming such expressions, one makes use additionally of the normal spinor
n""', the spinor version of the unit future-pointing normal vector n* to the surface t =

const. This is a function of the e?4', defined by

A A4

’ r
nAd eqri=0, n*nup=1. (2.5)

The e44’, and n?4’ together form a basis for spinors ¢4,
i 2 p
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Turning to the supersymmetry constraints, classically for Bianchi I these are given
by Sa = ~4ik?p, S0, S4 = Lin*A p, 4} [3]. Here x? = 8, and p, ./ denotes the
momentum conjugate to e ,; note that p, ./ has non-zero Dirac brackets with y#; and

J"; [3]. Quantum-mechanically, we choose the ‘averaged’ ordering

g [t ; Y
Sa= _‘%mz (‘L’ Pasr +Paa® i) ,
(2.6)
Sa = Lin? (b4ipaa’ +paalv?)

This has the property that S4 and 54 are hermitian adjoints, using the standard in-
ner product [3] appropriate to the holomorphic representation for fermions being used
here. Further, the 5.4 ¥ = 0 constraint implies a simple transformation property of the
wave function ¥ (e"""i' z,b"i) under a supersymmetry transformation de<; = —ixd'y4,,
594, = 0 [see (2.9) below]. And the S.¥ = 0 constraint implies an analogous trans-
formation property for a wave function in the representation ¥ (c’“’,-,d;":-). There is a
similar synmetry between the constraints S3%¥ = 0 and S4¥ = 0. The two repreéenta«
tions ¥ (GAA",,,[,A‘,) and ¥ (e""',-,v,Z:A') are thus treated symmetrically. As a result, we
need only solve the supersymmetry constraints for ¥ (e""",-, {/J"‘) at levels ¥° and ¢?; the

levels ¥* and ¥® can be dealt with by transforming to the representation ¥ (CA"".-,Q;A;)

and studying the (formally identical) constraints for levels v? and ¥°.

Explicitly, the constraint S1¥ = 0 in the representation ¥ (e“"‘i,d:"‘i) reads

2 s OV 1, ipBa 0¥ -
3 | P77 ~-zeaa D7 i =0, 2.
3eA T, ( rmL 7€4A 5 548, (2.7)
where 8/p? ; denotes left differentiation [5], and
’ ‘ I ’
DBAJ',‘ — —‘21.,{-7688.'66'301'116‘4 , (2.8)

b

with & = det (h;;). The constraint § ;¥ =0 is

a¥ i
$is + e/ T =0. (29)

Thus from (2.9), under the supersymmetry transformation
66.4.4" = —iICEA'sz,', 61.’)", =0, (2_10)

with &'’ an infinitesimal odd Grassmann parameter, one has the simple transformation
property
80 = inydiVe /0 (2.11)
Because there are no spatial derivatives present in the Bianchi I model, there is no con-
straint H*, generating spatial coordinate transformations, present among the constraints
of (2.1). However, one may regard the Bianchi I model as a special limiting case of a more
general class of inhomogeneous cosmological models. given by perturbations of the Bianchi
I model. For such models there will be a quantum constraint H*¥ = 0 implying invariance
of the wave function under spatial coordinate transformations. Accordingly, we shall insist
that all wave functions ¥ are spatial scalars. and carry no spatial indices ¢, j,. ...
The purely bosonic ¢® part ¥, (e“‘"’i) of the wave function ¥ (e’“',»,t/:“,- , being a

Lorentz invariant, has the form
T (eM',) = Fy(hyj) . (2.12)

The only constraint to be satisfied. 5§ 4%, = 0, gives

- OF i
¥iean; T ° +3vtieadFo=0, (2.13)
ij
for all ¥4,. The ¥4, factors can be cancelled, and after contraction with eA4’* one obtains
%‘i— +i*R=0. (2.14)
ik
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with the solution .

1
Fy(hij) = const. k™2, (2.18)

as in (1.5). By symmetry. the %® part of ¥ (e""‘:-, q’)",-) has the corresponding form.

The quadratic y? part of the wave function must be constructed in a Lorentz-invariant
way from CAA’.' and ;. Writing yig5 = egpi¥?;, one can split $Agp into a spin-%

and a spin-§ part, as (3]
Yapy = =2nC g va8c + 2 (Banpp + Benap) — 2e4n°p.fc , (2.16)

where yABC = Y(1Bc) is totally symmetric and €45 is the alternating spinor. The general

Lorentz-invariant wave function at order v then has the form

U, (44, 97) =Fi (hij) a8

(2.17)
+F2 (hij) yaBcr™BC .
Applying first the constraint S5:'¥, = 0. one finds
. aF,
E__Fc 1 A3
—4n®ce’ “ epprj mﬂgﬂ 1 FE
, OF;
- 4lIEC,CPck688'j ik § ‘{Bps ‘fABD‘YACD
ahﬂ,
' aF;
+ lsﬁn"c.csckesa'j%-?-ﬁs vacp 7P
&
SncpBe 1%p4 7P
+F | -2nfg8c vepa v*8P =0. (2.18)

+4nF 5 vBp v4P ycpe

{

Now 4 and v,4p¢ are independent odd Grassmann quantities. In particular, the sym-

metrized coefficient of ;3438 re 0 (2.18) must vanish. Hence

] oF,

c
" ‘s =0. 2.19
MEICICFT kBB g (2.19)
Contracting this equation with e85,nf ,eF D’ vields
- aF,
T 3 [
(Fhimhje = Themh i) Eie 0, (2:20)
which implies
F, = constant . (2.21)

The consyamt S, ¥, =0 vields

i -1
+ TlF; h™2 3,
+ 13 y aF
- 4€A.-\'kDBAji" e€epclenc T i ~CPE=q. (2.22)
L$

Since F) = constant. the coefficient of 34 in (2.22) shows further that

F=0. (2.23)
The coefficient of v PF in (2.22) gives
eawsDB,in e D‘C,jea[c)g}f—.::;— =0. (2.24)
Contracting with nAC'eCC‘t,IDD'CED’m shows
(3Rimhie = hichem) g{% =0, (2.25)



which implies

F, = constant . (2.26)

Finally, substituting (2.23), (2.26) back into (2.18) shows that F multiplies a non-zero

cubic in 4 and y4pc there, so that

F=0. (2.27)

Hence there is no %? part to the wave function ¥ (CAA'.'- zb",-). By symmetry between

the ¢4, and ', representations. there is also no #* part. Hence the general solution to
L] t g

the quantum constraints is given by (1.3).

3. Further developments
It will be of interest to study other Bianchi types in this framework, in particular the
Bianchi IX model studied by Graham [6. 7]. For example, in [6] the spatial metric is taken

as

dslparial = (6m)" 222 (€)', (3.1)

where, as in the Introduction. J;; = diag (34 + V38-, B+ — V36-, —28;), and o' are
the left-invariant one-forms on the three-sphere. The model is quantised in [6], but without
solving the full set of quantum constraints of supergravity. In particular, translating to
the language of the present paper. the ¥® and #® parts of the wave function are found in

[6] to have the simple forms

const.; e~/ and const.; vie! (3.2)
where
I=3eTr (%) . (3.3)
9

The bosonic solution e~/ has also heen found as a solution to the Wheeler-DeWitt equation
in {8].

The results (3.2) can be derived from the constraint equations 5 4 ¥ = 0 and S,¥ =0
given in [3]. Indeed, analogous exponential solutions exist for all Bianchi types in class A
[9]. This work will be described in a subsequent paper.

Further, based on the results of the present paper. one is led to conjecture that the
general solution of the quantum constraints in the Bianchi IX case is similarly the sum of
the two solutions in (3.2), without the order ¢? and #* solutions of the Wheeler-DeWitt
equations found in [6]. It was already remarked in [6] that the state ¥®e! should be the
Hartle-Hawking state [10]. One further expects that the e~/ solution found in [6] is
the wormhole ground quantum state [11] for the Bianchi IX model. If these conjectures
are correct, then the supergravity constraint equations for Bianchi IX are so restrictive
that they select out only the most symmetrical quantum states, usually defined via path

integrals.
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