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-.--~-- Abstract The braided approach to q-deformation (due to the author and collab
orators) gives natural algebras R2l UlRu2 = U2R2l u1R and R2l XlX2 = x2'~lR for 
q-Minkowski and q-Euclidean spaces respectively. These algebras are covarIant un
der a corresponding background 'rotation' quantum group. Semidirect product by 
this according to the bosonisation procedure (also due to the author) gives the cor
responding Poincare quantum groups. We review the construction and collect the 
resulting R-matrix formulae for both Euclidean and Minkowski cases in both en
veloping algebra and function algebra form. and the duality between them. Axioms 
for the Poincare quantum group *-structure and the dilaton problem are discussed. 

1 Introduction 

The programme of q-deforming the basic geometrical notions of spacetime has been extensively 

studied in recent years and by several groups. Of the various approaches, two have been pushed 

quite far. One, which is the 'minimal deformation', involves a non-commutative time co-ordinate 

but the space co-ordinates remain unchanged. The corresponding Poincare quantum group is 

the so-called '1i:-Poincare' studied by Lukierski et a41] and others! obtained by a contraction pro

cedure. Its semidirect product structure in terms of (usual) Lorentz rotations and a 1i:-deformed 

4-momentum is due to the author and Ruegg[2] and came later, along with the identification 

of the correct (non-commutative) Minkowski spare such that the 1i:-Poincare algebra acts co

variantly on it. The semidirect structure is an example of a bicrossproduct HopI algebm as 

introduced in[3]. We don't want to say too much about this here except that this approach 

uses the standard theory of Hopf algebras (or qua.ntum groups) and not the more novel braided 

group theory. 

The second deformation, which is the one that concerns us in this paper, is a programme 

introduced first by Carow-Watamura et al. [4][5] fr~m consideration of the tensor product of 
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two quantum planes (the 2-spinorial or twistor point of view). At about the same time in 1990, 

the present author introduced independently a theory of braided groups[6J[7], including braided 

matrices B(R)[8] with relations 

(1) 

which for the 2 X 2 case also provides a natural definition of q-deformed Minkowski space. There 

is a hermitian *-structure whenever R is of real type[9]. This is the approach which we consider 

in the present paper. For the standard SLq(2) or Jones-polynomial solution R of the Quantum 

Yang-Baxter Equations (QYBE) we have the algebra BMq(2)[8][5] 

u = (: ~), ba =q2ab, ca =q-2ac, da =ad 
(2) 

be =eb + (1 - q-2)a(d - a), db =bd + (1 - q-2)ab, cd =de + (1 - q-2)ea 

which means that our braided matrix approach includes and extends the approach of Carow

Watamura et al. We define its *-algebra of co-ordinate functions as R~,3 = BMq(2). It has 

time direction central and the space directions mutually non-commuting. Note that the braided 

approach replaces such explicit relations by R-matrix formulae, which are easier to work with 

and more general. 

The chacteristic feature of this braided approach, as well, as being always of a general R

matrix form, is that the underlying objects are not Hopf algebras or quantum groups in any 

usual sense. Instead, we require the new concept, introduced in [6][8][7], of a bmided group. 

This is like a quantum group but the coproduct map ~ : B -+- B®B, say, is a homomorphism 

with respect to the bmided tensor product algebra in which the two tensor factors in B®B do 

not commute. Instead they enjoy mutual bmid statistics, given in our examples by R-matrices 

(and any q or other parameters in them). Long introductions to the general theory of braided 

groups are in [10] and [11]. See also chapter 10 of my textbook on quantum groups[I2]. 

We begin in the preliminary Section 2 by recalling from [8][13] the multiplicative and additive 

braided group structures in the braided matrices B(R). This indeed justifies this name for the 

algebra (1), for it corresponds when q = 1 to the multiplication and addition of usual matrices. 

For R:,3 in the twistor viewpoint, the first is needed to pick out a natural q-determinant or 

square-radius function (which determines the qua.ntum metric) and the second (which is due to 

U. Meyer[I3]) gives the linear structure of spacetime (such as the addition of 4-momentum). 
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The general framework of bmided eoaddition for linear braided group structures was intro

duced in [14], where we showed, quite generally, how to build from this a Poincare quantum group 

by a bosonisation construction[15][14]. We adjoin the q-Lorentz generators by a kind of semidi

rect product which is different, however, from the bicrossproducts needed for the K-deformation 

mentioned above. The abstract picture is summarized in the Appendix A. The calculation for 

the specific case of braided matrices B(R) was done in [16] and gave the q-Poincare (function 

algebra) quantum group in R-matrix form, for the first time. We recall this is Section 3. We 

also explained at the end of [16] that once in R-matrix form, it is an easy matter to dualise and 

obtain the Poincare quantum group in enveloping algebra form. The modest contribution in the 

present paper is to give the resulting formulae explicitly for those who do not want to carry out 

the exercise. The result originates, however, in [16] and the formulae are very similar. This is 

covered in Section 4. The standard R-matrix gives the Minkowski space q-Poincare quantum 

enveloping algebra which can be compared with explicit generators and relations in [17]. 

Next we turn our attention to q-Euclidean space. There is a parallel R-matrix theory for 

this, introduced (in the R-matrix form) in [18] based on the algebra A(R) 

(3) 


in place of (1). The standard SUq(2) or Jones polynomial R-matrix gives an algebra Mq(2) 

x = ba =qab, ca =q-1ac, da =ad(a b).
ed' (4) 

be = eb + (q - q-l )ad db =q-1bd de =qed 

which is (by an accident) isomorphic to the usual FRT bialgebra A(R) = Mq(2) of quantum 

matrices. The latter was proposed as q-Euclidean space in [5] so, once again, the braided 

approach includes and extends that pioneering work in a general R-matrix form (3) introduced 

in this context in [18]. We define the non-commuting co-ordinate functions as R: = Mq(2). 

There is a natural unitary-like *-structure with corresponding Euclidean-type norm defined by 

the natural q-determinant. Also in [18] is a theory of twisting or 'quantum Wick rotation' which 

says that the A(R) algebra (3) is 'gauge equivalent' (in a sense generalising ideas of Drinfeld[19]) 

to our first B(R) algebra (1). If we did not have a different * then we would have something 

strictly equivalent (via twisting) to the already-established q-~'finkowski space above, which 

would not be very interesting. Instead, we put the algebra to good use as a complement to the 

q-Minkowski above[18]. 
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The treatment of (3) as an additive braided group (or braided covector space) is in Section 5. 

We also give its multiplicative structure, which is like the braided group B(R) but the non

commutativity required does not obey the Artin braid relations (or QYBE), so it is something 

a bit beyond even the concept of a braided group. In Section 6 we recall the corresponding q_ 

Poincare quantum group in R-matrix form as obtained by the general bosonisation construction, 

applied now to (3). This is also from[18]. Once again, we emphasized there the function algebra 

theory and left the dualisation for the enveloping algebra q-Poincare quantum group as an easy 

exercise. For completeness, we do this now in Section 7. The standard R-matrix gives the 

Euclidean group of motions and can be compared with the n =4 case of computations based 

on SOq( n )-covariant quantum planes in [20] and elsewhere. We also give explicitly the duality 

pairing and, accordingly, the action of the Poincare quantum group on spacetime co-ordinates 

B(R) and A(R). Note that we will use the term 'Poincare' quantum group to cover all dimensions 

and signatures since our construction is quite uniform. 

Let us stress that this paper for the most part collects results and formulae already obtained 

in some form in [14][16][18] modulo conventions and elementary dualisation. Nevertheless, it 

is hoped that a self-contained account now will be useful as an overview and introduction. 

It complements an extensive 50-page introduction to our 'braided geometry' approach to q

Minkowski space in [21]. The extensive further literature on this topic, including works by the 

author[22][23] and U. Meyer[24] , as well as by the Munich and Berkeley groups are covered 

there. It could be said that the underlying geometry is fairly well understood by now, though 

not the full story regarding the *-structure and the construction of actual q-deformed quantum 

field theories on these spacetimes, which remain a goal and motivation for the subject. Such 

a q-deformation would surely have an application either as a tool for regularising infinities (as 

poles at q = 1)[25] or as a model of quantum or other effects on the structure of geometry at 

the Planck scale[26][27]. 

Finally, Section 8 contains some newer material. We point out that the bosonisation point 

of view does suggest a natural solution to the problem of what should be the correct axioms for 

the *-structure on our Poincare quantum groups. This makes contact with some preliminary 

ideas in the preprint of Fiore[28]. \Ve also observe that one can avoid the dilatonic extension 

needed in the constructions above by only partially bosonising. In this case the Poincare algebra 
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is a braided group not a quantum group, but of a fairly mild kind where the braid-statistics are 

given by a phase factor as in [29]. 

To be clear about normalisation, what we call the standard SUq(2) or Jones-polynomial 

R-matrix is 
q 0 0 

R = 0 1 q - q-l 

!) (5)
o 0 1( 
000 

where the rows and columns label the two copies of Mn in Mn 0 Mn, wherein R lives. Our 

formulae are quite general and not at all limited to this particular R-matrix. 

Preliminaries I: q-Minkowski spaces in R-matrix form 

The braided-matrix approach to q-Minkowski space was presented at the Zdikov Winter School 

in January 1993, at the Guadeloupe Spring School[30] in May 1993 and in Clausthal[31] in July 

1993. So this preliminary section and the beginning of the next will recall some of that basic 

material from [9][13]. 

The idea is that in classical geometry one can take the space of hermitian matrices with 

norm given by the determinant, as Minkowski space. So let us build a convincing q-deformation 

of the concept of a hermitian matrix. To be a matrix, we need to be able to linearly add, and 

matrix multiply (with an identity for the multiplication). In our algebraic language we indeed 

have this on the braided matrices B(R) as a braided matrix comultiplication and counit 

6u=u0u, fu=id (6) 

where 6 is an algebra homomorphism B( R) --+ B(R)~B(R). The multiplicative braid statistics 

needed for it to extend as an algebra homomorphism are[8] 

U" = uu'; (7) 

whereby U" obeys the relations (1) of B(R) if u, u' do. 

i 'u jWe also have a hermitian *-structure u j* = i whenever R is of real-type[9], obeying the 

axioms (introduced there) of a *-braided group of real type, 

(8) 
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where T is transposition. When there is an 'inverse' or braided antipode S (which is not the 

case for braided matrix multiplication in B(R) of course) we demand also * 0 S = S 0 *. The 

astute reader may wonder, by the way, about these axioms (8). They are quite different from the 

usual axioms of a Hopf *-algebra. Indeed, usual hermitian matrices do not form a group under 

composition, which is why in algebraic terms ~ is not a *-algebra homomorphism. But jf A, B 

are hermitian then (AB)* = BA, which is why ~ commutes with * when we put in the extra 

transposition T. This means that the algebraic notion of *:-braided groups or *-quantum groups 

with the transposed axiom (8) is useful even for R = 1, where it allows us to view the space 

of hermitian matrices (e.g. the mass-shell in Minkowski space) as a 'group' in this generalised 

sense. 

Finally, we have, at least when R is q-Hecke, a braided coaddition[13] 

~u = u ® 1 + 1 ® u, EU = 0, Su = -u (9) 

again extended as an algebra homomorphism ~ : B(R) -+ B(R)0B(R). This time we use 

Meyer's additive braid statistics[13] 

u" = u + u'; (10) 

When R is of real type, we have again a *-braided group wit~ our * as above and obeying the 

same axioms (8). In this case the transposition T in the axioms would not be visible when R =1 

because in this case the coaddition ~ would be cocommutative. This is correct because there is 

no problem adding hermitian matrices. 

These basic properties amply justify the term 'braided matrices' for the algebra (1). We 

also frequently write all the four R-matrices in these equations on one side as 'big' multiindex 

matrices R, R' etc. where we consider Uij = U/ as a vector with multiindex I = (io, il)' 

This is how in [8] we wrote equations such as (1), which occur in other contexts too[32], in 

'Zamalodchikov' or braided covector form 

U" = u +u'; (11) 

for suitable R', R. They were introduced in [8],[13] under the names 'II', RL respectively. Like

wise for (7) introduced in [8] as 'II. We assume that the reader can freely transfer back and forth 

between the multiindex R, R' braided covector form and the previous matrix form (1) etc., 
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without imagining that they are anything but different notations. The reason we use both forms 

is that the matrix form emphasizes the braided comultiplication structure while the braided 

covector form emphasises the linear structure as like a quantum plane. There is a detailed 

theory of braided covectors VV(R', R) introduced in [14][33] which we can now use for B(R) as 

a linear braided space. This includes covariance and Poincare quantum groups[14], a theory of 

braided-differentiation, integration[34], epsilon tensor and electromagnetism[22]' and so on - all 

the constructions we are familiar with for R n. 

For our standard example where R is (5), we have the multiplicative braid statistics[8] 

a'a = aa' + (1 - q2)be', a'b = ba', a'e =ea' + (1 - q2)(d - a)e' 
(12) 

a'd = da' + (1 - q-2)be', b'a = ab' + (1 - q2)b(d' - a'l, b'b =q2bb' , etc. 

for (::: !:) = (: !) (:: ~) to obey the relations (2), and additive braid statistics[13] 

a'a =q2aa', a'b =ba', a'e = q2ea' + (q2 - 1)ae' , e'a = ae' 


a'd =da' + (q2 - 1)be' +q-2(q2 - 1)2aa', b'a, =q2ab' + (q2 - 1)ba' , b'b =q2bb' , etc. 


(13) 

for (::: !:) = (: !) + (:: ~) to obey (2). 

The braided comultiplication is needed (as for usual matrices) to fix the braided determinant 

as group-like or 'multiplicative'. It comes out as [8] 

(14) 


and is central, as well as bosonic with respect to the multiplicative braid statistics. We use is 

as a square-distance function on B Mq(2). 

Finally, we have the hermitian *, 

(:: !:) = (: ~) (15) 

so that these matrices are indeed naturally hermitian, and hence obviously provide a natural def

inition R~,3 =BMq(2), as explained in [9]. The *-structure is needed to determine what should 

be the 'real' or self-adjoint space-time co-ordinates under *. The required linear combinations 

are 
b+e b-e d-a 

(16)x =-2-' y=~, z=-2
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and the braided determinant becomes[9] 

(17) 

which justifies indeed the interpretation as Minkowski length from the braided approach. From 

it we can extract a quantum metric tensor by braided differentiation[22] which in our matrix 

basis is 
q_2 _ 1 o 1)
o 0 ._q-2IJ 0 o 

fJ = (18)o -1 o 0'( 
1 0 o 0 

Minkowski q-Poincare quantum group in function algebra form 

One of the first consequences of writing the braided matrices B(R) algebra (1) in the braided 

covector form (11) is that we know at once from [14] what its associated Poincare quantum 

group looks like. For in [14] was introduced a completely general R-matrix construction for such 

objects based on a theory of 'bosonisation' in [15]. The formulae are as follows. For the 'rotation 

group' we take the usual FRT bialgebra[32] A(R) with generator AIJ say, and relations 

(19) 

to which we add relations needed to give us a Hopf algebra with antipode. They include such' 

things as a metric relation 

(20) 

where we let fJIJ be the transposed inverse of 1]IJ. This is the vectorial approach to the Lorentz 

quantum group in [13]. Next, we extend this by adjoining a central group-like element c; (the 

dilaton) in such a way that our braided covectors are fully covariant under the extended trans

formation 

(21) 

with additive braid statistics correctly induced by this covariance. We need c; to achieve this 

because R as given is not in the 'quantum group normalisation' and we have to compensate 

for this[14]. We now use the braided covector generators u for the momentum sector of our 

q-Poincare quantum group, and denote them as such by p to avoid confusion with spacetime 
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co-ordinates. We now make a coalgebra semidirect coproduct by the above coaction. At the 

same time, the dual quasitriangular structure[13] (universal R-matrix functional) of our extended 

Lorentz quantum group converts this coaction to an action, and we make an algebra semi direct 

product by this. The theory of bosonisation ensures that the result is necessarily a Hopf algebra. 

Some of this general theory is recalled in Appendix A. All we need to know for now is the resulting 

R-matrix formula[14] 

P1P2 = P2P1 R ', P1A2 = ,xA2P1R, P(:;:: ,x-1(p, [A,(] = 0 

A(=(0(, (=1, S(=(-1 (22) 

Ap = p0A( +10p, (P = 0, Sp = _p(-lA-1 

where ,x is the quantum group normalisation constant of R defined such that ,xR is in the 

quantum group normalisation[35]. Some special cases of this construction for ISOq( n), etc., 

were first studied in [36], though without the above general construction. Finally, no proposal 

for a q-Poincare quantum group is complete without a covariant action of it on the q-spacetime 

co-ordinates. The general construction[14] introduced just this, in the coaction form 

u ~ uA( +p (23) 

extended as an algebra homomorphism. The u commute with the Poincare generators. This 

covariance was one of the main achievements of the braided approach in [14] and is a general 

feature of the bosonisation theory recalled in Appendix A. 

This is the vectorial form of the q-Poincare quantum group when we apply it to (1) in the 

form (11). There is also a spinorial form obtained when we unwind the above construction back 

in terms of R rather than R', R. Firstly, we replace the quantum group A(R) by A(R) and 

make this into a Hopf algebra A. Two copies of it are needed to play the role of A(R) above, 

with generators s, t say, forming a double cross product Hopf algebra A£><lA[37] 

RS1S2 = S2S1R, Rt1t2 = t2t1R, Rt1s2 = S2t1R 
(24) 

As = S 0 s, ~t = t 0 t, (S = id, d = id 

among the further relations needed to give s, t antipodes. The vectorial form is realised in terms 

of the spinorial form by 

(25) 
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and the covariance (21) takes the form cf[4] 

(26) 

We again adjoin a central grouplike dilaton ( to take care of the fact that R is not in the quantum 

group normalisation. The general construction of the quantum group AMA was developed in [14, 

Sec. 4], as well as the isomorphism with Drinfeld's quantum double[38] and the identification 

(relevant later) as a twisting of A ® A. It connects in the SUq(2)MSUq(2) case with the proposal 

for q-Lorentz group in [4] and with the proposal as the quantum double in [39]. There is a 

*-structure 

(27) 

as in [4], which now works for general R of real-type[14]. The diagonal case t = s (without 

the dilaton) is covariance under the spacetime spinor rotation group SUq(2) and preserves the 

multiplicative structure, the distance function det( u) and the time co-ordinate t[8]. 

The formulae (22) then become the spinorial q-Poincare quantum group[16] 

R21 PI Rp2 =P2 R2IPI R, PI S2 =S2 R- IPIR, PI t 2 >'t2R2IP1R 

p( = >. -1 (P, [s, (] = [t, (] =0, ~( = ( 0 ( , l ( = 1, S( = (-1 (28) 

dp = p 0 S-I( )t( + 10 p, lp =0, Sp = _pS(s-l( )t() 

where S-I( )t has a space for the matrix indices of P to be inserted. The constant >. is the 

square of the quantum group normalisation constant of R. Its value for our standard example is 

>. = q-l. One can again derive this construction by the more abstract bosonisation construction 

(84) in Appendix A, knowing only the full covariance (26). The two methods give the same 

answer. Finally, the coaction of the q-Poincare quantum group on the spacetime co-ordinates is 

the algebra homomorphism 

(29) 

where the u commute with the Poincare generators. 

Recall that we also have a multiplicative braided group structure on B(R). The 'mass 

shell' in q-Minkowski space is the *-braided group BSUq(2) in [8] with (braided) antipode. If 

we bosonise by the above rotational SUq(2) covariance, we obtain this time[9] the quantum 

double of SUq(2) which, as noted above, is isomorphic to the q-Lorentz group SUq(2)MSUq(2) 

in spinorial form. Such an isomorphism has no classical counterpart, being singular at q =1. 
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4 Minkowski q-Poincare quantum group in enveloping algebra 
form 

Once we have our Poincare quantum groups in R-matrix form, it is a pretty easy exercise to 

dualise them and find the corresponding Poincare quantum group enveloping algebras. We just 

dualise the individual pieces of the bosonisation or semidirect construction. We suppose that 

the dual quantum group to the Lorentz quantum group function algebra can be put in FRT 

form with generators L± say and relations[32] 

among others needed in the dual. We also define the dual of the dilaton generator " to be 

the generator { of the enveloping algebra Uq(I), which we define with a non-standard universal 

R-matrix[40]. We extend our Lorentz enveloping algebra by this. Finally, for the dual of our 

previous momentum co-ordinates PI as a braided covector space VV(R', R) we need look no 

further than the corresponding braided vector algebra VCR', R) which is arranged carefully in 

[14][33] to be the braided group dual to the braided covectors. Its generators pI, say, have 

upper indices. The pairing between our objects in the last section and our new enveloping 

algebra generators is then 

with the trivial pairing provided by the counits between the different quantum or braided groups. 

Using this pairing we can then deduce the Poincare quantum group in enveloping algebra 

form in the standard way by dualising. The resulting structure is[14] 

P 1P 2 = R'P2P}, Ltp2 = A-1R;lp2Lt, L1P 2 = ARP2L1, Aep = A-1pAe 

[{,L±] =0, ~{={®1+1®{, f{=O, S{=-{ (32) 

~P=p®l+AeL-®p, fP=O, SP=-A-e(SL-)P. 

We can also obtain the above formulae by starting with covariance under the Hopf algebra 

obtained from (30) and dilatonic extension, namely 

(33) 

and applying it to the enveloping-type bosonisation theorem (85) in Appendix A. Finally, we 

can dualise our coaction (23) on the spacetime co-ordinates by evaluating the relevant part of 
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the output of the coaction against our q-Poincare enveloping algebra generators. It obviously 

becomes now an action of the q-Poincare enveloping algebra 

L+ 'R L- ,-1R-1
1 t>U 2 =U2 A 21, 1 t> U2 =U2 A , (34) 

necessarily making our position co-ordinates U a module algebra. This means that it extends to 

products using the coproduct in (22). For example, we see easily that 

I [ 1] IJ2· ..Jm p t>(Ult ••• Ulm) =UJ2 ••• UJm m; R2"1 (35)
ItI2· .. l m 

where [m; R2"l] is a braided integer matrix as introduced in [33] in the theory of braided differen

tiation on linear braided spaces. It means that the realisation of the pI generators acting on our 

braided spacetime is exactly by braided differentiation. We concentrated in [33] on braided dif

ferentials {}I with matrix [mj R]; the other case 81 say, is equivalent by a symmetry principle[33, 

Sec. V]. If V¥(R', R) is a braided covector algebra then so is V¥(R', R2"l). It lives in the 'op

posite' category with inverse-transposed braiding. So pI =81 is our natural realisation of the 

momentum sector. 

One of the main results in [33] is that {}I (and hence also 81) always obey the relations of 

the braided vector algebra V(R',R), which confirms their role now as representing the pl. The 

{}I extend to products with the inverse braiding \II-1 and the 81 with the usual braiding \II, i.e. 

by a braided Leibniz rule[33]. If we consider UI also as an operator by left multiplication then 

the corresponding braided-Leibniz rules are expressed in general as the commutation relations 

(36) 

This generalised and included considerations for specific algebras[41][42][17] to the completely 

general setting of differentiation on any braided covector space. 

This is the vectorial form of the q-Poincare enveloping algebra according to the general 

construction for any braided covector space [14]. Next we note that when there is quantum 

metric 1], it provides[13] an isomorphism between the braided vectors and covectors as braided 

groups. This is in fact the abstract definition of a quantum metric in braided geometry_ Hence 

in this case we don't have to work with braided covectors (though that is more canonical) but 

can instead use the quantum metric to lower the indices and work everywhere with braided 

covectors. To do this one needs the standard quantum metric identities 

R I A ,-2R-1I A
TJKA J L = A J KTJAL, etc. (37) 
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deduced automatically from (20) by evaluating it against the universal R-matrix functional. 

If we make this change of basis to new covector generators PI = TIlA pA, then the vectorial 

q-Poincare enveloping algebra with braided covectors P is clearly 

[e, L±] = 0, ~e = e® 1 + 1 ® e, fe = 0, Se = -e (38) 

~PI = PI ® 1 + )"'SL-AI ® PA, €P = 0, SPI = _)"-'(S2L-AI)PA. 

The structure is a bosonisation according to (85) in Appendix A by L± acting as in (34) since 

the PI transform like the UI under these, and )..'r>PI = )..-1 Pl. The pairing (31) with the 

function algebra Poincare generators from the last section and the action (34) on the spacetime 

co-ordinates of course get modified to 

(39) 


One can do the same lowering of indices for the braided differentiation operators to ElI = 

TlIAOA and ElI = TlIA8A, in which case these obey the braided covector relations and braided

Leibniz rule 

(40) 

by the same elementary rearrangements using the quantum metric identities (37). So our lower

index momentum generators are represented on spacetime by these lowered index braided dif

ferentials PI =81. 

This is the vectorial Poincare group enveloping algebra with lower indices. As in the start of 

Section 3, all the above is quite general. Now we apply it to the specific form of R' , R in (11) in 

Section 2, and unwind in terms of Rand u as a braided matrix B(R). This gives the q-Poincare 

enveloping algebra in spinorial form. So we let l± be dual to the generator sand m± dual to 

the generator t for each copy of a quantum enveloping algebra H dual to A, with pairing given 

by R as in [32]. In the standard case they are each copies of Uq (SU2) in FRT form. The required 

Lorentz enveloping algebra is a double cross coproduct HLJ H and does not contain the copies 

13 



of H as sub-Hopf algebras. Instead they have a twisted coproduct[43] 

[lr,m~] =[lr,mf] = 0 (41) 

where "R is the universal R-matrix or quasitriangular structure[38] of H viewed as "R21 E HIJ H. 

There is of course an appropriate antipode and *, correspondingly twisted. We can realise the 

vectorial form above in terms of these spinorial generators by cf. [13] 

where So is the usual 'matrix inverse' antipode of H. The covariance of the spacetime .generators 

is expressed now as B(R) a module algebra under[18] 

(43) 

which is also the action we use on the lowered momentum generators PI = pio it regarded 

now as a braided matrix B(R). We add the dilaton { as before. Semidirect product by this 

action (and the induced semidirect coproduct) according to the bosonisation construction (85) 

in Appendix A, or just proceeding from (38) for the specific form of R from (11), yields the 

Poincare quantum group in spinorial form as 

[{,l±] = [{,m±] = 0, ~{= {® 1 + 1 ®{, c{ = 0, S{ = -{ (44) 

~P =P ® 1 + ,\el- m+( )(Som-)(Sol-) ® P, cP =0 

SP = _,\-eso (m+l-( )(Sol-)(Som-n P 

where ( ) is a space for the matrix entries of P to be inserted, and So is the usual matrix antipode 

in either copy of H. As far as I know, these are new formulae presented here for the first time, 

although following directly from [14] as above, or by dualisatioll of [16]. Finally, the action on 

the spacetime generators becomes, in this spinorial form 

(45) 
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The action of the lowered PI is by the lowered ElI automatically obeying relations and braided

Leibniz rule 

(46) 

where 1'/ = 1'/(1) ® 1'/(2) is 1'/IJ = "./'01.1;0it as an element of Mn ® Mn. Some authors[44] have recently 

considered Leibniz rules for R!,3 of similar form on the left hand side. We stress, however, that 

this is not a new equation but just the usual (36) or (40) for the specific R introduced in [13]. 

The rearrangement between the two notations is just as in (10) and (11), and quite routine 

since[45]. Moreover, our treatment here works for general R of q-Hecke type, with Athe square 

of its quantum group normalisation constant. 

Preliminaries II: q-Euclidean spaces in R-matrix form 

Now we make the same constructions as above for the A(R) algebra (3) which was introduced in 

this context in[18]. As an algebra it is exactly gauge equivalent to (1) by the comodule algebra 

twisting theory in [18]. We take, however, a non-hermitian *-structure which ends up in the 

standard case as more like Euclidean space than Minkowski. 

To describe the multiplicative structure, we need to generalise the concept of braided group 

B slightly. We still require the coproduct A : B -+ B!?lB to be an algebra homomorphism, but 

don't insist that ® is a braided tensor product. The most general concept (which is certainly 

general enough, but probably too general) is that B®B should now be some algebra which 

contains the two copies of B as subalgebras, and uniquely factorises into them in the sense 

that the map B ® B -+ BS&B given by including the subalgebras and multiplying, is a linear 

isomorphism. This is the algebra part of the theory of Hopf algebra factorisations in [3, Sec. 

3.2], and more recently in [46] and elsewhere. 

In this sense, A(R) does have a matrix comultiplication 

Ax =x ® x, lX =id (47) 

where A : A(R) -+ A(R)®A(R) is an algebra homomorphism. So this is like a braided group 

(and indeed is gauge equivalent to (6)) but the non-commutation relations describing ® do not 

obey the Artin braid relations of QYBE; rather some 'more general (but not completely general) 
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algebra factorisation. The multiplicative statistics are[18] 

x" =xx'; (48) 

whereby x" obeys the same relations (3) if x, x' do. 

We also have a natural *-structure on A(R) whenever its more familiar cousin A(R) has a 

*-structure with real-type universal R-matrix functional. By a theorem in [18] we can take the 

same operation on the x as we would on the t of A(R) in this case. It tends to be of the type 

which is unitary in the quotient Hopf algebra when R is of real-type, namely of the form 

i.* _ . a bj
X J - fafX bf (49) 

where fij is invariant under the quotient Hopf algebra and fij the transposed inverse. 

Finally, we have a normal braided coaddition, under which A(R) remains an additive braided 

group, at least when R is q-Hecke[18]. We have 

~x =x ® 1 + 1 ® x, fX =0, Sx =-x (50) 

extended as a braided group with additive brnid statistics[18] 

x" = x+ x'; (51) 

This coaddition is typically compatible with the * to give a *-braided group as in (8). 

Clearly, we can also move the R's to one side and write A(R) as a braided covector algebra 

xio il = XI with (now in covector form as in (11» the relations 

(52) 

for suitable R', R. These are given explicitly in [18]. Thus we can equally well write this 

algebra with its linear braided group structure in the form V¥(R', R) needed for our general 

constructions in [14][33]. 

For our standard example where R is (5), we have the multiplicative statistics[18] 

a'a =q-1aa' + (q-l - q)be', a'b =ba', a'e =q-1ea' + (q-l - q)de', a'd =da' 
(53) 

b'a = q-1ab' + (q-l - q)bd', b'b = bb', h'e = .q-1eb' + (q-l - q)dd', etc. 
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whereby the matrix product of the unprimed and primed matrices obeys the same relations (4). 

We also have the additive braid statistics 

a'a = q2 aa' , a'b = qba', a'c = qca' + (q2 - 1)ac' , a'd =da' + (q - q-l )bc' 

b'a =qab' + (q2 - l)ba', bib = q2bb' , b'c = cb' + (q - q-l)(da' +ad') + bc'(q - q-l?, etc. 

(54) 

whereby the sum of the unprimed and primed matrices obey the same relations (4). 

From the generalised comultiplication, or from the close connection of Mq(2) with usual 

quantum matrices, one has a natural quantum determinant 

det(x) =ad - qcb (55) 

which is central, as well as bosonic with respect to the multiplicative. \Ve use is as the square

distance function on Mq(2). 

Finally, it is easy to see that the standard 2 x 2 quantum matrices Alq(2) for real q are a 

*-bialgebra with 

(a* b*) = (d -q-1C) (56)
c* d* -qb a 

and hence from theory in [18] we know that our algebra Mq(2) is also a *-algebra with the oper

ation (56). Under the coaddition it forms a *-braided group obeying (8). Such a 'unitary' form 

provides us a natural definition R: = Mq(2), as explained in [18]. The *-structure determines 

'real' or self-adjoint (under *) spacetime co-ordina.tes 

a-d c- qb c+qb a+d
t=--, X= -2-' Y=--, Z=-- (57)

2l 2! 2 

and the q-determinant above becomes 

(58) 


which justifies the interpretation as Euclidean length in this a.pproach[18]. From it we can 

extract a quantum metric tensor by braided differentiation[22] which in our matrix basis is 

o 
-2-q 

o 
o 

(59) 
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6 Euclidean q-Poincare quantum group in function algebra form 

For the construction of the q-Poincare quantum group appropriate to (3), we start with just the 

same formulae (22) in Section 3. For the construction there (from [14]) applies to any braided 

covector space, and we have just seen in (52) that A(R) can be put in this braided covector 

form. So the vectorial form of the q-Poincare quantum group for this case is just the same (22) 

with R now determined from (52). The formula (23) is now 

(60) 

where p is the copy of algebra A(R) being used for momentum rather than position x. 

Because the form of R for our particular example A(R) is simpler than before, we have this 

time a simpler spinorial form. Firstly, we replace A(R) by the tensor product Hopf algebra 

A ® A where each A is a quantum group obtained from A(R), with generators s, t say. So the 

spinorial spacetime rotation group is 

RS1S2 =S2S1R, Rtlt2 =t 2t 1R, [t},S2] =0 
(61) 

As = s®s, At =t®t, £s = id = d 

and further relations needed to have an antipode. The realisation of the vectorial form in terms 

of the spinodal form is the same as (25) and the coaction takes the same form 

(62) 

For the standard example (5) this fits with considerations for q-Euclidean space in the appendix 

of [5]. As far as I know, the general R-matrix setting using (3) is. however, due to [18]. We take 

the tensor product *-structure 

(63) 

again according to general theory in [18]. There one sees that an extra automorphism S2 in the 

definition of the *-structure in the first copy of A 0 A is needed for the coaction [18, Eq. (11)] 

to be a *-algebra map. In our case it becomes an extra S2 on the s generator for compatibility 

of (62) with the Euclidean *-structure (49) on the space-time co-ordinates A(R), as well as for 

AIJ* = SAJ1. If we kept the original form (27) with hermitian co-ordinates then such a system 

would be just our previous q-Minkowski example in a twisted form. 
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The formulae (22) then become the spinorial q-Poincare quantum group[18] 

(64)p,=A-1,p, [s,,] = [t,,] =0, ~,=,®" £,=1, S,=,-l 


~p = p ® S-l( )t, +1 ® p, £p = 0, Sp = _p,-lt-1( )8 


where Ais the quantum group normalisation constant of R, which is the square of that of R. Its 


value in the standard example is A = q-1. As usual, one can derive both vectorial and spinorial 

forms by the abstract bosonisation construction (84) in Appendix A. Finally, the coaction on 

the spacetime generators in the spinorial form is of course 

(65) 


Euclidean q-Poincare quantuln group in enveloping algebra 
form 

For the enveloping algebra form for this q-Poincare quantum group we use (32) since this was 

a completely general construction for any braided covector space[14]. We dualise each of the 

ingredients of the semi direct product just as before. We use the pairing (pI, XJ) = 61J between 

braided vectors and covectors in (31), or (PI,PJ) = 1]IJ in (39) for the lowered index form 

of the Poincare enveloping algebra (38). The only difference from this part of Section 4 (up 

to and including (40» is that the quantum metric tensor and R', R now come from (52) in 

Section 5, where we cast A(R) as a braided covector space. The action of the vectorial q

Poincare enveloping algebra on the spacetime co-ordinates takes the same form 

- \-lR-l (66)L 1 t>X 2 = X2" , 

as before and necessarily makes the spacetime co-ordinates x into a module algebra under it. 

The action of pI is by the braided differentials [}I as before defined with [m; Ril] and obeying 

the braided Leibniz rule (36) with respect now to x I. Equivalently, when there is a quantum 

metric 1] the action of the lowered PI is by lowered differentials ElI obeying the braided covector 

algebra and Leibniz rule 

(67) 


as before. Indeed, everything for the vectorial q-Poincare enveloping algebras in Section 4 was 

for a general braided covector space. 
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We then use the specific form of R to give the spinorial description in terms of x as a 

quantum matrix A(R). As in the preceding section, it looks simpler than the braided matrix 

case in Section 4 because of the simpler form of R. This time the spinorial form of the spacetime 

rotation enveloping algebra is the tensor product Hopf algebra H ® H where each H is dual to 

A. So we take the two copies with FRT generators l± and m± as in (41) but now the matrix 

coproducts 

(68) 

The *-structure for the Euclidean picture dual to (63) is 

[±i .* _ S-ll':fi. ,....... ±i .* - Sm':fi"
J - H ".. J - P (69) 

The realisation of the vectorial spacetime rotation generators in the spinorial ones is 

(70) 

The spacetime-coordinates become a module algebra under the spacetime rotation generators 

just as in (43) by[18] 

(71) 

which is also the action we use on the lowered momentum generators PI = pio it regarded now 

as a matrix A(R). We add a dilaton ~ as before. Semidirect product by this action (and the 

induced semidirect coproduct) according to the bosollisation construction in Appendix A, or 

just working from (38) for our particular. R in (52), immediately gives the spinorial form of the 

q-Poincare enveloping algebra as 

(72) 
[~, l±] = [~, m±] =0, ~~ = ~ 01 + 10~, f~ = 0, S~ = -~ 


~p =P®l + ~e(l-( )Sm-)®P, (P = 0, SP = _~-eS(l-( )Sm-)P 


where 1-( )Sm- has a space for the matrix indices of P to be inserted. As far as I know, these 

are new formulae presented here for the first time, although following directly from [14] as above, 

or by dualisation of [18]. Finally, our q-Euclidean space A(R) becomes a module algebra under 
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this q-Poincare enveloping algebra by 

(73) 

The action of the lowered PI is by the lowered lh automatically obeying relations and braided

Leibniz rule 

(74) 


This is not a new equation but just (67) in the matrix notation according to the correspondence 

between the notations in (51) an d (52). 

The constructions in this spinorial setting work for general q-Hecke R, with A the square of 

its quantum group normalisation constant. Finally, let us note that there is an isomorphism of 

algebras between this q-Poincare enveloping algebra and the braided matrix case in Section 4 by 

mapping P to PI-. The two quantum groups are related by the 'quantum wick rotation' in [18], 

namely by twisting (cf. [19]) via the same quantum cocycle n-1 which relates the spacetime 

rotation quantum groups, but viewed now in the Euclidean Poincare enveloping algebra. 

Concluding remarks: *-structure and the dilaton problem 

We conclude here with two unconnected observations concerning problems of current interest. 

Firstly, we know that our spacetime co-ordinates and Lorentz algebras in all the above sections 

have reasonable *-structures and that the Lorentz transformations preserve them. Hence it is 

natural to ask if the Poincare quantum group also has a natural *-structure. If we use the usual 

axioms of a Hopf *-algebra then the answer appea.rs in general to be no. 

It does seem that one needs new axioms, albeit reducing to the usual ones when q = 1. A 

first step to formulating the correct axioms is in [23] where we study systematically *-structures 

on braided covector spaces. We confirmed the axioms (8) introduced in [9] and classify the 

situations when they arise in the linear setting. We also explained there that the construction 

of Poincare groups by bosonisation would then inherit natural * properties with axioms to be 

elaborated elsewhere. Between the release of [23] and the present paper, there appeared a 

preprint by Fiore[28] in which the one-dimensional case of case of a Poincare algebra with two 

coproducts connected by * was considered directly. 
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In fact, the question of when bosonisations have natural structures as *-algebras was already 

studied in [9] in order to have an interpretation of the quantum double as quantum mechanics. 

For the enveloping algebra Poincare quantum group to be a *-algebra we need that the action I> of 

the 'Lorentz' quantum group H on the 'momentum' braided group C is unitary in the standard 

Hopf algebra sense (hl>c)* = (Sh)*l>c* for h in the Lorentz sector (including the dilaton) and c 

in the momentum sector. This is the case in all our examples above, for it just corresponds to 

the coaction of the function algebra Lorentz quantum group being a *-algebra homomorphism. 

The coalgebra however, is a semi direct product by the action induced by the universal R-matrix 

of H (see Appendix A). We assume the latter is of real-type in the sense 'R*®* = 'R2h which 

again is the case for our examples when R is of real-type in the sense Rt ® t = R21 . This is true 

for (5) when q is real. One can easily see that in general the bosonisation C>4H in this case 

will not obey the usual axioms of a Hopf *-algebra. Instead we find 

Proposition 8.1 In the general bosonisation theory{15} as in Theorem A.2 in the appendix, if 

the action of H is 'unitary' and its universal R-matrix real-type as explained above then the 

coproduct and antipode of C>4 H obey 

where {) = RP) S'R(2) and 1l are viewed in the bigger algebra. We propose to call a *-algebra with 

such an 'R a quasi-* Hopf algebra. 

The proof is easy by Hopf algebra techniques. Thus 

where 6. is the second 'conjugate bosonisation' coproduct (90), the second equality is our reality 

and unitarity assumption and the third is the *-axiom (8) for braided groups. Here c!!l ® C(2) is 

the braided coproduct of C and 1l(I) ® 'R(2) the universal R-matrix of H (summations implicit). 

On the other hand, 6. is always twisiting equivalent to r 0 ~ by cocycle 1l-1 
. Since H is a 

sub-Hopf algebra, we also have (~® id)'R. = 1l13'R23 and (id ® ~)1l = 'R131l12 when viewed in 

our bigger Hopf algebra. So C>4 H is like a quasi triangular Hopf algebra except that in one 

axiom we replace ~ by (* ® * ) 0 ~ 0 *. 
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The second coproduct Li is given for free in our braided approach as an automatic feature 

of the theory: as explained in [10] every braided construction has a conjugate one where we 

reverse the braid crossings. In the present case ~ and Li coincide on the quantum group part 

H, where they are both its usual coproduct. But on the braided group part C they are more 

like opposite (transposed) coproducts and indeed become that when 7?, = 1. This is how we 

interpolate between the axioms (8) for a braided group (with a transposition r) and for a usual 

quantum group (without r)! 

How does this second coproduct look for our q-Poincare enveloping algebras above? For the 

vectorial setting (32) with upper indices pI it is 

(76) 

If we use lowered covector indices PI then (38) becomes 

(77) 

One can confirm (75) directly for R of the appropriate reality type and * on the braided covectors 

as in our paper [23]. For example, in the Euclidean case it is Pi = pI while the Lorentz 

generators obey L±IJ- =SL':f J I. For the Minkowski * in vectorial form see [13]. This all works 

generally for any braided covector space with the correct reality properties. 

For the Minkowski spinorial Poincare enveloping algebra (44) in Section 4, where P is a 

braided matrix pi; in B(R), the conjugate quantum group structure is 

where the space is for the matrix indices of P to be inserted and So is the usual 'matrix inverse' 

antipode. For the Euclidean one in (72) in Section 7, where pi j is in A(R), the conjugate 

structure is 

(79) 

Thus, the astute reader who was wondering why only L - appeared in the coproduct of P 

in Section 4, etc., in the construction of [14], sees now that the symmetry is restored with the 

corresponding L+ appearing in the conjugate Poincare quantum group. This is why they are 

connected by • as in (75). This suggest~ that these are indeed very reasonable axioms for our 

setting. Finally, while the Poincare generators before were represented on spacetime co-ordinates 
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by means of fJ braided differentials, it is easy to see that with the conjugate coproduct the same 

algebra acts covariantly with the usual braided differentials afrom [33]. We saw already in [33, 

Sec. V] that if V (R', R) is a braided vector space of differentials (our momentum sector) then 

its 'conjugate' or opposite braided group is V(R', Ril) obeying the same algebra with reversed 

braiding. When we bosonise, it means that our one q-Poincare enveloping algebra extends to 

products of spacetime generators in two different ways (36), one with the Leibniz rule for fJ and 

the other with the conjugate-braiding Leibniz rule for a. The two coincide in the triangular 

or unbraided case so the distinction is not visible classically. In physical terms it means that 

q-deformed geometry in the braided approach is naturally 'split' into two geometries related by 

braid-crossing reversal symmetry in the constructions. 

It is clear that Proposition 8.1 also solves in principle the important problem of how to tensor 

product 'unitary' representations of the q-Poincar~ group, which we need for physics. That the 

conjugated coproduct (* ® *)oAo* is twisting equivalent to ToA means that the tensor product 

of two representations which are antiunitary in the sense p(h*)t = p(Sh) will remain so, but up 

to isomorphism. In our case the isomorphism is given by the action of R-1 and is a new physical 

effect which is absent when R =1. For example, we can define a braided-unitary representation 

to be a pair consisting of V on which our Poincare quantum group acts and a semilinear form 

( , )v on it such that (h*t>v,v')v = (v, (Sh)t>v')v for all v,v' E V and h in our Poincare (or 

other quasi-* Hopf) algebra. Then one can see that 

V ®w, (v ®w, v' ®w')v ® w =(R-(2)t>V, v')V(R-(l)t>W, w')w (80) 

is again a braided-unitary representation, where we act on tensor products in the usual way via 

the coproduct A. We do not assume that the semilinear forms are conjugate symmetric (like a 

usual Hilbert space inner product) since this is not in general preserved by (80). The problem 

of constructing and perhaps classifying such braided-unitary representations for our particular 

Poincare algebras will be addressed elsewhere. 

For our second topic we recall that the appearance of the dilaton c; or ~ in the q-Poincare 

quantum group is an unexpected feature noted already in [36][17], and explained in terms of the 

quantum group normalisation constant in the general construction [14]. We observe now that, 

while not solving anything, we can syste~atically remove it from all our q-Poincare quantum 

group formulae in our constructions above if we pay a certain price. The price is that we obtain 
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then not a quantum group in the usual sense but a z-graded or c-statistical braided group[29]. 

This is a braided group of the kind where the statistics are just a power of a generic factor, say A. 

This class includes as special cases superquantum groups and anyonic quantum groups[47][48]. If 

B is such a braided group, then its bosonisation consists of adjoining a new group-like generator 

g, say, with commutation relations which remember the grading Ibl E z. It has structure[15][10] 

gb = Alblbg, Ag =9 ® g, £g =1, Sg = g-1 
(81) 

Ab b Ib(2)1 b Sb = g-lblSb~ = !,!lg - ® ~, 

where b!,!l ® b('J) is the braided coproduct and £. the braided antipode of B, and I I is the degree 

of a homogeneous element. We use once again the general theory in Appendix A, either as (a 

left-handed version of) the bosonisation (84) or in terms of the enveloping algebra version (85) 

with H the quantum line. 

Now, comparing this formula with the formulae for our q-Poincare enveloping algebras 

(32),(38),( 44),(72) we see that in each case they are of the above form with 

(82) 

and with B defined as the z-graded braided group given by the same formulae with Ae omit

ted. So these B are braided q-Poincare groups. They act on the spacetime in a way that 

preserves grading also, i.e. these become z-graded module algebras with the grading as shown, 

etc. Similarly in right-handed conventions for the function algebra quantum Poincare groups in 

Sections 3,6 with, omitted. Everything works as in supersymmetry except that the statistical 

factor -1 is replaced by A[29]. In physical terms, the role played mathematically in supersymme

try by fermionic degree is played now by the physical scale dimension. This is another example 

of the unification of different physical concepts made possible by quantum groups and braided 

groups. 

A Appendix: the abstract bosonisation theory 

Here we collect some basic formulae from the abstract theory of bosonisation[15][9]. Concep

tually, bosonisation is a generalisation of the Jordan-Wigner transform for turning fermionic 

systems into bosonic ones. Recall that this is done by adjoining the degree or grading operator. 

In braided geometry the role of the Z2 grading of supersymmetry is played by the background 
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quantum group symmetry, which in the above context is the spacetime rotation quantum group 

(the concepts of supersymmetry and Lorentz invariance are unified[lO]). We assume that the 

reader is familiar with the definition of a quasitriangular Hopf algebra H in [38] with 'universal 

R-matrix' 1l =1l(I) ®1(,(2) in H ®H (summation of terms implicit), and the dual notion of a 

dual-quasitriangular Hopf algebra A with dual-quasitriangular structure or 'universal R-matrix 

functional' 1(, : A ® A -+ c in [49][50]. The latter is characterised by the axioms 

(83) 

The coproducts are denoted aa = a(l) ® a(2), etc. (summation implicit). We also assume that 

the reader is familiar with the basic notion of a braided group B or braided-Hopf algebra[7][50]. 

Introductions are in [10][11][21]. 

The first theorem is that if B is a braided grou]> living in the braided category of (say right) 

A-comodules (Le. an object which is totally covariant under a coaction of A) then there is an 

ordinary Hopf algebra Ae<.B constructed as follows[9]. As a coalgebra we make a semidirect 

coproduct by the right coaction of A. We also use the universal R-matrix functional to turn 

the right coaction into a right action of A by evaluation in one input, and make an algebra 

semi direct product by this action. In concrete terms: 

Theorem A.I /9} c!./15} The algebm AKB genemted by B, A with cross relations, coproduct 

and antipode 

- b(I)," (b(2) ) Ab - b (1) 10\ b (2)b (84)b4 - 4(1) ,~ ,a(2) , L.l. - ill IC:I ill (2), 

for all a E A, b E B, is a Hop! algebm. 

Here ab =bill ® b(2) is the braided coproduct of B, S its braided antipode and b(l) ® b(2) E B ® A 

denotes the output of the coaction of A. The coproduct and antipode of A are not modified (so 

A is a sub-Hopf algebra). 

The second theorem (actually proven first in [15] with the above easily obtained as dual to 

it) is that if C is some braided group living in the braided category of (say, left) H-modules 

(Le. an object which is totally covariant under an action of H) then there is an ordinary Hopf 

algebra C>r4H constructed as follows[15]. As an algebra we make a semidirect product by the 
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left action of H. Also, we use the universal R-matrix to turn the left action into a left coaction 

by letting its part living in the first factor of H act. In concrete terms: 

Theorem A.2 [15} The algebra C~ H generated by H, C with cross relations, coproduct and 

antipode 

for all h E Ii, c E C, is a Hopf algebra. 

Here v = (SR(2»)1(}1), A.c = cQl ®C(2) the braided coproduct of C, S its braided antipode and 

t> denotes the left action of H. The coproduct and antipode of H are not modified (so H is a 

sub-Hopf algebra). 

It should be perfectly clear that these two constructions are conceptually dual to one another. 

So if C = B* (the braided group dual to B) and H = A* (the quantum group dual to A) then 

C~H = (AKB)* as usual quantum groups. 

Proposition A.3 cf.[g} The duality pairing ofC~H and ArKB between the various subalgebras 

is 

(c,a) = f(c)f(a), (h,a) = usual, (c,b) =ev(S-lc,b), (h,b) = f(h)f(b) (86) 

where f is the counit of the quantum group or br(l,ided group, 'usual' means the pairing between 

H, A as usual quantum groups dual to each other, S is the braided antipode (which we assume 

invertible) of C, and ev is the braided-group duality evaluation pairing. 

Recall[10] that ev obeys slightly different axioms to a usual quantum group pairing. Indeed, 

ev(S-l( ), ( )) obeys axioms more like the usual axioms and reduces to them when the braiding 

is trivial. We have slightly reworked [9] where the duality was given explicitly when B = C* 

rather than C = B* as here. Both statements a.re true. Also coming out of the bosonisation 

theory is a canonical coaction of AKB on B or, by duality in the setting above, an action of 

C ~H on B. By its very definition in categorical terms, the ordinary (co)representations of the 

bosonised Hopf algebra are in 1-1 correspondence with the braided (co)-representations of the 

braided group before bosonisation[15]. Obviously B coacts on itself by its braided coproduct. 

So the general theory gives at once: 
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Corollary A.4 cf.[14} B is a right A>-B-comodule algebra by 

(87) 


and in the setting above a left C>4 H -module algebra by 

ct>b - b (l)ev(S-lc b (f»)",,-l(b (2) b (2»)- i!l - ,(2) I\, !.!l' i!l (88) 

Conceptually, the action of H on B is just the action corresponding to the coaction of A assumed 

when we said that B was A-covariant to begin with. The action of C in abstract terms is 

Ct>b = (ev(S-l c,( )) 0id) 0 '11-1 0 ~b (89) 

which has a braided picture when we write qi as a braid crossing and ev = U. It is a left-handed 

version of the right coregular representation Reg* introduced and studied in [10][51], and always 

makes a braided group B a braided module algebra under its dual braided group. 

The combination ~ = qi-l 0 A is studied in [10] as the naive opposite coproduct. It is naive 

because it does not make the algebra of C into a braided group in our original braided category 

but rather into a braided group C, say, living in the 'conjugate' braided category with inverse 

transposed braiding[10, Lemma 4.6]. S-1 becomes its braided antipode. In concrete terms it 

means that the braided group C is no longer properly covariant under H (with the correct 

induced braiding) but under the quantum group H equipped with 'R,;l instead for its universal 

R-matrix. Let us denote the latter by if. As a Hopf algebra it coincides with H, but has 

'conjugate' 'R. 

Corollary A.5 Every bosonisation C>4 H has a second 'conjugate' coproduct and antipode on 

the same algebra, 

A "" -(1) to. "" -(2) (90)L.J.C = C(2) '<Y t>ci!l'I\, I\, 

where {) = 'R(I) S'R(2) . 

This is just the bosonisation C>4 if of C from Theorem A.2, written (using the algebra relations) 

in terms of H,C. It has the same algebra as C>4H but is generally a different Hopf algebra. 

Likewise every bosonisation AKB has a conjugate Ar.<B with the same coalgebra and a different 

product. This kind of braid-crossing reversal symmetry is an intrinsic feature of braided group 
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theory[10]. It is easy to further recognise these second coproducts and products as twisiting 

equivalent (cf. [19]) to the opposite coproduct or product respectively. Thus Li = n-1
( TO..:l )n 

by an elementary computation using the algebra relations. 

This summarises the relevant parts of the abstract theory of bosonisation of braided groups 

into ordinary quantum groups. One of the first applications in physics was to the construction of 

q-Poincare quantum group function algebras for any braided covector space B = V~(R', R)[14]. 

The latter lives in the braided category of A-comodules by (21), where A is obtained from 

A(R) with universal R-matrix functional in [35][52] and we extend by a dilaton with universal 

R-matrix functional n(~,~) = .,x-1. We obtain from (84) the formula (22) in Section 3 as the 

Hopf algebra AKV~(R/, R); see [14]. 

For the spinorial examples, we let instead A be a quantum group obtained from A( R) and 

take B(R) in the category of AEXlA-comodules by (26) to obtain (28) as AEXlAa<B(R); see 

[16]. Likewise, we take A(R) in the category of A®A comodules under (62) to obtain (64) as 

A®AKA(R); see [18]. 

We also gave the dual construction in [14] to obtain Poincare quantum enveloping algebras 

dual by (86) to the above examples. Thus C = V(R', R) is the braided vector space, dual to 

the braided covectors above using braided-differentiation[33][34]. The symbol V~ denotes the 

predual, i.e. V = (V·)*. The generators are dual spaces to each other (as for usual vectors 

and covectors). This braided group lives in the same category of A comodules, or equivalently, 

ii-modules, where ii is dual to A and A is from A(R). The dilaton contributes .,x-e~>e to the 

universal R-matrix. We obtain from (85) the formula (32) in Section 4 as V(R', R)>eii; see 

[14]. We obtain from (86) the explicit duality pairing (31). 

Likewise for the spinorial examples, we let H be dual to A obtained from A(R), and obtain 

(44) as the Hopf algebra B(R)*>eHLJ Hand (72) as the Hopf algebra A(R)*>eH®H. These 

are canonical constructions independent of any quantum metric. When there is a quantum 

metric, as in the explicit q-Minkowski and q-Eudidean examples, we have B(R)*9!B(R) and 

A(R)~A(R) in which final form we wrote these examples. They are equivalent to constructing 

the bosonisations B(R)>eHLJ H and A(R)>eH @ H directly. 

Finally, all these examples come equipped with a canonical (co )action from Corollary A.4 

on the braided covectors regarded as spacetime co-ordinates. This gives the explicit formulae 
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(23) and (34) in general and (45), (73) on B(R), A(R). We systematically dropped a minus sign 

coming from the braided antipode on P in (89). In addition, all our q-Poincare quantum groups 

automatically come with conjugates from Corollary A.5, as discussed in Section 8. 

We have concentrated here on the applications of bosonisation to the construction of q

Poincare quantum groups. Other interesting applications are in [53][54] and the theory of dif

ferential calculus on quantum groups in [55][56]. 
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