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ABSTRACT 

The free field realisation a la Frenkel-Kac and Segal is applied to 

construct the chiral vertex operators in the basic representations of the 

level-one SU(N) WZW model. These operators are shown to be non­

local and they intertwine between physical states in the chira! Hilbert 

space. The corresponding symmetry algebras in the chiral model are 

also determined. 
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the one proposed in [2] and to study the chiral factorisation from the quantisation of the 
WZW model compactified on a circle and associated with a simple Lie group G at level 
k. In particular, the quantum commutation of the chiral vertex operators is derived in 
terms of an exchange relation[1-3) given by a braiding matrix Q. In [1], this matrix is 
shown to be related to the Racah matrix of Ut(SL(N». In order to formulate the chiral 
WZW model with a well-defined Hilbert space, it is very instructive to obtain an explicit 
construction for the chiral vertex operators, e.g. in terms of free quantum fields. It has 
been known for some time that the symmetry algebras of the level-one model, i.e. level-one 
SU(N) Kac-Moody algebra, has an unitary realisation in terms of free scalar fields a la 
Frenkel-Kac and Segal(4). In this paper, we explain how to extend this construction to 
obtain the chiral vertex operators. 

Let us recap briefly the quantisation of the level-one SU(N) WZW model. Let g(T,X), 
defined on a cylinder M, take values on a Lie group SU(N). The action of this model is 
conformal invariant at the infra-red fixed point, 

A[gl = -1:11' {1M tr (g-18p gg- 18Pg) d2 x - ~ is €>'Plltr (g-18>.gg-18p gg- 18"g) d3 X} . 

(1) 
The second term is a topological term obtained by integrating over a three-dimensional 
manifold B, whose boundary is the cylinder M and geT, x, 'II) E SU(N) is defined on B such 
that it maps to g(T, x) at 'II = O. The level k is set to be one in the fo11owing discussion. 
From the equations of motion, g(T, x) can be written as a product of a right-moving group 
element U(x+) and a left-moving group element V(x-) where x± T ± x. 

g(x+ ,x-) U(x+)e-iq...HV(x-). (2) 

In this parameterisation(l), U and V have the diagonal monodromy given by the 
maximal torus of the group. 

U(x+ + 211') =U(x+)ei2'1fIl'H, V(x- - 211') = e- i2'1fIl.HV(x-). (3) 

Upon quantisation in the gauge-fixed approach, the monodromy momentum II conjugates 
to qll in (2). In the following, we will discussion mainly the quantisation of the right­
moving sector. Similar results can be obtained for the left-moving sector. Under the chiral 
symmetry transformation, U transforms as the chiral primary fields of the Kac-Moody 
algebra, 

[J~,U(x+)J eim:Z:+TOU(x+) , (4) 

where TO E {Hi,EQ} is a basis of the generators in SU(N). The current algebra, i.e. 
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SU(Nh:=1 Kac-Moody algebra, can be written in the Cartan-Weyl basis as(4,5] 

[J:", J~] = mcijCm,-n 	 i,j = 1,2, ..N -1. 

[J:", J:] =a i J:!+n 
(5)

e(a, {3)J:at!! if a +{3 is a root 

[J:!, Je] { fi=l ai J!n+n + mCm,-n ifa+{3=O 
otherwise. 

The structure constants, e(a,{3), are normalised to be ±1. 

Beside the monodromy and the transformation laws mentioned above, the quantum 
commutation among U's is specified by a braiding matrix Q(v); e.g. in the tensor notation, 
UI == U®I and U2 ::::I®U, 

U1(X+)U2(Y+) = U2(y+)U1(x+)Q (x+ - y+, v) . (6) 

The braiding matrix Q is solved explicitly in the fundamental representation in [1] for all 
level k. It is written in terms of a parameter t :::: eix (lc) and ,,(x) == 2[x] + 1 where [x] 
denotes the maximal integer less than x. 

Q(x) =t(¥)11(:) (1 ® 1- L EaE-a ®E-aEa) 
ae+ 

+ t-*11(:) L cos6(a· v)EaE-a ® E-aEa 
ae+ (7) 

-	 t-*11(Z) L C~11(S) sin6(a· v)Ea ® E_a, 
ae+ 

A A1 [A]e == t - t­where sin6(a· v) = [a~v]t' and 

For t :/: ±1, Q can be related to the Racah coefficients[6,7j of Ut(SL(N». In the limit of 
t = ±1, Q is proportional to the Racah coefficients of SU(N). Thus, for a given parameter 
t, the braiding matrix implies that there is an additional symmetry, Ut(SL(N», which 
acts on U from the right-hand side. Whilst, the affine current acts on U from the left­
hand side as in (4). Following [1,8,9], we call U(x+) in (6) the chiralvertex operators. 
According to the state/vertex operator correspondence, one can obtain the entire chiral 
Hilbert space from U and J. It is therefore important to understand how U transforms 
under this additional symmetry explicitly. The main result of this paper is to answer this 
problem by constructing the chiral vertex operators U explicitly in terms of free fields. 

Let us briefly review the unitary realisation of (5) a la Frenkel-Kac and Segal(4) in 
terms of free scalar fields. Further details are given in (5]. Let us introduce N - 1 right­
moving scalar fields tPi(z) and expand it on a complex plane with z = eis+, 

¢1(z) = qi - ipi lnz +i L !;!.z-n, j = 1,2, ...N -1; 
n~O,eZ n (8) 

;!.t = ~n' [,p!n,;!,] mCm,_ncij , pit = pi, [qi, pi] = iMii. 
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For each root {3 of SU(N), we define a norIOalordered vertex operator, 

oB(z) == z(12/2 X exp(i{3 . ,p(z» x 
x x 

=Z(J2/2 exp( -{3. L !,pnZ-n) exp(i{3. q + {3p In z) exp( -/3 . L !,pnZ-n). 
(9) 

n<O n n>O n 

Then, according to the current generators can be realised as fonows. 

Ja(z) = oa(z)e-ia·qCa, V a is a root, 
(10)

Ji(z) = iz8z rf(z), j = 1,2, ..N - 1. 

Conformal symmetry is ensured by the Virasoro generators which can be obtained from 
the affine currents according to the Sugawara construction, 

N 2 _1 

L(z) = n/1 ~ ~ L J4(Z)J4(Z) ~ . (11)1lT\ 

4=1 

In (10), we have introduced the cocycle Ca defined on the root lattice, An, in order 
to obtain the commutators among the currents using the contour integration technique(5). 
These operators obey the following cocycle condition, 

CaC(J = Sea, {3)C(JCa f(a, {3)Ca+(1, 
(12)

where S(a,{3) =eifra'(J, Va,{3 E An. 

The structure constant e(a, {3) is determined by the symmetry factor Sea, {3) according to 
the following consistency requirements, 

e(a, {3)e(a + {3, '1) = f(a, {3 + 'Y)e({3, '1), (13a) 
e(a,{3) = S(a,{3)f({3,a), (13b) 
Sea, {3)Sh, {3) = S(a + '1, {3), (13c) 
sea, {3) =S-I({3, a). (13d) 

These conditions determine C up to some gauge transformation.l5 ,10) In general, without 
introducing new degrees of freedom, one can construct C explicitly as functions of the zero 
modes p, q of the free scalar fields. 

We are now ready to extend these results to construct the chiral primary fields. In 
order to achieve this aim, it is necessary to introduce a finite number of additional degrees 
of freedom into the chiral sector. The reason is because we need to extend the cocycles 
to the weight lattice and we are not able to solve (13) unless extra degrees of freedom arc 
introduced(ll. To begin with, we consider U(z) as a N x N matrix in the fundamental 
representation. The matrix indices can be denoted by the weights in the representations. 
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They are normalised to be A2 = (N - 1)/N. The conformal weight of U in this represen­
tation is given by AN = (N2 - 1)/2N(1 + N). From the transformation of U(z) in (4) as 
a chiral primary field of the Kac-Moody algebra, we observe that the z-dependent parts of 
Ur,(z) should be O~r(z). Then, the solution for (4) has the following form, 

Urs(z) = : ei~...-t>(%): e-i~r·q.ct). (14) 

For each weight A., the cocycle ct) is defined on a weight lattice Aw. However, there 
exists no consistent solution of (13) on Aw. One way of resolving this problem is to 
introd uee (N - 1) new pairs of harmonic oscillators, [qi, pi] = ilWiJ, so that the cocycle 
is extended to Aw x Aw. These new degrees of freedom commute with the right-moving 
Kac-Moody current and they can be thought as the replacements of the zero-modes in the 
left-moving vertex operator!l) V(x-). 

- i(~ ~~ ­C(~r'~.) == e rq ·qJC(~",~.)(P,p), V (Ar ,>.,) E Aw x Aw. (15) 

The symmetry factors which satisfy the consistency conditions in (13) on the new lattice 
Aw x Aware given by 

S(;1, ii) = ei1r (I""-ii-ii) , V jI,iJEAwxAw. (16) 

Once the symmetry factor. is specified, we can determined f.(jI, ii) from S(jI, ii) using (13b). 
Then, the co cycles can be constructed as functions of the momentum fJ according to 

Or.. == eir..·qf.(X,p). (17) 

This determines the cocycle completely up to the following gauge transformation[5,lO], 

Oil ---+- t(jI)Oil ; 
(18){ f. (jI, ii) ~---+- tUI+OJ f.(jI, ii), 

where t(jI) = t(1' )l(Ji) denote some non-zero scaling constants. Subsequently, the solution 
for.the chiral primary field in (4) is 

Ur,(z) = : ei~...-t>(%) : ei~.·iC(~r,,,.)(P-t>,p). (19) 

The advantage of having such an explicit construction is that we can determine the 
local properties of the chiral primary fields directly. In fact, we find that they obey the 
following braiding relation, 

U1(Z)U2(W) = U2(W)U1(z)R(arg(z/w», for Izi > Iwl, 
(20) 

where R(x) =exp {i7rHl . H2'l (x)}. 
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For 'lex) = I, we can identify R(x) as the R-matrix[llJ in the fundamental representation 
i1rof Ut(SU(N» with t = e • By denoting the deformation parameter with t = q! rather 

than with q as in [11], the R-matrix is 

N N N}
R(t) t-1r tL::err®err + L:: er,®er,+(t-C l

) L:: er,®e,r , t = ei 
1l'.{ 

r=l r#,=l r>,=l 

(21) 
Since t = -1 E Ii, we replace Ut(SL(N» by Ut(SU(N». The braiding parameter agrees 
with the one obtained in [1] for k = 1. However, the braiding relation given by the R­
matrix in (20) is diagonal. Thus, U(z) differs from the chiral vertex operator U(z) defined 
in (6) and (7). 

Because. U(z) is also a chiral primary field, it can differ from U(z) in (19) only by 
the zero-modes. In other words, U(z) can be obtained by mUltiplying U(z) with a N­
dimensional matrix, A, which commutes with the Kac-Moody currents. In particular, Jet 
the matrix A depend on the momentum, p, and denote A == eiHiA(p). The chiral vertex 
operator obeying the braiding relation given by Q in (7) can be written as 

U(z) == ei~(%)He-iq• H Oe-iqHA, (22) 

provided that A satisfies the following equation, 

R(t)AIA2 = A2A1Q(v, t). (23) 

This is nothing but the operator identity of the IRF-Vertex transformation[8,9,ll,12) for 
Ut(SL(N». This transformation relate~ the R-matrix with the braiding (Racah) matrix 
of Ut(SL(N)) via the Wigner-matrix, A. This interpretation is confirmed by the results 
in [1,12]. One can easily verify that if (23) holds for R(x, t) and Q(x, v, t) when 'lex) = 1, 
then it will also hold for all x. 

For Ut(SL{2», this operator identity had been realised explicitly for all t in [12]. It 
is shown that A depends on two pairs of harmonic oscillators: (q,p) and (q", v), where v 
is the monodromy momentum in the braiding matrix Q. They are independent degrees 
of freedom in the sense that they commute with the Kac-Moody current. We will explain 
more about the meaning of v later on when we discuss the monodromy property of t.he 
chiral vertex operator. In the level-one model, we have to take the limit of t == ei in t.hc1l' 

Wigner operator obtained for all t in [12]. This involves taking [Y]t = Yt(Y -I) for Y E Z. 
The result is given as follows. 

/¥ -i~("+P)~~)- .~- "+-2 _e 2'~
A == e'v'2 

q
" " e' v'2 

q
". (24)( i~("+P)~~ ~ 

e 2" v~ 

Thus, we have completed the construction of the chiral vertex operator U(z) in (22). Note 
that U is unitary because both 0 and A are unitary. 
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Subsequently, one expects the symmetry algebra U-l(SU(2» acts on the chiral ver­
tex operator through A. Because the deformation parameter is t = -I, this algebra is 
isomorphic to SU(2). According to (12], its generators can be realised as 

1 _ 2 - 1)2
S3 = _p, " " ~±-.S± == e±iy'2Qt=F72 tl ('-"2) - (V2 (25)2-'-"2 

Under this algebra, A transforills according to 

tS3 (A+b, A-b) = (A+b, A-b) tS3 t!f, 
(26)

S± (A+b, A-b) (A+b, A-b) (S±t=Ft0'3 + Q±t±S3) . 

This transformation can be formulated in a covariant way in terms of the coproducts of 
U_ 1(SU(2» as in {12]. Furthermore, the quadratic Casimir operator for (25) is given 
by (12)2 - i. Thus, the irreducible representations Vi of U_ 1(SU(2» are labelled by 

the eigenvalues of of the monodromy momentum, j = ~ - ~, for j a positive integer 

or a positive half-integer. Like the irreps of SU(2), the dimension of Vi is (2j + 1). 
Consequently, U acts on the irreducible representations of U_l(SU(2» like an intertwining 
operator. Notice that because the quantum group structure is rather trivial in this case, 
there is no truncation on the spin j. 

Let us now discuss the monodromy property of the chiral vertex operator. From the 
explicit construction of U in (22), we have 

Un (zei2'11') = Ur ,(z)ei2'11'P.·>'r (27) 

On the other hand, from the definition of monodromy momentum" in (3), it has the 
following monodromy: 

Un (zei2'11') = Un (z)ei2'11'v,>,• • (28) 

Thus, these two equations impose a constraint between the monodromy momentum II and 
the free-field momentum pq,. 

1ei2'11'P. '>'r =ei2'11'v,>,., VAn A, = ± ,fj.' (29) 

This condition is manifestly satisfied when the spin of the U_ 1(SU(2» representation 
differs from the spin of the Kac-Moody representation by an integer. Thus, the Hilbert 
space for the right-moving SU(2)k=1 WZW model is 

'flIt = (Ho ® (EBi=O,Z+Vi») E9 (Hi ® (EBHtEZ+Vi») . (30) 

These results for the chiral vertex operators in the fundamental representation can be 
generalised to other basic representations of SU(N). In particular, (22) and (23) apply 
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to these representations as well. We can obtain all the states in the chiral Hilbert space 
by applying the chiral vertex operators and the affine current generators to the vacuum 
according to the state/vertex operator correspondence. Consequently, this determines the 
chiral Hilbert space to be 

'flIt = E9 H>. ® (EBpEhAV",) , (31) 
>'=O,minimal 

where H>.'s are the minimal representations of the right-moving SU(N)k=l Kac-Moody 
algebra and /-,'s denote all the highest weights of U_1(SU(N» which are in the same weigbt 
lattice as A. The Hilbert space of the left-J,lloving sector can be constructed in a similar way 
using the left-moving free scalar fields and (N -1) additional pairs of harmonic oscillators. 

'flL = E9 (EBpEh~ Vp ) ® H>. (32) 
>'=O,minimal 

These new degrees of freedom correspond to U_1(SU(N» do not appear in the original 
Wess-Zumino models and they should be gauged away when we "join" the left-moving and 
the right-moving sectors together. 

'flwzw = E9 H>.®H>. (33) 
>'=O,minimal 

The formulation of this gauging process is nontrivial but it is certainly very interesting. 
The following message is fairly clear. In the process of factorising the chiral Hilbert space, 
we need to keep the same number of zero-modes as the original un-factorised theory. The 
additional symmetry associated with these zero-modes is hidden in the original non-chiral 
model and thus plays the role of an internal symmetry of the WZW model. 

To conclude, the free field construction of the chiral vertex operators for the SU(N)k=l 
WZW model described in this paper gives a explicit description of how to factorise the 
model into two chiral sectors. A finite number of new degrees of freedom arc introduced into 
the chiral sectors. Consequently, the chiral Hilbert space acquires an additional symmetry 
described by U_1(SU(N». This result is different from the factorisation discussed in 
the literatures[8,9,13], where the internal symmetry is proposed to be Ut(SL(N» with 

irfNt = e . In this latter case, an explicit realisation of the chiral vertex operators is still 
lacking. 
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