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ABSTRACT: The method of non-linear realisations is set in a mathematical frame­

work with a view to interpreting the terms that appear in the effective description 

of extended objects in relation to the geometry of the theory. The role played by 

central extensions in the case of one-dimensional theories is also studied, as well as 

the extension to supersymmetric objects. 
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o llbD DDD?CJIf2 0 
In theories where some of the symmetries are 'broken' or 'hidden" the 'vacuum 

manifold' or th~ space ofdas!'\1cal minimal f'nergy solut.ions is th ... homogeneons space 

GIH, where G is the full symmetry group and H is the unbroken subgroup, since 

by definition the latter is the isotropy group of any of the minimal energy solutions. 

The fields that characterise the zero modes, the Goldstone fields, correspond to 

translations in this manifold, and therefore determine a set of coordinates on it [CI]. 

This means, in turn, that the Goldstone fields transform linearly under H, and non­

linearly under the 'rest' of G. Any effective action written in terms of the zero mode 

fields must take these transformation properties into account [CWZJ[CCWZJ[OJ[IO]. 

In this paper, we shall analyse the so-called method of non-linear realisa­

tions that gives, up to field redefinitions, all the possible G-invariant functions of 

the fields, thus giving only the actions with strictly invariant Lagrangians. Quasi­

invariant Lagrangians, which change by a total derivative under the action of G, 

are related to non-trivial elements of the Chevalley-Eilenberg cohomology group 

of G. In principle, these actions are not obtainable directly through this method. 

Nevertheless, we shall see that in the case of a one dimensional system (parti­

cles and superparticles) it is possible to exploit the relation between the second 

Chevalley-Eilenberg cohomology class of the group and the possible central exten­

sions to extract the action. We shall also see that when the quasi-invariant action 

has a geometrical interpretation, either the action itself or its equations of motion 

can be obtained from the non-linear realisations, as in the case of extended and 

superextended objects. 

Our main motivation is to apply later the method to theories of extended ob­

jects as topological defects. The imbedding of an extended object in a target space­

I time breaks invariance under translation and some rotations; thus, extended objects 

:J are an example of a system with partial symmetry breaking and can be treated by :6 this method. In particular, we shall apply il 10 finding Ihe form of higher derivalive 
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, corrections to the effective action. To this end., we must first understand the math­

ematical structure that underlies the method of non-linear realisations described in 

[CWZ][CCWZJ[O](VJ, etc. Without this necessary geometrical understanding, it is 

not possihle to interpret the results of the mdh()(l or to tht"m correct.Jy to the 

theory of extended objects. 

In section 2, we shall endeavour to provide a mathematical basis for the 

method in its general form, and for the particular case of external symmetries being 

included in the symmetry group. We shall see that the method is based mainly on 

the theories of induced .representations and invariant connections on homogeneous 

spaces. Having in sight the application of the method to extended objects, in sec­

tion 3 we shall study some submanifold theory and indica~e its relation to non-linear' 

realisations of affine groups. 

Section 4 gives a short account of the cohomological properties of theories 

with quasi-invariant Lagrangians, and its relation to central extensions in the one­

dimensional case. Section 5 gives an indication of a possible extension of the results 

of the previous sections to the supersymmetric case. 

2: General formalism 

Let G be a connected Lie group, and H a closed subgroup. Let G and H be 

the Lie algebras of G and H respectively, and M a linear subspace of G such that 

9 = 11. (J) M (as linear subspaces). 

The Mackey decomposition theorem [BR] in its most general form says that if 

G is a separable locally compact group and H a closed subgroup, then there exists 

a Borel set 5 in G such that every element of 9 E G can be uniquely represented in 

the form 

5(g) h(g) (2·1) 
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with 5(g) E 5 and h(g) E H. The hypotheses are automatically fulfilled if G is a 

Lie group and H a Lie subgroup of G. We shall ·write s(g) 5g , h(g) = hg, so 

that 9 = 5 g hg • The set 5 is not unique; for example, if ho: 5 - H is a continuous 

function, 5' = {5hn(.~) : s E S} is also a suitable set, and the decomposition 

(which is still unique in terms of the new set 5') becomes 9 = s'(g)h'(g), where 

5'(g) s(g)ho(s(g)) E 5' , h'(g) = h01(s(g))h(g) E H. 

• 

Even though 5 need not itself be a manifold, we shall make use of this freedom 

to take as 5, at least locally, an integral manifold of M (where M is seen as a: set 

of left invariant vector fields on G). We will generally restrict our attention to a 

neighbourhood U of a point in G where S can be taken in this manner. This will 

suffice for the physical applications. 

As we explained in the previous section, we are interested in G / H = {gH : 

9 E G}, the homogeneous space consisting of all the left H cosets. This space is 

the same as GIn, where n is the equivalence relation g1 'R g2 ¢:::=} .3 h E H such 

that g1 g2 h. This implies that g1 'R g2 {::::} 5 g1 = 5 g2 • There~ore there is a,I-1 

correspondence between the left cosets gH and elements of 5, and in what follows 

we will use this correspondence freely, speaking of Sand G / H interchangeably. 

This equivalence relation determines a principal fibre bundle G(G/H, H), 

where G is the bundle space, G / H is the base and H is the structure group, and the 

Mackey decomposition theorem gives a local trivialisation. The bundle projection 

11" is given by the natural projection 11": G ­ G/H, 1I"(g) = gH. G acts naturally on 

the left (through the group product) on this bundle, and, in particular, on G/H. 

We can take local coordinates on G / H by taking local coordinates on G in 

U and then restricting them to Sj if they are to be independent, they should be 

adapted coordinates Si (in which, if dim(M)= n, and dim(G) = N, the defining 

equations for 5 are locally sn+ 1 (g) = ... :::;N (g) = 0) 1. In particular, it would 

be useful to consider, in a neighbourhood of the identity, canonical coordinates of 

1 Actually, for our applications, it is enough that the corresponding tangent frame be 
adapted, 81 , ••• ,8", E M (Le., be tangent to S). 
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the second kind subordinated to the decomposition G=H+M [SW], which realise 

the Mackey decomposition, 

9 == exp(iX) exp(iY) XEM, YE1£ (2·2) 

The coordinates on G / H will constitute our basic non linear realisation of G, so 

any change of coordinatisation will be equivalent to a field redefinition (and vice 

versa). 

We will assume that (G, H) form a reductive pairj that is Ad(H)(M) C M. 

In terms of Lie algebras, this means [1£, M] C M. This is a physically reasonable 

assumption if we are going to apply the method to theories with spontaneous sym­

metry breaking; if H is the group of unbroken symmetries, and M is generated by 

the broken infinitesimal symmetries, one wants the broken symmetries to be stable 

under the unbroken ones. This will be needed in what follows, notably, in the defi­

nition of a G-invariant connection. A typical example of this situation is when G is 

a compact semisimple group, and H is semisimple and connected. Then a suitable 

choice is M == 1£1. with respect to the Killing form of G [SW], [CWZ]. Another 

ex~mple is whe~ G is a semidirect product, G Sg;;H. 

To construct our basic non-linear realisation, we take a set of coordinates 3 i , 

1, ... , non G / H. These are elements of M"', the dual of M. Then the action of 

G is defined as g: 31--+ 3', 3'({) == 3(g-1{) V{ E G/H. This action is in general non­

linear ('non-linear' includes non homogeneous), but if we take normal coordinates 

of the second kind, and write { E 5 as e exp(i3·8) (8 is a set of generators for 

M), then the action becomes linear when restricted to the subgroup H. This is due 

to the property of the exponentials, h(expX)h-l == exp[Ad(h)(X)] [SW], and the 

in variance of M under the adjoint action of H. It may seem a disadvantage that for 

H to be represented linearly the choice of coordinatisation must be restricted, but 

actually this restriction turns out to be irrelevant. Indeed, only objects that form 

a linear representation of H can enter the invariant actions we want to construct. 

Therefore, we will devote the rest of this section to show how to extend linear 
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representations of H to realisations of G and to construct a particular realisation 

out of fields with values in G/H and their derivatives. 

Induced representation.'I.fMK] Let, h ~ r:(h) be a unit.ary representation of 

H in a separable Hilbert space 1£, L(h) E End[1£], and 1£L = {u: 5 -+ 1l} the set 

of all square integrable functions from 5 into 1£. The induced representation UL of 

G on 1£L is given by 

UL(g) u(e) == L-l(hg-le) U(Sg-le) (2·3) 

where hand S refer to the Mackey decomposition (2.1) 2. More explicitly, if we 

define e and h(e, g) via 

g{ = fh({, g) , (2.4) 

then the representation (2·3) is 

u'(f) == L (h({, g)) u({) (2·5) 

It is clear that if 9EH then the action becomes the original representation, with f = 

g{g-l and h({, g) = 9 (because M is invariant under Ad(H)). For any vector bundle 

E(G/ H,1£, H, G) associated to G(G/H, H) with fibre 1£, the induced representation 

gives an action of G on the sections of E, E{E). 

As an important example, one can take 1£ == .Nt and L=Ad ifone introduces an 

inner product in M that makes this action a unitary representation. This coincides 

with the action induced on M (seen as Te(S)) by the left action of G on 5 when 

restricted to H, but UL #Ad for the whole group. Then E can be seen as the 

tangent bundle to 5 but with reduced structure group (from GL(n) to L(H)). 

2 Some technical subtleties about the possible nonexistence of an invariant measure in G/H 
have been disregarded (in the case when the measure is only quasiinvariant, its Radon-Nikodym 
derivative has to be included in the definition of the induced representation, to keep it unitary 
[BRJ). 
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Connections and covariant derivatives.[KN] The canonical or Maurer-Cartan 

I-form () of a group G is defined as the left-invariant G-valued I-form uniquely de­

termined by ()g(Ag) = A VA E 9, where A and A are related by Ag = (Lg),.A (for 

mat.rix groups, t.his ch,nnit.lon gives t.he usnal () = g-ldg in th€' mflt.rix coordinat.e 

system [GS]). This I-form obeys the Maurer-Cartan equation, 

d()= -[(),()] (2·6) 

Since (G, H) form a reductive pair, the H-component w of () with respect to the 

decomposition 9 = ft + M defines a connection in the bundle G(GI H, H) which 

is invariant under left translations of G, and such that the horizontal space at the 

identitye is M (under the identification Te(G) ::::::: 9)[KN]3. This connection I-form 

can now be used to define a covariant derivative on the sections of any of associated 

bundle E, that is, on any fields on G IH. These covariant derivatives ('G-covariant 

derivatives') transform in the same way as the sections under the action of G. 

Let now W be a p+ I-manifold which we will take as our spacetime, and 

R nlet 3: GIH -+ a coordinatisation of GIH as above. Given a map €: W ---+ 

GIH, :z: 1-+ €(:z:), we define the fundamental or Goldstone fields as 3 o€, and call 

them 3(:z:). There may be more fields in the theory than simply the Goldstone 

fields. It is possible to take two different approaches to the treatment of these 

fields. One way, they depend only on :Z:j the second approach is more inspired 

by the original definition (2.3) of the induced representation. The other fields in 

the theory are functions not only on W but on G IH as well. These apprQaches 

are mathematically equivalent but slightly different in the philosophy behind them. 

The relations between different fibre bundles in these two approaches are represented 

diagramatically in the Appendix. 

In the first approach, one defines the Goldstone fields directly as Rn-valued, 

and then determines their transformation properties under G by working only with 

3 The converse also holds: any connection in G(GjH, H) invariant under left translations 
of G determines such a decomposition () 1£ +M and is obtainable in the same way as the 
'H-component of 8 [KNJ. 
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elemen ts in S of the fo!,m exp(i3(:z:).B) j this is the usual procedure in physical appli­

cations. This is possible because M'" ::::::: Rn. In this case, unless G is both compact 

and connected, one could speak properly only of infinitesimal transformations, to 

ensure that one remains in t.he image of t.he exponent.lal map 4. Tn t.he same spirit, 

for the other fields in the theory, one can work directly with ft-valued functions 

on W, 0: W ---+ ft, where ft is some unitary representation of H. One can then 

substitute exp(i3(:z:)·B) for € in the definition of the induced representation (2.3), 

g: 0(:z:) 1-+ E>/(:z:) L(h(exp(i3(:z:).B) , g))0(:z:) in the notation of (2·5). Since 0 

take values in ft, they are sections of some vector bundle E'(W, ft, H, Q) associated 

to a principal bundle Q(W, H). 

The transformation under G given by the induced representation shows that 

there must exist some principal bundle P(W, G) reducible to Q(W, H). There is 

a theorem [KN] which states that this reduction P ---+ Q is possible if and only 

if the associated bundle E(W, G I H, G, P) admits a global section e, which here is 

induced by € = exp(i3.B). This map is either defined globally or is extendable if 

W is paracompact and GI H is finite dimensional. The correspondence between 

sections and subbundles'is 1-1 5. 

To construct actions which are invariant under G from these fields, we need 

to define their G-covariant derivatives. Given a vector bundle E'(W, 1£, H, Q) asso­

ciated to Q, the definition (2.3) shows how to extend the structure group to G for 

each Q, or, equivalently, for each section; thus the extension depends on the value of 

the Goldstone fields. G-invariant connections on these bundles Q are given by the 

projection onto H of the corresponding pullback of the Maurer-Cartan I-form. For a 

trivial bundle P = W X G, if f: W x G ---+ G is the natural projection, the canonical 

flat connection is given by w = f*8, Nevertheless, the connection induced on these 

subbundles is not flat, unless M is a subalgebra of G, because the curvature 2-form 

4 This might not be necessary for particular cases [HelJ. In any case, this is not too strong 
a restriction, since conservation laws are related to infinitesimal transformations. 

l) If f: Q -+ P is the injection and "': P -+ E P j H the projection, the section e: M -+ E is 
defined by e(z) = ",(f(u», where uEQ is any element such that 1I'(f(u» == z. Reciprocally, given 
e, Q is the set of points uEP such that ",(u) e(1I'(u» [KN] (See the Appendix). 
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n of the connection is given by the projection onto H of O(X, Y) ~[X, Y) for 

X, Y arbitrary left invariant vector fields on G belonging to M. If n vanishes, there 

is a canonical imbedding of S :::: G / H ~G and G = S &>H. Thus the non flatness 

of t.h~ inrlnc~d connection refl('ch; the non triviality of the imhedding of G / H in G. 

In the second approach, one can notice that E(W, G / H, G, P) P(W, G)/H; 

then peE, H) is a principal fibre bundle with base Eand structure group H. Given 

any vector bundle E(E, 1-£, H, P) associated to peE, H), we can define the action 

of G on it via (2·3). Then the rest of the fields in the theory are sections of 

these associated bundles, and hence functions of the points of spacetime and of the 

Goldstone fields themselves, 0 = 0(:z:, e). The transformation law is defined as 

9 : 0 1---+ 0'(:z:) =L(e, g)0(:z:) (2·7) 

The construction of the first approach is reobtained when we choose a section of 

E, or equivalently an imbedding of W in E. If we restrict 0 to the image of the 

section, then all the fields only depend on :z:. 

In general) the pullback of the canonical I-form from G(GjH, H) to Q(W, H) 

will be given by 

{" () =w' + I{J, w' E 1i, r.p E M (2·8) 

where i is the lifting to Q of e. Then w' gives the G-invariant H -connection. Some­

times, as in the previous section, r.p (or part of it) is written as VS·13, and the 

V2. referred to as 'the covariant derivatives of the Goldstone fields' because they 

contain derivatives of 2. and transform 'covariantly' under the induced representa­

tion of G, although they are not the proper covariant derivatives formed with the 

connection w' [O)[CCWZ).Higher covariant derivatives are formed in the usual way 

with Wi; relations among these higher covariant derivatives of the Goldstone fields 

Cgeneralised Bianchi identities'} can be obtained using the fact that () obeys the 

Maurer-Cartan equation (2·6). 
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Invariants and Lagrangians. Since the representation spaces 1-(. are Hilbert 

spaces and the representations of H are unitary, one obvious way to construct 

invariants under H is to construct inner products of 1i-valued fields. Invariants 

formed from the Coldst.one fie1ds and thf'ir derivatives will necessarily enter as 

functions of I{J, since it has the correct transformation properties. Actually, the 

invariance of the bilinears will be a good guide to find the appropriate inner product 

in M. If 0 denotes a section on E (1i-valued field), then an invariant Lagrangian 

will be any H-invariant function £(0, 'V0, I{J) £(0, 'V0, VS). The Lagrangian 

£ can include higher covariant derivatives of 0 and 3. Since the action of G on 

these fields is the induced representation action, H -invariance implies G-invariance. 

Spacetime symmetries. What we said up to now assumes that G is a purely 

internal symmetry group. IfG includes spacetime symmetries, then the map e: W ~ 

G/H is an imbedding, and e,.(Tx(W)) is some subspace ofM, with a basis P = {PAl; 

we choose a basis of M such that the first p + 1 elements are the PA , and we shall 

still ca1113 the remaining generators. The components of S in the P subspace are no 

longer independent fields, and can be used to determine local normal coordinates on 

W; then the Goldstone fields are the remaining components of3, and they transform 

linearly under P (they live in the left regular representation of the translation group 

seen as RP+l). For this reason, we speak of P as the 'unbroken translations', 

although they do not belong to the unbroken subgroup H because they are not 

elements of the isotropy subgroup of any point in spacetime, which is imbedded in 

G/H. In accord with this distinction between P and 13, I{J splits into two parts: 

I{J = E·P + D3·13 (2·9) 

As we shall see later, E is a soldering I-form, so the matrix of its components in some 

coordinate basis on W, which we shall denote by the same letter E, is a p+l-bein. 

Then det E is a G-invariant measure on W, and if we want to write the covariant 

derivatives of the 2. in the corresponding coordinate basis we have to define V3 = 
E-1VS. In that case the invariant Lagrangian densities are £(0, v0, VS)det E. 
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3: Extended objects 

A relativistic extended object or 'p-brane' is essentially a p-dimensional 'ob­

ject' manifolrl HT moving in a d-rlimem,innaJ '!'lpact"t.ime' manifnlrl !If, ddermining 

the imbedding i of a p+ 1 dimensional manifold W in M. In general we shall take 

both {IV and M to be Lorentzian, and though in principle both can be arbitrary 

metric manifolds, in the applications M will be flat (partly for convenience, but 

mainly because it is only in that case that we know how to describe them in terms 

of non-linear realisations). 

There is an equivalent description of extended objects as 'a-models', a p+I­

dimensional field theory on W (as a spacetime) where the fields take values in M 

(as a target space). In this description, symmetries in M are regarded as 'internal', 

while reparametrisations onW are 'external'. We shall switch back and forth be­

tween these two interpretations depending on which is the most convenient at each 

point. 

The action for such a physical system is taken to be the p+I-volume of W, as 

a generalisation of the usual action for a relativistic particle and the Nambu-Goto 

action for strings [Ac]. The volume element is the square root of the determinant of 

the induced metric, or the determinant of the p+I-bein. Since the volume element 

is invariant under reparametrisations (coordinate changes) of W, not all the com­

ponents of the imbedding i are independent. One way of eliminating the spurious 

coordinates is to fix coordinates on W ('fix a gauge for the local reparametrisation 

invariance') with relation to the imbedding. As we shall see, this gauge-fixing breaks 

the affine (Poincare) symmetry in M; for a particular choice of gauge, the 'static' or 

'physical' gauge that corresponds to the choice of adapted coordinates on W, there 

is a 'residual' global affine invariance on W (all that is left of the reparametrisation 

invariance) and invariance under rotations that leave i(W) invariant. 

If, starting from the other end, all one knows about these objects is this set of 

symmetries (the affine group), and which of them are broken and which unbroken, 
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one can apply the method of non-linear realisations to find a set of invariants from 

which to form actions from a connection. These actions will be obtained as a set 

of gauge fixed Lagrangians, not fully invariant under reparametrisations. From this 

method one can aMain, not only t.he free action (the worlrlvolume), but a complete 

set of self-interaction terms, with higher derivatives of the independent components 

of the imbedding i. This will be useful for finding effective low energy actions for 

topological defects, where the interaction between the zero mode and the higher 

order ones can give rise to these higher derivative terms. An affine connection is 

also a condensed way of writing a linear connection and a field of orthonormal bases, 

so it provides a link between the method of non-linear realisations and the theory 

of submanifolds which will allow us to interpret physically the results of the former. 

Affine connections. [KN] The affine orthogonal group AO(r, s) (r+s=d) is 

defined as the semidirect product RdZ>SO(r,s), the group of rigid motions of Rd 

considered as having a metric with signature (r, s). The corresponding relation 

holds for the Lie algebras, replacing the semidirect product by the semidirect sum: 

AO(r, s) = Rd-33S0(r, s). 

If one considers the tangent space at each point of a manifold W as an affine 

space instead of a vector space, the bundle of orthogonal frames O(W) can be 

extended to a bundle A(W) of affine frames. An affine frame consists of a frame 

and an origin, Le., a vector, and there is a canonical imbedding l' of O(W) into 

A(W) which takes the vector to zero, and so the origin is the origin of R d seen 

as a vector space. Given a generalised connection on a principal affine bundle, 

the pullback of its connection I-form w by l' is an AO(r, s)-valued I-form on the 

orthogonal bundle. This form is naturally split by the semidirect sum structure 

of the algebra, 1'*w = W+ w, with W Rd-valued and w SO(r, s)-valued. Using the 

theorem on invariant connections on reductive spaces mentioned in the previous 

section [KNJ, since any semidirect product defines a reductive pair, w defines a 

metric connection on Wand w is an Rd-valued I-form that determines a map 

between the tangent space at each point and Rd. This I-form is sometimes called 

12 
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a soldering I-form G. The canonical choice for a 1-1 correspondence between affine 

and orthogonal connections identifies this map with a field of orthonormal frames, 

such that the map is the identity at each point but the basis in the domain and the 

image are different. These are often caJled 'moving frames' or 'd-beins'. 

Submanifolds. [PT] Let W be a p+1-dimensional immersed submanifold of a 

d-dimensional semi-Riemannian manifold (M, g) 7, and V the covariant derivative 

of the Levi-Civita connection of g. Let Tx (W).l denote the orthogonal complement 

of Tx(W) in Tx(M), v(W) the normal bundle of W in M I i.e., lI(W):z; = T:z;(W).l, 

and i: W -- M the inclusion. 

There are three basic local invariants associated to W: the first fundamental 

form h = i*9 is the induced metric on W; the second fundamental form or extrinsic 

curvature is a section of (T" (W) ®,ym T* (W)) ® v(W)*, defined by 

K(Ul,U2,V) = -g ((Vulvf,U2)' (3·1 ) 

w'here the superscript T means the orthogonal projection onto T(W); it is not diffi­

cult to prove that the definition is symmetric in the two first arguments. The third 

invariant is the induced normal connection V.l on v(W), defined as the orthogonal 

projection of V onto v(W). The second fundamental form can also be seen as a 

section of (T" (W) ®.ym TO< (W» ® lI(W), using the canonical mapping given by the 

metric. We shall use both forms as equivalent. 

A section on O(M) (a field of orthonormal frames) is adapted to W if the first 

p+1 vectors form a section on O(W) (Le., are tangent to W on W). Let us denote 

such a section by el, ... ed, and its dual coframe by w1 , ••• , wd • Such a coframe and 

(; The concept can be generalised slightly, by taking a subalgebra of the appropriate dimen­
sion in the Lie algebra of any group and not necessarily the affine one, giving then one possible 
me~hanism to transform 'internal' symmetries into 'external' ones [ey]. 

T The definition of a semi-Riemannian submanifold requires that i'g be a metric; this is to 
say. the tangent space of the submanifold is a non-degenerate subspace of the full tangent space 
nt each point, i.e., the metric is non-degenerate when restricted to it. This condition eliminates 
n few pathological situations and implies that the normal subspace is well defined [O'N]. It also 
rules out null surfaces. 
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the Levi-Civita connection I-form w define an affine connection as in the previous 

subsection; we take as a basis of ao(d) the translations P plus the rotations M; it is 

convenient to write the components of w with a pair of antisymmetric indices. It is 

useful to distinguish hetween components in T(lV) anclz,(nT), so we split the indices 

on M as 0 ~ A, B ... ~ p ~ i, j, ... ~ d - 1. To obtain the components of the three 

local invariants in these bases, we pull back the semi-Riemannian structure on M 

onto W via the inclusion i. In what follows the i'" is understood on all forms; then 

wi 0, (3.2) 

h = tr(w ®w), (3.3) 

and the structure equations translate as 8 

dW A WAB AwB (3·4) 

and 

dW i =WiA AwA = 0, (3·5) 

which implies that the wi A are linear combinations of the wA with some coefficients, 

Wi B == _w A KABi. (3·6) 

Substituting (3·6) back into (3.5), one obtains that the coefficients K are symmetric 

in AB, and comparing (3·6) with the definition of the second fundamental form 

(3·1), it can be seen that they give the components of the extrinsic curvature tensor 

K =KABiW
A ®w B ® ei. (3·7) 

Equation (3·4) gives the Levi-Civita connection on W as the pullback of that 

on M, and the remaining components of w, wi;, define the normal connection. The 

pullback of the curvature equations gives the Gauss-Codazzi and Ricci equations 

for W. In this way, wA and wA D define an affine connection on W, and wA is a 

p+1-bein (cf. (3·3)). 

II Using that pullbacks commute with exterior derivatives and exterior products. 
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The mean curvature vector k is defined <).s the trace of the extrinsic curvature 

tensor, 
~ ~ i_AD i

K K ei = h KAD ei. (3·8) 

An immersion is called minimal if it satisfies k 0, since this implies that the 

volume of W has a stationary point with respect to deformations of the immersion 

with compact support. This is, k = 0 are the Euler-Lagrange equations of a 

variational principle for the volume functional 9. 

Gauge fi:~ing and non-linear realisations. If one now looks at the immersion 

as a set of fields over W with values in M, these fields transform linearly by repa­

"i:ametrlsations onW', These reparametrisations act as 'external symmetries', being 

general coordinate transformations, or diffeomorphisms. On the other hand, if Al 

is assumed fiat, its isometries are the rigid affine transformations (Poincare group), 

which act as 'internal symmetries', because they transform the fields without touch­

ing W. Once an adapted orthonormal frame field in M has been fixed, one can see 

that the symmetry under translations in the directions normal to W is broken, and 

so are t~e rotations and Lorentz boosts that mix parallel and normal directions. 

One can then fix a coordinate system in W with reference to this frame field, or 

the coordinates on AI, that will reduce the free components of the imbedding i to 

the independent ones; in particular, to the coordinates that correspond to the per­

pendicular directions, Xi. The fields in this smaller set will transform non-linearly 

under the broken translations and rotations, but linearly under the translations par­

allel to Wand the remaining rotations. They form a representation of the rotation 

subgroup that leaves T(W) invariant, and the parallel translations can be written 

via the gauge fixing as rigid coordinate transformations on W. Thus, the gauge 

fixing mixes internal and external symmetries, defining certain quantities with in­

ternal indices in terms of other quantities with external ones, and so changing their 

transformation properties under the symmetry groups of the theory [JR][H'tH][C3]. 

Note that the volume is always invariant under repllrametrisations of W, and that k is a 
normal vector. 
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The above analysis depends only on the symmetries of the physical situa­

tion, and not on the particular action chosen. Therefore all possible terms can be 

obtained from the method of non-linear realisations with G AO(d 1,1) and. 

H = Sn(p, 1) x SO(d p 1). Tht" rorreRpnnOf'nce can hf' mnor vin thf' io('ntifi­

cations 

121..:1. --j. EA 

Wi --j. 'DXi (3·9) 

iKADi --j. 'DAnD , 

where the Xi and the n A 
i are the 3-fields corresponding to the .perpendicular 

translations and the broken rotations respectively. These identifications stem from 

comparing the role of i'" (121) andi'" (w) for' a fiat affine connection' and the decom- "' 

positions (2·8) and (2·9) of the same connection in terms of the Goldstone fields. 

Then 'DXi =0 is a constraint, while setting the trace of 'DnA i to zero is 

to the eouations of motion for the area functional taken as an action. 

4: Quasi-invariant Lagrangians; cohomology and central extensions 

The de Rham cohomology group of a manifold is defined as the classes of 

equivalence [a] of closed differential forms modulo exact forms, [a] {.B: d{J.. = 

0, a {3 = d'Y}' A closed form a is called a cocycle, and it is called non-trivial if 

it is not exact, a -# d{3. If the manifold is a Lie group G, the Chevalley-Eilenberg 

cohomology is ;)l111U<LUJ defined, but with the restriction to left invariant forms. 

The CE cohomology classes are the closed left-invariant forms modulo exact left­

invariant forms. 

In many cases of physical interest, the spacetime manifold Al is a homogeneous 

space, G/H, for some group G and a closed subgroup H. We shall assume that this 

is the case, and denote by 71": G --j. G / H Al the projection. Using the notation 

and constructions of the previous sections, let us further assume that Al has tri vial 
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de Rham cohomology, as is the case if M = Rn
, to avoid clouding the issue. If 

the pull back of a closed n + I-form w on M determines a non-trivial CE cocycle 

7r"'W, then there must exist a form {3 such that w = df3, but necessarily 7r* f3 is not 

left invariant. Then {3 can be 11sed as a quasi-invariant Lagrangian on lIf, since its 

variation under the projection of the group left action will be a total derivative. 

The classes of equivalent one-dimensional central extensions of a group are in 

one to one correspondence with the non-trivial elements of the second Chevalley­

Eilenberg cohomology group lO[deA]. Therefore, for one-dimensional field theories, 

the existence of a Wess-Zumino term, which corresponds to a closed 2-form as 

above, is equivalent to the existence of a central extension of the symmetry group. 

In that case, if the extension is maximal and the extended group has a trivial second 

c;homology group, i.e., it cannot be further extended, it is possible to enlarge the 

system with a new variable such that its 'conjugate momentum', the generator of 

translations along this new variable, corresponds to the central charge [MMSS]. 

This variable can be identified with the Wess-Zumino action seen as a function of 

its- endpoint. 

Let us represent our original generalised coordinates or one-dimensional fields 

collectively by q(t), and the original Lagrangian I-form by £(q, q). We suppose that 

the corresponding action is invariant under some symmetry group with generators 

Xi 11, but the Lagrangian changes by a total derivative, 

Oi£(q, q) = LXi£(q, q) dll i = Ai dt ( 4·1) 

LXi represents the Lie derivative in the direction of Xi' We could now try adding 

a new term of the form -x to the Lagrangian, and defining its variations such that 

OiX = lli (4·2) 

10 The central extension is one-dimensional because the Chevalley-Eilenberg cohomology 
groups are equivalent to the R-valued cohomology groups of the algebra; extensions by an abelian 
algebra a are classified by the a-valued cohomology groups. 

11 We shall represent the vector fields that realise the group on the tangent configuration 
space with the same letter as the corresponding generators of the abstract Lie algebra. 
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The new extended Lagrangian £(q, ti, X) = £(q, q) - xdt would be then fully in­

variant. The set of equations (4.2) are actually a set of differential equations, and 

their integrability conditions are equivalent to saying that the Chevalley-Eilenberg 

cocyc1e determined hy dll; is t.rivia1. Tf t.his cocycle is not. trivial, it tirtermines a 

central extension; for this centrally extended group the cocycle is trivial and the 

Lagrangian Z is fully invariant. The central charge is represented up to a constant 

as the vector (a/aX) on the tangent of the extended configuration space (deAl, and 

it is in that sense that the central charge and the variable X are conjugate; it is 

clear from the definition that actually the momentum canonically conjugate to X is 

-1, so X is not a dynamical variable. 

It is possible to define 

x(t) = It £(q, q) ( 4·3) 

since of course X is determined up to any invariant quantity, giving Z = O. This 

result is useful when applying the method of non-linear realisations to a one­

dimensional theory, such as particles or superparticles. If the method is applied 

to the extended group, and the central charge is considered as a broken generator 

(because it does not annihilate the vacuum), X can be identified as the Goldstone 

field corresponding to that generator (in the same way as the Goldstone fields that 

correspond to translations are identified with coordinates in the direction of the 

translation), and equation (4·3) willbe found as a solution of the constraint Vx =0 

(which actually says that X determines a cocycle). For the relativistic case, it is not 

strictly necessary to include the central extension to find the lowest order action, 

since this action corresponds to the length of the worldline and can be obtained 

from the determinant of the I-bein in the bosonic case or through its equations 

of motion in the supersymmetric case. For the Galilean particle, though, this is 

apparently the only possibility. 
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.5: .Supersymmetri 

By formally extending the definitions in the previous sections to systems with 

Grassmann cooroinates, we can (onst.rurt. a theory of snpersymmdric non-linear 

realisations, and apply it to superextended objects. 

If some of the supersymmetries are broken, there will be Goldstone fermions 

along with the Goldstone bosons, one such fermion for each broken supersymmetry. 

If any supersymmetries remain unbroken, then the Goldstone fields must transform 

linearly under these, and are therefore superfields. Superfields can be thought of 

as fields in superspace, which means we can consider W as a supermanifold with 

the unbroken supersymmetries as the generators of the super translations. In this 

way, the broken supersymmetries must be included in {13}, whilst the unbroken 

supersymmetries are in {Pl. 

For rigid supersymmetry, there is a simple argument to show that in the case of 

a topologically trivial theory with d ~ 3 either all the supersymmetries are broken 

or none of them is. Therefore we can have a partial breaking of supersymmetry 

either for low dimensions, or when space is non-trivial [HPJ. 

Super p-branes. There are in principle three ways of supersymmetrising ex­

tended objects: having rigid supersymmetry in the target space !v!, 'super p-branes'; 

local supersymmetry on the object W itself, 'spinning p-branes'; or both at the same 

time, 'super spinning p-branes'. The last two do not appear to be consistent in gen­

eral for p~2. Moreover, for p=1, it is known that the gauge-Exed superstring and 

the spinning string are indeed equivalent; it has been shown explicitly in [GY] that 

the gauge-fixed superparticle also possesses a rigid supersymmetry on the worldline. 

This is true in general: gauge-fixed super p-branes have a rigid supersymmetry 'on 

the brane'. This is necessary if they are going to be any use as models of topologi­

cal defects in supersymmetric theories. It is known that solitons of supersymmetric 

theories that saturate the Bogomol'nyi bound are supersymmetric [RuJ. For this 
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relation to be possible the original action for the supersymmetric extended object 

must have It-invariance: a local world volume invariance with a set 'of parameters 

which are world volume scalars but spacetime spinors. 

In t.h~ fnll reparmndrisaf.ion and It-invariant. form, a sllperexfended object 

describes an ordinary manifold W imbedded in a rigid superspace AI. Seen as a 

field theory on W, the coordinates of the imbedding transform as scalars under re­

parametrisationsj since M is flat, for N =1 they divide into two sets that transform 

respectively as a vector Xi and as a spin or .,p, or a vector and a set of spinors .,pB for 

N >1, under the N -extended superPoincare group corresponding to the isometries 

of A/. The It-symmetry is like a spacetime supersymmetry with a wrong sign, but 

its parameter is local on W, and it involves a projection which leaves effectively 

only half as many independent parameters. Gauge fixing the reparametrisations 

eliminates p+1 components of the set of coordinates Xi that tra.nsform as a vector; 

fixing the K-invariance eliminates half of the components of the spinors .,pB. As in 

the bosonic case, there is a residual rigid invariance, which corr~sponds again, to 

the rotations among the transverse coordinates but this time to the superPoincare 

group on W. What remains from the spacetime spinors, which before gauge fixing 

transformed as scalars under transformations on W, now transforms as a set of 

world volume spinora 12. A similar phenomenon occurs for gauge theories with bro­

ken symmetries, and non-linear field theories like the sine-Gordon equation and ns 

equivalence with the massive Thirring model, where solutions of a purely bosonic 

theory obey Fermi statistics. 

After gauge fixing, therefore, the field theory looks as if it were defined on 

a supermanifold of which W is the bosonic partj all the remaining fields can be 

arranged into superfields on W, although this might not be a trivial algebraic task 

if the dimension of tile spinors is large. Moreover, we see that by this mechanism 

the supersymmetries have been partially broken to half of their original number. 

12 This construction will make sense only when half of the dimension of the spinors in Mis 
an acceptable value for some N' number of spinors on W. This is a necessary but not sufficient 
condition; a more stringent requirement is the existence of a non-zero Wess-Zumino term to build 
an action with", invariance (which also needs the Wess-Zumino term to have a fixed coefficient). 
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For each particular case, it can be seen explicitly how half of the supersymmetries 

are linearly represented on the gauge-fixed fields, and the other half is non-linearly 

realised. This partial breaking also shows up in the algebra as the presence of a 

central charge, which imp1ies that only half of the supersymmetries (the linearly 

realised ones) annihilate the vacuum. 

Cohomology. The theory of the previous section carries over to the supersym­

metric theory with little change, except that care must be taken when dealing with 

supermanifolds, and the symmetry properties of exterior products of Grassmann­

valued forms. 
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Appendix A 

Tn t.his appendix we collect. some diagrams t.hat. may hdp t()f'1l1()w t.he rea­

soning of section 2. 

We shall use a somewhat non-standard notation but we hopeit is clear. We 

shall denote a fibre bundle of total space B, base M, fibre F and projection 7rD by 

F ---+ B 

lTD 
M 

The projection can be omitted if there is no ambiguity, and if necessary the fibre 

will be written on the right. Arrows going upwards from M to B will represent 

sections. 

In this notation, the different fibre bundles that appear in the discussion on 

the 'matter' fields, i.e., the fields that appear in the theory apart from the Goldstone 

fields, can be summarised as follows: 

Principal bundles H ---+ Q G ---+ p H ---+ P 

1 1 1 
W W E 

1 1 1 

Associated bundles 1l ---+ E' G/H ---+ E 1l ---+ E 

0 1 ,( 021r 1r ( 1r 
W W E 
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The relation between the two approaches to the treatment of these fields is 

given by the composition 

1l ---+ E 

G/H ---+ E 

1 
W 

with el,d~) = e2(~,e(~)) in some local trivialisation of E, since ~ also induces an 

imbedding of E' into E. 

The relation between sections in E and subbundles Q(W, H) of P(W, H) cor­

responds to the commutativity of the following diagram: 

IQ <----+ P 

Toll ;/ 
W E. 

We also have the following diagram, 

{H ---+ Q ---+ G Hof--­

1 1 

W -L G/H 

where eis the lifting of e to the principal bundles Q and G. The connection on 

Q is the pullback by { of the H-component of the Maurer-Cartan I-form on G, 

w' = {*(81i ). 
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