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Abstract

We study the chiral vertex operators of the unitary discrete series
for the Virasoro algebra. We prove an analogue of the coset construction
for vertex operators and indicate how the arguments can be modified
to prove the fusion rules under the assumption, motivated by Connes
fusion, that a certain completeness property characterizes them. We
ol.)serve that the construction can be used to prove various properties of
Vtr?.soro primaries, which are inherited from the corresponding properties
of su(2) primaries. In particular, we obtain the convergence of correlation
functions of Virasoro primaries and indeed their expressions in terms
of correlation functions of su(2) vertex operators. We also obtain the
braiding behaviour of Virasoro primaries. The usefulness of this approach
to the study of other coset theories is pointed out.
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1. Introduction

Our immediate objective is to study the vertex operators (on £!) in the FQS unitary
discrete series [1] for the Virasoro (£) algebra in a constructive approach; and secondarily
to extend the approach to an arbitrary cosct theory. In a rational conformal field theory,
algebraic properties of vertex operators such as the existence and uniqueness of primary
fields, and basic analytic properties such as the convergence of correlation functions and
the braiding of primaries, are best understood through the study of chiral vertex operators
following Tsuchiya-Kanie [2]. If the theory is unitary, the operator theoretic aspects such
as establishing Sobolev inequalities for smeared vertex operators and Connes fusion can
be studied following Wassermann [3]. In each instance, the canonical examples for the
techniques involved have been the su(2)-WZW theories at arbitrary level £ € N, and more
generally the WZ\W-theories for any compact group modulo technical difficulties. In this
paper, we use the GKO coset construction [4] to extend some of these results to the unitary
discrete series. We shall consider the algebraic and basic analytic aspects, leaving the more
technically involved operator aspects for separate consideration in a sequel. The methods
developed here are not specific to the unitary discrete series and should generalize to any
coset theory, modulo technical difficulties. One of our aims is to demonstrate that vertex
operators of coset theories are more easily studicd using a natural analogue of the GKO
construction for primary fields, and that both algebraic and analytic properties do in fact
follow from those of the corresponding WZW theories. To this end, we develop the algebraic
theory forthe unitary discrete series independently from the GKO construction and indicate
how the same results follow, more easily, from their manifestation as coset theories.

As far as the algebraic theory is concerned. there are no significant departures from
the approach in [2] and we relegate a discussion of the main points to Appendix A. The
basic analytic result to consider is the convergence of N-point functions or, equivalently, the
composability of vertex operators. To a sequence hy.,....h, of unitary highest weights is
associated a vector space of N-point functions. considered a priori as formal series, with a
preferred basis:

h;
(OIB}Y, oy (2x)--BL) , (21)]0), (’m; k;) an allowed vertex. ky = kyyq = 0. (1.1)

Tt is known [5] that these series are formal solutions to a system of 2.V +3 partial differential
equations, reflecting the pairs of singular vectors of the corresponding Verma modules that
generate the maximal submodule. and the projective invariance of the vacuum. In principle,
we can prove the convergence of these formal solntions to bona fide holomorphic functions
by showing that this system of cquations is equivalent 1o an integrable Pfaffian system with
regular singularities, to which the series in question are formal solutions at a singularity. In
practice, however, the algebra is involved for N > L.

In contrast, the problem admits a straightforward solution by exploitiug the coset con-
struction for the unitary discrete series. We prove the analogne of the coset construction for
primary fields. in particular that every Virasoro primary field of the unitary discrete series,
e=1-6/(N+2)(N +3). N € N, occurs in the decomposition of some linear combination
of tensor products of pairs of sit(2) vertex operators. at levels N and 1 respectively, with
respect to the diagonal-¥u(2) at level N 4 1 and the coset Virasoro algebra. When the
Virasoro primary is of the type

®hof2). (1.2)
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the result is ix}nme(?iate from the GKO construction and the ‘state-field correspondence’,
Indeed, let 7 = |7} ® |hy,,) be the highest weight vector for the summand

(N +1,7)8 (e, hpq) (1.3)

in the Glf() decomposition of the tensor product of the irreducible (highest weight, positive
energy) su(2) modules of spin [ at level N, and spin ¢ at level 1

(N, )@ (1,¢), (1.4)

where p= 214 1,¢=2j+ 1,4+ ! +¢ € Z. Then ¥ is an element of (N, ) ® (1,¢) and
co‘rresp'onds to a vertex operator ¥(z) descendant from the tensor product of the su(2)-
primaries of spin [ at level N, and spin ¢ at level 1

®0(11)2)® ¥54(le), 2). (1.5)

It follows that the restriction of ¥(z) to the summand (N +1,0)® (¢, h1,1) in the GKO
decomposition of (N.0)® (1,0),

YN+ 000(e k1) = 8 o(17), 2)@ @2 o (2). (1.6)

Thefe is'an obvious generalization. Associated to the lowest energy subspace of an irre-
ducible su(2)-module Hyar of spin s at level M is a set of su(2) primary fields

2 (. .2) (1.7)

c?rresponding to the allowed vertices of spin s at level M, each of which gives rise to an
su(?)}n'\odule of vertex operators isomorphic to Ha.ar- Then, in the same vein, associated
to ¢ is also a vertex operator descendant from the primaries

Bl w(I1), ) © B2 4 (le), 2) (1.8)

for each pair of su(2) allowed vertices of respective spins I, ¢ at level N, 1, which we denote
as

Wj[’"‘" ("‘"](3). - (1.9)

We \‘vill s}low that this equates to a sum of tensor products of pairs of su(2)-primaries and
L-primaries, respectively at level N 4 1 and central charge ¢:

IR P L AINIBEY e () (1)

g et harsr 41,259 41 Barrarait

\vherle the sums in j* and j’ are given respectively by the GKO decompositions of (N, I")®
(1,6 and (N, V') @ (1,¢'), and the branching coefficients

Vi o] (1.11)

ret e

'(j,,jj,) : (1.12)

2

do not vanish for all allowed vertices

When all the vectors {1/} are known explicitly, verification of this proposition, i.e. checking
that the branching coefficients do not vanish, is quite immediate. But we have no explicit
form for such vectors in general, and so develop a proof that does not require it.

Given this proposition, we easily show that the convergence of correlation functions of
Virasoro primaries follows from the convergence of correlation functions of su(2) primaries,
which is known [2]. Minimally, it is sufficient for the convergence of correlation functions
of arbitrary Virasoro primaries that we have convergence of correlation functions of the
generating Virasoro primaries. However, the full coset construction for Virasoro primary
fields is rather useful for other considerations when the intention is to transfer results,
algebraic or analytic, in the su(2) theory to the coset theory. In particular, this is the case
for fusion rules and Sobolev inequalities for smeared vertex operators.

The generating primary fields, in both the su(2) and Virasoro theories, play a funda-
mental role, given the operator product expansion. More or less equivalently, the su(2) or
Virasoro modules of the corresponding highest weights play a fundamental role given the
fusion product, which for us will ultimately be given by Connes fusion [3]. This is analo-
gous to Weyl's Invariant Theory approach to the construction of irreducible representations
of a compact Lie group by decomposing the tensor product of basic representations into
irreducible components [6)].

The paper is organized as follows. In Section 2, we state some results on 4-point
functions involving a generating Virasoro primary that are proved in the appendices. In
Section 3, we state and prove the main result. We indicate how the proof can be modified
to avoid using prior knowledge of the fusion rules and argue, under a plausible assumption
on the characterization of a complete set of primary fields, that this modification amounts
to a proof of the fusion rules, and indeed of other properties of Virasoro vertex operators.
We emphasize the utility of this approach in obtaining algebraic and analytic properties
of vertex operators of a coset theory in terms of the properties of vertex operators of the
corresponding affine algebra theories. In Section 4, we apply the main result to prove the
convergence of correlation functious of Virasoro primaries and to obtain an alternative proof
of the braiding behaviour of Virasoro primaries. In Appendix A, we present with a minimum
of formalism a summary of the basic algebraic theory for the unitary discrete series in-order
to make this paper self-contained, and to clarify our definitions and point of view. We also
discuss the solution space of a system of BPZ and projective invariance equations. In the
rest ofithe appendices, we prove some ancillary results required in the main text.

2. 4-point functions involving a generating Virasoro primary field

We establish for later use some results on 4-point functions involving at least one
generating Virasoro primary. Let hy,..., ) be a sequence of conformal dimensions, such
that h; = hy 3 or Ay, for some i. Then the corresponding 4-point functions satisfy the BPZ
equation

__L_()i.{.i-._‘l_f‘)__h‘fffz f"—~‘0 {2.1)
Ah+20z7 T & TF 9z 0TS
T

in addition to the projective invariance equations

4 ;
Z :;"'“0—‘3— +hi(m+1):] f=0 (m=0,%1). (2.2)
i=1 <J
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The latter have the general solution

4 2
II #0* Fa), == 1274 (2.3)
J 1324
jAwmt
i<k
where the v; satisfy
4 4
Skt o mi=2he (k=1..4). (24)
HH i

With this Ansatz, we verify in Appendix B that (2.1) reduces to an‘ordinary differential
equation in the variable z, a Fuchsian equation with 3 singul?r. pomts.. at 0,1 and oo.
In fact, the equation is of second order and hence, with a judicious choice of the 7, 2
hypergeometric equation. '

We show in Appendix C that this fact is sufficient for the system of equations given by
(2.1) and (2.2) to be equivalent to an integrable system of equations:

of _ el o ~=(0"‘f) (2.5)
Ty =y UEbe N S= G

where each A;(w) is an n x n wmatrix-valued function, holomorphic in a neighbourhood of
the origin, and w; = zj/zj41 (j = 1,2,3), wy = z4. Here, n = 2. Formal series solutions to

such a system

4
5 E ne L™ 2.
H wj’ Cny..my Wy wy (2.6)
j=1 j€NQ
jmi... .4

are known [6,7] always to converge in some neighbourhood of the origin. It follows that the

4-point functions
(0 ®%t 1 (24) - B3, (21)]0) (2.7)

are convergent in a corresponding domain in {(z4re o 2) EC™ i f2g] > -0 > 1211}
Now let hs be one of &y 2. ha 1. We obtain the following result in Appendix B. For each

pair of allowed vertices
hs hy
heh )’ hhy

we have by analytic continuation along some path that

o ho By (.y rhehshgh
Bh2 (20N, (0) = Y B (w)BR2, () iy ™™™ (2.8)
hl
. ‘ae . hehshah . .
where the sum is over all allowed vertices. The braiding matrix (Cph>"" Jars is an in

vertible matrix of order 1 or 2 with no vanishing entrics. As a corollary, the fusion matrix
(F,:'.‘:"'"")hm appearing in the operator product expansion, jw] > |z — w| > 0:

op h(z)@ﬁ’,"(w)zz Fhhahah Z (e |®}3 1, (= — w)lhz) o, (aw.w)  (29)
h' aye

is also an invertible natrix of the same order with no vanishing entries. Analogous‘ results
hold for the braiding and fusion natrices involving a generating su(2)-primary (of spm.l/2),
i.e. there are no vanishing entrics. This is obtained by inspection of explicit formulae in [2].

3. The coset construction for primary fields

The archetypal coset construction is the following theorem of Goddard-Kent-Olive [4].
The tensor product of (N, 1), the irreducible highest weight su(2)-module at level N of spin
I, NeN,I=01/2,...,Nf2 and (1,¢), the irreducible highest weight su(2)-module at
level 1 of spin £, £ = 0,1/2,is a direct sum of irreducible highest weight su(2} x £L-modules,
respectively at level N + 1 and with central charge c = ¢(N) = 1 —6/(N + 2)(N + 3), given
by

-1
(N,D)o(1,6) = @(Nu,‘-’-i—)@(c,h,,,q) 3.1

where p = 2/ + 1, and the sum over ¢ is such that p — g is even/odd if 2t is even/odd, and
1 € ¢ £ N + 2. Each unitary highest weight Virasoro module with central charge ¢ < 1
appears in the decomposition of precisely 2 choices of (N,I)® (1,¢). The su(2) x £ action
is given by the diagonal su(2) subalgebra of su(2) x su(2) and the coset Virasoro algebra
L., i.e. the difference of the Sugawara coustructions for su(2) x su(2) and its diagonal
subalgebra. We write the respective su(2) subalgebras as su(2)n, su(2), su(2)y41. We
want an analogue of these results for the vertex operators.

We briefly recall the ‘state-field correspondence’: corresponding to an irreducible high-
est weight, positive energy su(2) module (for some spin and level), we can canonically
construct spaces of (chiral) vertex operators. each an isomorphic si(2)-module, spanned by
a primary-field of corresponding spin and level and its descendents. The allowable primary
fields at a particular spin and level are determined by algebraic conditions known as fusion
rules. A similar correspoundence holds for irreducible highest weight modules of the Virasoro
algebra. By the GKO coset construction and this correspondence, we have that a linear
combination of tensor products of pairs of su(2)n and su(2), vertex operators decomposes
as a linear combination of tensor products of pairs of su(2)xy41 and L, vertex operators.

Let {d;,{":a = 1,...,dim V;} span the lowest energy subspace of the su(2)n41 X L-
module (N +1,7)0(ec, hyp q), considered as a summand of the GKO decomposition of (N,1)®
(l,e),sothat p=2+1,¢g=2j+1and j+1+e € Z. Here, the su(2)-module V; of spin j
is considered as the lowest energy subspace of (N + 1, 7). For each pair of allowed vertices

of spins [, ¢:
! <
(ll! Il)" (S” sl)

‘1"'[ C ](..:) (3.2)

et

* at levels N. 1, let

be the corresponding descendents of the su{2)y x su(2)y-primary
Ol p (11, z) 0 &5 i(e), =) (3.3)

By the GKO isomorphism and the *state-ficld correspondence’, this must be a $u(2)n41 X Le-
primary of spin j and conformal dimension hy, 4. Further. we can decompose this as a sum
of primaries corresponding to the varions allowed vertices, and thus it can be written as the
snm

S Ve[ o] W00 L 2) (3.4)

e e N Y
For)

o
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for some branching coeflicients

]
I

[0 o] €€

where p" = 21" +1,p' = 2I' +1, ¢" = 25" +1, ¢ = 2j' + 1, and the sum in j" and j' is over
the values in the GKO decomposition of (N,I")® (1,£") and (N,!') ® (1,¢'). We shall take
the convention that the branching coefficients are defined for all such values, but vanishing

when .
(#7)
ju jl

is not an allowed vertex. It remains to show that none of the branching coefficients vanish
otherwise. Appendix D gives a more careful argument for these assertions.

Distinguished amongst the lowest energy subspaces (9" C (N +1,7)® (¢, hyq) are
those that lie in the lowest energy subspace of the corresponding (N,/)® (1,¢), whence

)08 (0= 3 W) L] (3.5)
j=[ite]

Such {3") correspond to spin j and conformal dimension hai41,2j41 obeying
AN+ A1) = AG N+ D+ har i, J= 1] (3.6)

where A(s; Al) = s(s + 1)/{M + 2), which is an identity for each I, and £ = 0, 1/2. The
corresponding set of Virasoro primary fields that can be found by decomposing tensor
products of su(2) primaries are only those of conformal dimension

hppr P=1ycs N 41

(3.7)
hp.p-h = 2,....N+1

bearing in mind that hp g = By.p2-pN43-g. This is the set of b, ; that do not exceed 1. We
will call these Virasoro primaries the relevant operators, following the identification in (8}
of precisely this set of operators with the relevant operators of Lagrangian scalar ¢ 2(N+1).
theory at a non-trivial fixed-point. In particular, the generating Virasoro primaries, being
of conformal dimension fy 2 or hy 1, are relevant operators. We have

g = hagrien @ (L3)=(0,4), (5. 5) 3.8)
hyy = hypr g @ (L3) = (5,0).

In the following, we will first prove that the branching coeflicients
gl .
vi[! L] wih=eh. g0 (3.9)
for allowed vertices, are non-vanishing. These are the cases when a vertex operator cor-

responding to (44} decomposes as tensor products of trivial and gencrating primaries,
whether regarded as a su(2)n % su(2); or §u(2)N 41 X L, primary field.

6

We then develop an inductive argument. By taking the operator product expansion of
the vertex operators

w[! ] w#E0 a0

successively with the primaries

T 7o
W[ f]eas dn=0d, d.o. (3.11)
we show that all the branching coefficients (for allowed vertices) corresponding to (I + 1, j)
and (I,j + 1) (when defined) are non-vanishing if all those corresponding to (/, §) are non-
vanishing. Since the result is first established independently for (I,7) = (0,1/2), (1/2,0),
we are then finished.

We remark that (3.2), (3.4) illustrate the well-known observation that the fusion rules
for the Virasoro theory at ¢ = 1-6/(N +2)( N+3) correspond to the fusion rules for the su(2)
theory atlevel N and N +1, with the correspondeice given by (taking p+p'+p" +q+¢'+¢" €
2Z without loss of generality):

hpq ) 6
: ate=1- —m——— 3.12
(h},n.qu hp.'q, € N+2)(N+3) ( )

is an allowed vertex if and only if

-1 -1
(J’#‘l) at level N, (1'._;1;.1__,.) atlevel N 4+ 1 (3.13)

are allowed vertices.

\
3.1 Branching coeflicients for the generating primaries

Corresponding to allowed vertices at level N and level 1 respectively, the tensor product
Bl g 2O P ol ,2) (3.19)

of su(2)-primaries has the decomposition

i ' N i -~ by -
i ’;' 7 [f" [ ;'] Q-"" i'( 30 Q":"-q“ L (=), (3.15)

Jidtd
where p = 20+ 1, ¢ = 2j + 1 and similarly for p', p”, ¢/, ¢". The sum in j is given by the
decomposition of ¥} ® V into irreducible su(2)-submodules; and in j” and j' by the GKO
decompositions of (N.1") @ (1.5") and (N.I') © (1.£') respectively.

The operator product expansion of a su(2)a-primary with its conjugate is, with |z| >
lw—z|>0:

@ ()@ (20 = Y R Y (@l (w2 L) 8% (e 2)
g m (3.16)

= Fi05 (018 ;oo = 2) ) 8% i + ...



It follows that the most singular term in the operator product expansion of {3.14) with its
conjugate is proportional to the identity operator on (N,l') ® (1,¢'):

0, 09%, (3.17)
tensored with the trivial su(2) x su(2)-module
(0195,( . w=2) ) OI85 (., w=2)].) 2 (Vi@ V)ouny ® (Ve @ Vodouty  (3.18)

when
Fyi'ow Fi5eh # 0. (3.19)

Being at level 1, we always have that F{, 55 # 0. Also, F§!"., # 0 for I = 0 trivially, and
for I = 1/2 by explicit calculation [2).

It follows from the above considerations that when (I, 7) = (0,1/2) or (1/2,0), then for
each pair of allowed vertices (¢ € j+ [+ Z)

() (52) om

and for each j' € I' + ¢' + Z. 0 < j' < (N + 1)/2. that the branching coefficient

Y, [ . ]
EalF i WO Py

is non-vanishing for some j” € I” + ¢" + 2,0 < j” < (N 4 1)/2. When (I,5) = (1/2,0),
there is only the single allowed vertex

(j"jj') = (i’oj') (3.21)

s0 that all the branching coefficients for allowed vertices are non-vanishing, and we are done.
When (1, j) = (0,1/2), there are either one or two allowed vertices

: 1
(77)=(pdhy). osrstsmp (3.22)

When there is only one (when j' = 0, (N + 1}/2), we are again finished. If there are two,
we now show that both of the corresponding branching coefficients are non-vanishing. We
have (" = 1/2 —¢'):

00k 0= ¥ vi.el.aeelr, 5  (®)
7 o=jtkd
where
4 4 o
v =vhu0 L]
Fix a value of ¢/ = 2j' + 1, and let

3 I 2.
Yi 40 vii=o0 (3.24)

x

where {g4,9-} = {¢' 11} and j3 = (g+ — 1)/2. To obtain a contradiction. we examine the
braiding behaviour of

1
8, 00% () Py =Yi 8 08 L () (3.25)
with its conjugate
Py 80,080 W w) =T, 0k (mesl, , w) (320

where Py o is the projection onto the summand (N + 1,5') ® {¢,hy o). Braiding the
left-hand-side, we get, |z| > |w|:

i1
Prg 8006 [0d (. 00h (0 Peg COE (3.27)
which, by (3. 25) and {3.26). has the decomposition, |z} > |w}:
H‘ 3 . Ay, YT )
C F [Q T "b" s ( ol )] o [¢":"~v' ,",’“(.-.)(I)h::" Rt ot (N )] ' (323)

s J i
We examine the operator product expansion of this expression with the su(2)n41 X Lc-
primary

.’J#

3 .
@ (.08 (3.29)

It is sufficient to look at the su(2)n4; part of the operator product expansion. The most
singular t&rm in z — = — 0 is proportional to

1
{Z(E;lq’f’*( sx= ) -)0‘_,4(&.:)41}”.(..u»)] (3.30)
where {£,}, {€2} is a dual basis for Vy, with behaviour
~ (7 — )" FAO/ENFDHI(ENEY, (3.31)

However, on the right-hand-side. braiding gives, |z| > [uw]:

1
J+J { Z é!’)”" Sl u‘)(dljh}

=g

4

hy2 h|3 -‘l o hiakuzhy
@{ Z 2SR £ L S L L A (3:32)
=0

and the su{2)n41 part of the most singular term in 2 — z — 0 in its operator product
expansion with the primary field (3.29) is proportional to

Rt el e -y ol e (3.33)
with the behaviour ) )
~ (1 = ) 2O/BNED (3.39)

since, by explicit calculation [2]. the su(2) braiding matrix, and lience also the fusion matrix,
involving a generating su(2) primary and an arbitrary primary has no vanishing entries.
This establishes the contradiction. We conclude that the branching coefficients for allowed
vertices are non-vanishing when (1, 7) = (0.1/2) and (1/2,0).
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3.2 Branching coeficients for other primaries

We consider the operator product expansions of the primaries

‘P)[l‘"'l“ m‘ n] . !Z)‘ (iv j) = (0‘ %)v (%70) (3-35)

with the vertex operator
i ] €
v, . ‘,](.,w) (3.36)
for fixed but arbitrary (I, )} # (0,0).
3.2.1 hypg = hpi1q

Consider the operator product expansion of

el b o], e e (3.37)

‘l" ‘l’ rl ‘I Ul l
Each coefficient of the expansion in powers of z — w is generically a linear combination of
su(2)n x su(2), vertex operators, each descendant from the primary

o (L w0t w) (3.38)

according to the power of z — w being in

-1%p

-£+

and with dependence ou the spin ! entircly contained in a scalar factor

Fo i #0 (3.40)

the exceptional cases beiug when the fusion rules are inore restrictive and allow only one of
the two possibilities above, and this occurs when [ = 0, N/2. On the other hand, in terms
of their respective expansions in terms of su(2)}n41 X L-primaries, we have

el ol ]
w0 [OR L L, (0] (G41)

Retaining only the terms (in powers of z — w) that have coefficients that are also primaries,
there are generically 2 terms, with the same exceptions as before:

- it h
Z(z — w)hrrre=hog=has Z ZJ” [ ¥ d-c ‘u] (,)" Alwe @hp:'x 1" b '(u)
+ jll‘jl

l“l ’l i 1 ,
(3.42)
where

1 s AR 3 7 P [ D0 | 7 (P 1 e e C XL

3 PP e g 5 P ] P et e hpgi.ghyu g

1]

The remaining terms in the expansion have coefficients that are descendents of the coefficient
of one of these two terms, and they come in integrally larger powers of z — w
Since »
hpsrg=hp1a=p-q+ Y ¢z, (3.44)

we can identify each of these linear combinations of su(2)n41 X L.-primaries with the
coefficients of the corresponding powers of z — w. Now by the ‘state-field correspondence’,
these su(2)y x su(2); vertex operators are characterized up to a scalar factor by their
decompositions into su(2)n4+1 X L. vertex operators, and are thus, up toscalar multipication,
the vertex operators

£} 4-e
{,,.. ¥ ow ,]( (3.45)
so that, up to irrelevant scalar multiplication,
23 i }-e iy -« e
Vi b ) =zh [ A JRLh (3.46)

is independent of I".

3.2.2 hyp g — hyoxy

We consider next the operator product expansion of

-

L1 RPN TOREIE 2] I [P} (3.47)

Each coefficient of the expansion in powers of z—w is a linear combination of su(2) x5 x su(2);
vertex operators. descendant from the primary

$h u( . L w)0 @475 (L w) (3.48)

‘ur ‘u

and each term has behaviour ~ (z = w)#, u € —¢ + Z. On the other hand, in terms of their
respective expansions in terms of su(2)n41 X L.-primaries, we have

.3 [ T Lo
E )j'" e P e e }J" J Il ey

JM i

[ed, o ®du )] @ [0hi2 L 000 L ()] (349)

and retaining only the terms (in powers of = — w) that have cocfficients that are also
primaries, there are a priori and generically 4 terms:

Yo (2 w)tbiia) 3 Z’.’.:’,?[l,,‘r f“] B0 OO, (w), (3.50)
Jnia=itd g

where g1 = 2ja2 + 1 and
R [
ziu | | =

j P e e

B} 0 '";,, byt ..h.,gh,,,h,._,.
DRI I 0 A I U 8% ol N it (3.51)

1
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and
L i-0 fh=h=jt}
rInI) = -0 L2 itq=it b h=iF )

Again, the remaining terms in the expansion have coefficients that are descendents of the
coefficients of one of these terms, and they come in integrally larger powers of z — w. The
exceptions to the generic case occur when j = 0 or N/2, whence the fusion rules are more
restrictive, and the four terms reduce to the one, corresponding to j; = j» = j + 1/2 and
7 — 1/2 respectively. Then {3.51) is a sum over a single value only of j”, given by j' and
N/2 — j’ respectively.

But j+14+¢€Z, and (2 + 1)/(N + 3) ¢ Z, so that, for each pair of spins j", j', we
must have

(3.52)

AR L T .

zuf[ ), W] =0 it (3.53)
This is a notable property? for the branching coeflicients. The fusion matrices in the sum
(3.51) have no vanishing entries and are, of course. invertible, so that (3.53) implies that

Zui‘;m[ ! é—c]my}w[ o 4 ]yj{'j'[ v ] (3.54)

i PP ety PP et E ot e

for either and both of ;" = ;™ £ 1/2.

So we have just the two terms whose coefficients are su(2)n41 x Lc-primaries. The
more singular term (as z — w — 0) is identified with its corresponding term on the left-
hand-side and so can be written as a linear combination of su{2)n; x su(2), vertex opera-
tors, and it follows that the same is true for any of its su{2)n41 x L. descendents. Since
2|7 = 1} € Z, we shonld also identify the less singular term with some linear combination of
su(2)n x su(2), vertex operators, after appropriately subtracting away some descendents
of the more singular term. In both instances, once more using the ‘state-field correspon-
dence’, the decomposition of the su(2)n X su(2), vertex operators as a linear combination
of 8u(2)n4+1 X L.-primaries of particular spin and conformal dimension characterizes it up
to scalar multiplication as

\w'*i[ ! Jo.w . (3.55)

P e e

so that, up to a scalar multiple,

,,.jxi[ ! i-e} =Z{§&;z’t4[ ! 4~=], (3.56)

FD BT r; Pt e

2 \When we come to constrict a full non-chiral theory. we will want to consider, for each
pair of conformal dimensions (%, h). only particular linear combinations of tensor products
of chiral and antichiral primaries of the corresponding spins. Braiding and the operator
product expansion of pairs of such primaries should not produce new linear combinations of
chiral-antichiral pairs, Here, the situation is similar but with the antichiral primary replaced
hy a su(2)n4 primary. Observe that the branching coefficients are highly constrained
by this property, which is guarantced by the fact that these particular combinations of
Su(2)n41 X L. primaries can be written as su(2)y X su(2); vertex operators.
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3.3 Remark on fusion rules

We have proved the analogue of the GKO coset construction for Virasoro vertex oper-
ators of the unitary discrete series. In particular, a £ -primary

&k u(z) -

that is allowed to exist by the fusion rules established in Appendix A can be found tensored
with a su(2)y41 primary by projecting a suitable su(2)n x su(2); vertex operator onto
the relevant GKO summands. It is natural to ask if we can turn our arguments into a
proof of the fusion rules. In this paper, fusion rules have been defined to be the sufficient
and necessary conditions for the existence of primary fields. We now argue that we can
modify our arguments so that we do not need to assume any prior knowledge of the fusion
rules. Then we have a proof of sufficiency. Proof of necessity will rely on some plausible
assumptions. The modifications suggest that the fusion rules for other coset theories may be
proved in a similar way and, by a similar approach, other properties of the vertex operators
may also follow as they will for the case at hand here.

The generating Virasoro primaries were found without any recourse to the unitary
discrete series fusion rules. Now, we used the operator product expansion for Virasoro
primaries in order to find the remaining primaries. This is valid if we know the fusion rules
or, more precisely, that the primary fields which appear when we braid pairs of primaries
are already known to exist; and not valid if we do not already know this. This is the
usual obstruction to proving the (sufficiency of) the fusion rules from knowledge of the
generating primaries. Here, however, this problem can be circumvented. Consider (analytic
continuations of ) matrix elements of (3.37), (3.41) and their expansions in powers of 2 — w,
corresponding to the operator product expansion for (3.37), but not necessarily so for (3.41),
though each

(12 (D97, (016D (357)

hgert gn Rpee qor By g0 By,

certainly has such an expansion. This expansion corresponds to the analytic continuation
of this local solution of the corresponding hypergeometric equation at the singular point
z = w/z = 0 to the singular point z = 1. Now the operator product expansion of (3.37)
is a sum of descendents of the primaries (3.38), and the coefficient of each descendent is
independent of I, 1’ ¢, &', and dependent on I”,¢” only by a scalar factor (an entry of the
fusion matrix) that is the same for each family of descendents. In particular, we can look
at thecase I’ =¢' = 0, so that I = [, &" = ¢, & = 1/2 - £; and at the action of (3.37) on
the su(2)ny x su(2);-vacuum vector |0) ® |0). Then (3.41) gives

oo w00 (&), (218} o(w)l0)] (3.58)
and the operator product expansion of this pair of Virasoro primaries can be used because
the Virasoro primaries ®% (=) are known to exist alrcady, simply by the "state-field corre-
spondence’ for the su(2) theory. So we have, in this special case. (3.42). As before, we can
pick up the cocflicient on the left-hand-side corresponding to the powers of : — w appearing
in these two terms. But by the ‘state-ficld correspondence’, there is a unique descendent of

oo cmoeel (3.59)
whose action on the vacuum is given by
¢£ ol )]0} & ‘b::::: o]0} (3.60)
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so we can identify it as
HEE R B
v [H:§0 4-:0]("‘”)' (3.61)
We go back to the general case. It follows that for arbitrary 1", 1", I, ", ", ¢',

PO e e

wi[‘** i ]( o) (3.62)

is the coefficient of the same power of z — w in (3.57) as for (3.61), and we have obtained
(3.42) and (3.43) again, with the fusion matrix in (3.43) now understood to be a connection
matrix for a hypergeometric equation, which we have to show to have non-vanishing entries.
This follows from Appendix B. The same applies to the arguments for the induction in the
direction hp o — hpgt1-

In the next section, we will show that correlation functions of Virasoro primaries con-
verge to holomorphic functions and can be written in terms of correlation functions of su(2)
vertex operators. Moreover, independent of a direct analysis of the 4-point BPZ equations,
pairs of Virasoro primaries braid under aunalytic continuation, and in particular have op-
erator product expansions. The set of Virasoro primaries found hy the coset construction
obviously has the following completeness property: it contains the Virasoro primaries

®}4(2) (3.63)

for each unitary highest weight #; and it contains enough Virasoro primaries for the braiding
behaviour

Bhl o(2)Bg3, (w) = Y B (w)pY, (5) Cpyhtele (3.64)

h

to make sense for all unitary highest weights by, hy. In fact, if we can establish that none of
the braiding matrix elements in (3.64) vanish, only the entire set of Virasoro primaries has
this completeness property. We conjecture that such a completeness property characterizes
the fusion rules for coset theories in general. The reason is that such a complete set of pri-
maries is expected to be sufficient data to define Connes fusion, a commutative associative
(up to equivalence) product on the category of unitary positive energy representations of
the symmetry algebra of the coset theory. (The W-algebra case is still unclear.) The corre-
sponding representation ring is given by the fusion ring which we can construct abstractly
from the fusion rules, as it should be.

4. Correlation functions of Virasoro primaries

We now show that the convergence of correlation functions of Virasoro primaries follows
from the result for su(2) primaries and the constructions of the previous section. In either
case, convergence for general vertex operators follows from convergence for primary fields.
The M-point function

(Tar(ozan) ¥, 2) {4.1)
of su(2)n X su(2), vertex operators is known [2] to converge for |zas| > ... > |n], where
Gz = wi[ 00 |G = tean (4.2)
[ AN A

with i =ty =<} = )y, = 0. Now this is a linear combination of the terms

. h h
I aa) e (s PA AN EIVI R MR z 1.3
1'u+| 1'"( L3ur) i ’;( l» (q)“"nxl-n'";uu h"m "';1( M) h'zz"'é h”l"'l( |)) ( )

where ji = jiryq = 0, and the 5] range over the obvious values. The first factor is a M-point
function of su(2)n41 primaries and thus a convergent series. But by projecting (4.1) onto
an appropriate irreducible su(2)-submodule of the tensor product

Vie ®---®V;, (4.4)

we see that each term in the sum converges separately. We do this by first projecting V;, ®
Vj, onto the irreducible component isomorphic to Vj; for a choice of jj, then sequentially
projecting each V;, ® V;; onto Vj:  for a choice of ji,, for i = 3,..., M — 1. By inspection
of the operator product expansion of a pair of su(2) primaries, we see that this obviously
works, that only one term in the sum of terms (4.3) survives the projection. This is a notable
property. It follows that the second factor, a M-point function of Virasoro primaries, is also
convergent. As an immediate corollary of the proof, we have the expression of a correlation
function of Virasoro primaries in terms of correlation functions of the corresponding su(2)
theories. Indeed, each is a sum of quotients of su{2)y x su(2); correlation functions by
su(2)n41 correlation functions, as befits a "coset theory’.

Actually, it is sufficient to know that correlation functions of generating Virasoro pri-
maries converge to obtain that those of arbitrary Virasoro primaries converge. For 4-point
functions involving at least one generating primary have already been shown to be con-
vergent, so that the operator product expansion of a generating primary with an arbitrary
primary is understood. Beginning with a correlation function of generating primaries, we
successlvely replace a pair of primaries, onc a generating primary, with a primary field
appearing in their operator product expansion. The result is also a convergent correla-
tion function. But we easily show that we can obtain an arbitrary correlation function in
this way, using the fact that the braiding matrices involving a generating primary have no
vanishing entries. Thus is the term ‘generating primary field’ also justified.

It {ollows from Appendix A that pairs of Virasoro primaries braid under analytic con-
tinuation but it is better, particularly when considering other coset theories, that we do not
have to analyze systems of partial differential equations to prove this. We now show that
this property is inherited, via the coset construction, from the same for su(2) primaries.
This is straightforward to establish by considering the braiding

i hL € ] ,‘[ s € ]
hn - 2 =
v {’m Iy ( b ") ¥ Pp e e ( L)

P L e T iy e ] _
PR Eite it Tl Il (PR L 21 [ [P R TR
Le

in terms of the su(2)n41 X L. components. To see this, observe that if we project the su(2)-
module Vj, ® V;, onto each of its irreducible submodules in turn, the (matrix elements of
the) operators . )

O el )R 0) (4.6)

as j” varies, are pairwise linearly dependent. and analvtically continne to an operator
proportional to A ]
Ja Add -

L G o (4.7)
for any of the values of j, these operators being likewise pairwise lincarly dependent. The
number of operators (-1.6) indexed by j” is equal to the number of operators (1.7) indexed
by j, and this is again the number of different projections onto an irreducible submodule
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of V;, ® Vj, such that (4.6) does not vanish identically. This last assertion follows from
considering the operator product expansion of (4.6), i.e. the analytic continuation of (4.6)
from |z] < 1to |[(1-z)/z| < 1, where z = w/z. We are, of course, just performing a change
of basis for the solution space of a system of KZ equations.

The braiding (4.5) implies, for each ", j', the equality of

S v [ A ]w’* [" . ]
§ 00 4§t
o 3y F PP EA A WL P

i} By hyy.
@j!u jn( . z)@j?. j‘( Lw)® @h:""f:m h’".'”(z)@h:,’,;f' h’,“,(w) (4.8)
with
P51 e ereae’ v la a2 g [fh &
'Ej Cll" Ccc" },j"’ j[‘m 1e" e }/jj‘ I ee
'+,

®5, (LWL )@ErT L ()@ (2)  (49)

h By qras by, Rpq Ryr gt
in the sense of analytic continuation. By performing each of the projections onto the
irreducible components of V;, & V5, in (4.8) and (4.9), and factoring out the su(2)n41 con-
tribution, we obtain a system of equations for the braiding of particular linear combinations
of the Virasoro primaries (4.6) which, by a change of basis, is of the form

h’l~'l - h’!-"} -
LT By g ()RR, Ay (W)=

Z q”’:!:-lq (1',)¢:']v‘] (z) C::"".""h'ldl Apzaahyr o (4.10)

2ttt gttt By g poo Byt gt pahyn o1t
h’»!
for some braiding matrix. in principle computable from the braiding of su(2) primaries and
the branching coefficients.

5. Comments

We have proved an analogue of the GKO coset construction for Virasoro primary fields.
This lets us deduce properties of vertex operators in the unitary discrete series from the
properties of vertex operators in the su(2)-WZW theories, which are easier to study. This
is our guiding principle. Here, we have obtained as a corollary the fundamental property of
convergence of the Virasoro correlation functions without the need to analyse differential
equations that are more complex than a hypergeometric equation. The construction also
gives a proof of the Virasoro fusion rules under the assumption that a completeness property
characterizes them. Properties such as the braiding hehaviour of primaries, and therefore
also their operator product expansions, can likewise he obtained from this constrnction. We
hope to give further applications in a future paper.

The considerations here also apply to the unitary discrete series for the super-Virasoro
algebra. In particular, we can obtain the fusion rules (with the same caveat) in an ele-
mentary way. It also gives us a simple coustruction of the ‘twist-fields’ that intertwine the
Neveu-Schwarz and Ramond sectors, which are difficult to define algebraically. We will ad-
dress these questions in a forthcoming paper. More generally. we helieve the approach taken
here will be useful in studying analogues of primary ficlds in coset theories. say for which
the extended algebra is a W-algebra. The simplest of such analogues are the ‘twist-fields’
of the super-Virasoro algebra. We expect that the utility of the approach taken here will
increase as we proceed to study the less understood coset theories.

16

Acknowledgements

This work was supported by the Overseas Research Students Awards Scheme and a
studentship from Trinity College, Cambridge. I am very grateful to P. Goddard, A. Kent
and A. Wassermann for guidance, useful conversations and comments.

Appendix A. Basic algebraic theory for the unitary discrete series

We present a summary of the construction and basic algebraic properties of vertex
operators of the unitary discrete series, following Tsuchiya-Kanie [2], followed by a short
discussion of the solution space of a system of BPZ and projective invariance equations.

We will be concerned with unitary positive energy modules for the Virasoro algebra,
where unitarity is with respect to a contravariant inner product [9]. An irreducible highest
weight module H(c, h) for the Virasoro algebra is the quotient of a Verma module M(c, h) by
its maximal submodule J(c, k). Of these, the unitary ones are the irreducible components
of the unitary positive energy modules. For central charge ¢ < 1, they constitute a discrete
series given by [1.4}:

6
m(m+41)"
he [p(m+ 1) —qm]* -1

dm(m + 1)

c=1-~ m=3,4,...
(A1)
o p=lioom=15 g=1,...,p.

-

We will actually let 1 < p < m-—1, 1 € ¢ < m, and take appropriate account of the
double counting given by lpo(¢) = Am_pmsi-qlc). It is known [10,11] that the max-
imal submodule J{c,hpq(c)) is generated by a pair of singular vectors Opglc){h, q(¢)),
Omepmi1-gle)hpq(c)). respectively at levels pg, (m — p)(m + 1 -~ q).

Given some Virasoro modules, we can try to obtain new modules from them. We can
take direct sums and tensor products, but the central charge is additive under the latter
operation whilst it is natural to try to remain within a class of modules with the same central
charge. We might hope to take the tensor product of a unitary positive energy module with
another which has vanishing central charge, but there is only the trivial module {12]. On
the other hand, we have the spaces of ‘densities’ V, g [9] (irreducible if « € Z or 8 # 0, 1)

=l (kel) (42)
Linyvp= (k4 a+ B+ 0) sk

which are m;dnles with vanishing central charge, for which L(0) is diagonal with finite-
dimensional integrally-graded cigenspaces. but whose spectrum is unbounded above and
below. Then we can try to find a space of ‘densities’ whose tensor product with a unitary
highest weight module possesses a unitary highest weight quoticnt, i.e. construct a module
of linear operators froin a unitary highest weight module to another which transforms as a
‘density’: a Virasoro primary ficld. These constructions are labelled by a triplet of numbers
a, B and the highest weight (c. ) of the initial unitary highest weight module. With no
loss of generality, a can be chosen such that the new unitary highest weight module has
highest weight (¢, & — e — 3). We are led to the determination of the fusion rules of the
unitary discrete serics of the Virasoro algebra: for each ¢, the set of triplets of numbers

,Ig
(h.« h') (A.3)
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called allowed vertices, for which
H{e,h3) 2 Vop® H(e, k1) ~, a=hi+hi—hs—1,3=1-hy (A4.4)

as an isomorphism of highest weight modules, where Il (c, h,), H(c, h3) are unitary highest
weight modules and the quotient is by the maximal proper submodule containing the strictly
negative eigenspaces of L(0) — h;. That is, we have a module of operators

B(k): H(e,hy) — H(e,hs) (k€ )

[L(n), ®(k)] = — (n + k + hy — hy — nhy) &(n + k) (4.5)

or, equivalently,
B(z)= Y (k) 7k hathimh)
kez (A.6)

[L(n), ¥(2)} = z"*‘-(-l-?:z—? +ha (n+1) 2" ®(2).

It is easy to see that ®(z) is uniqnely determined by these relations and the normalization
(ha] $(z) |hy) = 3~ thathi=ha) (A7)

where |h;} € H{e, h;) (i = 1,3) are highest weight vectors of unit norm. We call #(z) the
Virasoro primary field corresponding to the vertezr (A.3), and h; its conformal dimension,
and write it as
ha .
®,2,,(2)
Its conjugate is defined to be

11t
# ()= [macd| (48)

and is easily seen to be @ﬁf nlz) Equivalently, ®(z) is a sesquilinear form on /(c, h3) x
H(e, hy), and simultaneously a degenerate form ¢(z) on M{c. hs) x M{c.hy) that factors to
the quotient space: )

A& 3 2) = (€ (=) |7) - (A9)
where £ = £ + J(c,ha), = n+ J(c,hy). .

Now, for any pair of unitary highest weights (¢, i), (c, h3) and hy € C, there is a
unique sesquilinear form ¢(z) on Af(¢, hy) x M{e, hy) such that

Bl|ha), [hy); 2) = 7 Whatha=hol
(A.10)
S(L(~n)E, 3 z) — B&, Lin)y; 2) = [:"“Ed; +ha{n+ l)z"] HE s 2)

for all £ € M(c,h3), 1€ M(c.ly), n € Z. llere, by abuse of notation. [h;) € M(c,hi) (i =
1,3) are highest weight vectors of unit norm. Theu ¢(z) defines a primary field if and only
if it factors to the quotient #/(c.hy) x H{e hy). Let by = hy, o (i = 1,3). We easily see
that it factors if and only if

ﬂop.\.qulh)? lhl); :

(A.11)
L 0""‘?3-"!'9-! —‘l.\th;‘)' "‘l ): <

IS

and
#(1h3), Opyqsl1); 2) = 0
¢(’h3)s Om—p|,m+l—q,‘h|>; Z) = 0.
Using (A.10), each of these reduce to a polynomial equation in hs. The left-hand-side of
the equation corresponding to Opglhpq) is a differential operator of order pq acting on
z~{ha+hi=ha) giving a polynomial of degree pq in hy.
We now appeal to a result [13—15] on the BPZ equations for a 3-point function. Let

(4.12)

i
-

Opray = S, L(=iy)- - L(=in) (4.13)

1 iaenin >0
HbeHinEpa

z
[}

and dg;‘m be the same with each L(m) replaced by
PBmy=- 3y :;';’f'b-‘lif +hi(m+1):0. (A.14)
=23 ~
Then
. 2an 14%1]
O3ty 555 = (2] o) 553 s (415)

where Agy = hy + by ~ hj etc., and gp, 4,(h2,h3) = 0 is a polynomial in ha of degree pyqy
and the roots are given by

AN
[Pm+1)=gm]® =1
e | =p3 — N yeooy -1
Tmim+ 1) p=p-p+tlp-—m+3 Btm (A.16)

g=g@-n+l.ga-q+3....a+q -1

It is noteworthy that both hy aud h,, ., can be arbitrary complex numbers at this stage,
but that the pair of equations

gm',“(lk_).,lg) =0, g,,,._p,'m.g.l_ql(hg,l'l:)) =0 {A.17)

force h,, o, to be a unitary highest weight. It is now casy to see that the pairs of equations

" (A.11) and (A.12) are equivalent and that the solutions are given by

hy = hpq,
p=lm—-ml+ L p-ml+3....omin{ps+pm - L 2m—py—p — 1) {A.18)
g=|lp-ql+lip-ql+3... . ming+ag-L2m+)-g—-q 1)

and we have the well-known fusion rules for the unitary discrete series. In particular, hy is
a unitary highest weight. 1t is clear that the fusion rules are symnetric: a vertex (A.3) is
allowed if and only if the vertices obtained by permwuting hy, ha, hy are also allowed. \Ve
can define a commutative ring with ideutity, the fusion ring, which, as a Z-module. has a
basis given by the set of unitary highest weiglts (for some fixed central charge), and with
multiplication given by

Ii;hj = Z t',‘j&/);‘. (1'.10)

k
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where ¢;;, = 1 if

hj
h; hye

is an allowed vertex, and vanishes otherwise. Commutativity is immediate and associativity
can be checked directly but also follows from the fact that the 4-point functions span the
solution space of a system of BPZ and projective invariance equations for a 4-point function
(see below). The fusion ring will be the representation ring (for unitary positive energy
representations at a fixed central charge) of the Virasoro algebra, when fusion is defined.
Let
T(z)=) L(n)z™"% (A.20)
nel

Recall that a unitary highest weight module }/(¢,h) decomposes as a direct sum of finite-
dimensional positive eigenspaces of L(0):

Hehy= € MHiehir) (A:21)
r€h+Nq

and the inner product identifies its algebraic dual as

e ) = H H(c.h:r). (A.22)
r€h+No

It is useful to think of primary fields and T( =) as functions on C* taking values in linear oper-
ators from the unitary modules to their duals, holomorphic in the sense that matrix elements
are holomorphic (say, in z € C*. —x < arg(z) < 7). The chief interest is the composition of
these ‘fields’, by which we mean for a sequence A;(z;) = Z“' Ailni)z™ -di(i=1,...,N),
if the formal series

Yo (aldAntnn) - An)]g) SR AN g (A.23)

AN ety

is convergent on some domain in {zn| > + <+ > |z;], for all n, £. A sequence of T(z)’s and a Vi-
rasoro primary field is composable, converging on |zx| > ... > |z1], and can be analytically
continued to a holomorphic function, single-valued, on {{zn,...,21) € C*N: 7 # i # 5}
Moreover, any permutation of the fields yields the same function. In particular, in the sense
of analytic continuation

T(z)T{(w) = T(w)T(z)

A.24
T(2)8(w) = ®(w)T(=) (A.24)
and for jw| > |z ~ w|, we have convergent expansions in powers of z — w:
T(z)T(w) = c/2 2T(w) 1 dT(w)
(z—w)  (z=w)?  z-w dw
hd(w) &(w) (A.25)
T{z)®(w) = FORALLE

(z=w)  z-w

For each primary ficld ®(z) corresponding to a vertex. of conforiual dimension h, we can
define an irreducible highest weight module with highest weight & spanned by

Limpny---Lim)® (2), (4.26)
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which are, like the primary field they descend from, holomorphic functions on C - (~o0, 0]
taking values in sesquilinear forms on products of unitary highest weight modules; given by

1
@ fc,., A dwy -+ -dwy (wy — 2)™* e (wy = 2™ T(wy) - - T(w)d(2)
(A.27)
where each contour encircles z and C; goes around C;_;. The action of the Virasoro algebra
on this space is the obvious one which we can check by the usual ‘contour trick’ or directly

using

L(m)¥ () = {Z ar(=2)"L(m - r)] ¥(z) - ¥(2) [i an(-z)™ T L - x)] (A.28)

r=0 r=0

where (1 + z)™+! = e -z, z] < 1. Irreducibility follows from {A.15). That is, for
h = h, 4, we have
0 2P (z)=0
. . (A.29)
0m—p.m+l—q¢ (z)=0

where, of course, each ép-v is Op,q with the L(m)'s replaced by L{m)'s. Elements of these
modules of ‘field operators’ are the chiral verter operntors. For each ¢ € H (e, h), we write
the corresponding descendent of ®%, ,.(z) as

-

&by v, 2).

An N-point function of Virasoro primaries

(On(zn) - Di(z)) (A.30)
where &;(z;) = (bz:“ w3l hi=hy o (i=1,....N)is a priori a formal series:
Yo (01Bunn )by (m)[0) g™ I Lz (A31)
BN worny ny

From (A.29), we obtain for |zy| > -+ > |5] the 2N BPZ equatious [5):

O»:;. (Pnlzn)- i) =0 (A32)
on: (Enlzn) - @i(z1)) =0 {(i=1....,N) h

m=p,,m+1-9q,

where O",“"," is likewise O, , with cach L(m) replaced by

N

i P

LN.:(nl): - :;"9+‘5.:+Ixj("1+1):;}. (A.33) .
iml =3
e

The coeflicients in the differeutial operators have convergent series expansions and the
equations are understood to be those of formal series. In addition. we have the 3 projective
invariance equations

N
m1 0
> {"; Hom thim+ l):}"} {dnlzn) - @i(z)) =0 (m=0.%1). (A.34)
b

i=
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Thus, corresponding to a sequence hy,...,h; of unitary highest weights is a system of 2N 43
differential equations. A corollary of the results in this paper is that the corresponding N-
point functions converge. We would like to know that they also span the solution space of
this system of equations (see also [16]). It will emerge that any 2 of the N pairs of BPZ
equations can be disregarded, as is already apparent for N = 2,3.

In the rest of this section, we will suppose that we have already determined that the N-
point functions are convergent. We now show that there are no other regular non-logarithmic
solutions. The change to the variables of Tsuchiya-Kanie [2]

wi = zi/zH-I (‘ =1,...,N~ 1)

(A.35)
wy = 2ZN

is an analytic isomorphism from {(zy,...,2) € C*N: |zn] > -+ > |z1]} to {{wn, ..., w1) €
C*V:fwf < 1,i=1,...,N—1}. We consider the system of 2N +3 equations corresponding

to the sequence of unitary highest weights hn,..., hy, h; = hy, 4, A regular non-logarithmic
solution at the origin is a convergent series solution:

wiy -y Z Cryeyoony By o o) (A.36)
AN ettty 20

N

for some a; € C, with ay = ~ 3 i_, hi, an—y = ay 4 2hy, and a; = 0. In terms of the

z-variables,

-1

- —Chid s =k - PR
ZN'”\N H z; (hit+ 41} Z Cnyoyomy TNV _-"‘ R Poaugh (A.37)

i=2 NN}ty 20

where ky = hy. k2 = hy. Denote this solution by f(zs....,z;). analytically continuing
it when necessary, and observe that its leading term as 23 — z; — 0 has behaviour ~
(22 = zp)~Uhathimks) g

1
9Ny 23 ) = 5;-‘.};/“132 (2= m)ethi=be=l sy ) (A.38)

be the coefficient of this term. Observe that (A.15) implies that ky is a unitary highest

weight such that
hy
(=) (4.39)

is an allowed vertex. We now show that g(zn....,23.21) is a solution of the 2(N — 1} + 3
equations corresponding to hx, ..., hs, k3. The projective equations arc easily seen to be
satisfied. It is sufficient to show that it also satisfics the N — 3 pairs of BPZ equations
corresponding to hy,....hy. Then, by induction on N. we are done, since the case N = 4
is clear.

Observe that, for jzn] > - ++ > |71),
fanaeoz) = (01905 (sN)Fn(zn-t ... 22) B0 o(21)]0) (A.40)

where Fy(zn-1,....23) is a holomorphic function in its variables taking values in sesquilin-
car forms on H(c,hy) x Hl(c, hy); defined by

(hnIFn(zNaye- ozl = lim lim 33 flzn. ... ) (A.41)
E e K e

22

and
N-~1 ?
[L(m).FN(zN..l,...,z;)] = [Z 2:’”"5: + hi(m+ 1)2?‘] Fylznateeorza) (4‘42)

for all m € Z. This is well-defined by the BPZ equations corresponding to Ay and hy. From

1

377 . 42 TR ANIOY, gy F(arcty - ) ) = 0 (A.43)
2ri Jo i

we have
O;N N [“mo ,’yﬂ‘m "'2N'|M 9(zN, ..y 2302 )} =0 (A.44)

2y
where (5,',4 is 0;, with each L(m) replaced by
N-1

>

i=3

(A.45)

But, by the projective equations, this is the statement that g(zy,..., z3,31) satifies the
BPZ equation corresponding to O, oy ). The same arguments lead to the BPZ equation
corresponding t0 Om—py .m+i—gn [AN)-

Analytically continning the functions f(zn.....z) and g{zn..... 23, 51} to the domain
zil > fenl > ... > |;1), for j = 4,...,N ~ 1, we can repeat the construction above to
obtain Fj(zn,...,j,..., 22), holomorphic and taking values in formson H(c, h;}x H{c, hy).
The precise paths for analytic continuation are unimportant. and the leading behaviour in
z3 — z3 — 0 is unchanged. \We thus obtain that g(zn,...,2 ) satisfies the BPZ equations
corresponding to h; in the corresponding domain and thus, by analytic continuation along
the reverse path, in the original domain as well. -So we have shown that the N-point
functions span the regular non-logarithmic solutions of the BPZ and projective invariance
equations. To show that all solutions are regular at the origin (wy,...,w;) = 0 and are
non-logarithmic is a little more involved, unless N < 4.

For N = 4, the projective invariance equations plus one of the BPZ equations can be
shown to be an integrable Pfaffian system with regular singularities of the type considered in
Appendix C. Then all the solutions are regular at the origin and it remains to show that none
are logarithmic. Since N = -1, this is the problem of an ordinary differential equation with
a regular singularity at z = 0. Recall that logarithmic solutions occur ouly if the indicial
equation has repeated solutions. whence they must ocenr; or if it has solutions differing by
integers, whence they can but need not appear. In the latter case, we can keep track of the
possibly logarithmic solutions by keeping track of the solutions to the indicial equations,
since they are all distinct. To find the indicial eqnation, consider a formal solution

L

I = #ttoga) [ 4. ] w= 2222 (A.46)
izt “13~24
i<y

where Zj‘,-q vij + Zj.j<.-')'j,' =2hi (i = L) Let |5y > o+ > |z1], and the leading

~(hy+ha=ky)
2

behavior as 52 — 0 be ~ (logz12)" 2 . Then the leading behaviour as z3q —
12 B2 1 :

23




0is ~ (logz)" z:;',"'“"‘""". It follows easily from (A.15) that the indicial equations

corresponding to the Oy, 4, and Om—p,,m+1-q, €quations are respectively

gmm(hz.k;) =0

(A.47)
9m—p..m+l-q,(h2| k3)=10
and corresponding to the Op, o, and Opm—p,,m41-q, €quations are respectively
Ipoai(ha ka) =0 (A.48)

gm—p.,m«l-l—q.(hlh kS) =0.

The common solutions of the indicial equations correspond precisely to the 4-point function
solutions. Hence there are no logarithmic solutions. We do not have a proof for N > 4, but
the general case is less important for the following reason.

The fundamental corollary is the braiding relation:

(@2 ()8h, (w)l€) = 3 (n®)2  (uBh2, (2)E) Ctgteh (A.49)
hﬁ
in the sense of analytic continuation. for all n, &, The braiding matrix (C:.‘,f"""" Ynrh, which

depends on the class of path chosen, is necessarily square, with k. b’ ranging over values
such that the respective vertices appearing above are allowed. It is easy to see that (A.49)
holds for arbitrary 7, £ if it holds for highest weight vectors. We can also see that the same
relation still holds if each of the primaries above is replaced with one of its descendents.
It follows from the braiding relations that N-point functions, defined in one domain, are
always analytically continued to other N-point fuuctions. defined in another domain. If the
BPZ equations did have further solutions. the space of solutions is nevertheless ‘reducible’
in this sense,

1t is easy to show that for each vertex operator ¥(z).

[L(=1). 9(2)} = 5'3:,—(-’ (A.50)
from which follows for {z] > fw}:
Y(z)ew =1 = v H-Ny(z — w) (A.51)
and
) o(¢.2)]0) = 17w (A.52)

Then it is straightforward to show that we have for [iw] > |z — w|:

B2 ()00, (0) = 5 Fpat ™ S (an |34, (= = w)lha) &% ) (aw,w),  (AS53)

h' Ayt
where {as } is a homogencous orthonormal basis of I/{c.h’), and
Rohshahy _ ;rhaha 00 pehahabyhg vhhah O
Fa 3ttt = Ot T Oty (S (A.54)

gives the fusion matrix in teris of braiding matrices. For similar arguments in a meromor-
phic context, see [17].
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Appendix B. Computing braiding matrices

Let hy,h3, hz,hy be a sequence of unitary highest weights, h; = hp, o, (i = 1,...,4),
with hy = hy 2 or hy;. We want to calculate the braiding matrices (C,ff,f“""“);.:;.. Recall
that 4-point functions satisfly a system of (BPZ and projective invariance) differential equa-
tions which reduces to a system of o.d.e.’s of Fuchsian type with 3 singular points, which
we can and do choose to be 0,1 and co. It will be apparent that the braiding matrix is
essentially the connection matrix for a Fuchsian equation (for some path), relating the local
solutions at the singular points 0 and oo. Since hy = hy 3 or hay, one of these Fuchsian
equations is of order 2, and thus after suitable transformations a hypergeometric equation.

Corresponding to hy = hy s or hzy, we have the BPZ equation:

3 & 20 ol o B
Wriat X oyl | /=0 (2.
=134 4

in addition to the projective invariance equations:

4
[/
z;"“-é-;m,- (m+ 1)z f=0 (m=-10,1) (B.2)
i=1 el
We will consider this system of equations. which we reduce to a hypergeometric equation
H(a, 8,7}, unique up to Kummer’s 24 generically distinct transfornations that take one
hypergeometric equation into another:

¢/ , Y -
::(l—x)m+{‘r-(ﬂ+/3+1).1}:l—1--alif~0 (B.3)
with Riemann scheme
1] 1 0
( 0 0 ,a). (B.4)
-7 7-a-4 3

Our problem then reduces to the classical connection problem for the hypergeometric equa-
tion, whose solution is known [18.19}.

The projective invariance equations have the general solution

4
H Z‘;"ﬁj f(x). r= :l'."'a-l , (BS)
=) 6!3:’:‘4
1<y
where the v;; are arbitrary solutions to
4 4
;= Z Yij + z i (i=1,...4) (B.6)
=) 1=l
1<y i€

We can choose, say, 712 and a3 arbitrarily, and obtain
Jiz=hi+he+hy~hy =910 -77
Y=y by = hy = hy 4+ 93
Y2 =20 -2~
Yaa = ha + hy = hy = ha + 710,

(B.7)
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With this Ansatz, the BPZ equation above reduces to

3 d&f 3n 1 37123 1 df
4h,+22?+({"’21;,4»1]3"[1'2/;,“]1-:)&'5 (5.8)

(1 - z) z? (1—z)?

Now let 713, ¥23 be respectively solutions to

Iana +1) = (dha + ) (ma+ k) =0

B.9
3123(12a + 1)~ (4ha + 2) (123 + h3) = 0 (8.9)
so that we get the hypergeometric equation /l{a,4,¥), with
dhr+2
=3 2712
8h, + 1
ﬂ+/3=—-2-3—--2(’7n + 723) (8.10)
4hy +2
afl = 212y + 23 N3
Further, we easily check that
{hpy g1 =y —ha+ 112} iTha=hy
0,1=7} =4 [rom e
{ i {{hmtl,q. =hy~hy+m2} ifhy = hyy (B.11)

{o.8} = {{"mm.ﬂ +hy—hy =2 =1} ihy=hiy
' {hp, 1,0, + B2 = hy — 112 —~ 73} il hy = hay.

Of course, h;, ¢ need not be a unitary highest weight for p, ¢ not in the usual ranges.

The 4 generically distinct choices for (712, 7¥23) correspond to the Kummer transforma-
tions that act trivially on the variable z. For definiteness, we take:

~1~[p(m+1)-qmj _~l=[m(m+ 1)~ gam]

2Am+1) v 2(m + 1) ’

hy=hi2: 2=

24
. } = Byygutt = peae + B2 = (712 + 720)

ntnFu (812

1
=50+m+mFp)-tn+twFa)lt 2(m +1)
Y=L+ +hy =yi2 = hyy g1

hn
=14py—-q +—
b= m+ 1

20

and
1+{pmim+1)-gm 1+[p(m+1)—gm
hy=hyy: m2= [Pl( 2m) L] ]'723:__ IPJ 2m) 73 ]'
g} = hpoxrge = Bpoge + b2 = (112 + 723)

P1+PFpa (B.13)

1
=§{1-(P1+P3¢P4)+(qt+fls?¢m]‘° o

v=l+hi+hy~m2 =Ry

=1-P|+lh—‘f,-;~

Replacing (py,q4) by (m — py,m + 1 — ¢4) interchanges a and 8. Replacing (p3,4q3) by
(m—p3,m+1~aq) (P,q1) by (m —pi,m+ 1 — q1), or both, implements a Kvmmer
transformation, given equivalently by (a,/3,49) — (v - 8,7 — ey} (0, B,7) — (1 + a —
Yo 1+ B8-72—~9h (a,3.9)— (1= ,1~a,2 - ) respectively. Together with the identity,
these transformations form a subgroup of Kummer transformations (2 Z, x Z.).

We look at the case: hy = Iy . Observe:

0

m+1'

= o~ B
a+pd—-1=p l[3+m+1, {B.14)

= ps — i
B-a=pm Lk geares ¢z

T-l=p-q+ —

- The conditions v, a+3~+, 3~a ¢ Z respectively guarantee that the local solutions at the

singular points 0, 1, oo are non-logarithmic. Because of the other 7 BPZ equations, which
we have ignored so far, we are interested only in the case when at least one of

( hPﬁ-‘IJ )

hmm hmmil

is an allowed vertex. Then we have, exclusively, cither that py+pa+py € 2Z+1, @1 +q3+0 €
2Z; or that py + p3+ pys 1 + 43 + 4 € m+ 1 + 2Z. Equivalently, }:',-'=,(p,- +q;) €22
or 2Z + 1, respectively. Tlese two cases are exchanged by any one of the involutions

(Pirgi) = (m = pim+ 1 - ¢). i = 1,3, so there is no loss of generality in restricting
attention to one case only. We consider the foruter case. Then:

a€lon+p-u=0

eI @ p+p+qp=2(m+1)
a=-1€l@qpa+pu-p=0
d-v€l S qp+qp—q =0

(B.15)

Observe that these are mutually exclusive conditions. Each of the equivalent left- and
right-hand-side conditions lias a simple interpretation:

Let fu(z,v), a = 0,00, denote the local solution of H{a.3,7) at the singular point
z = a, with characteristic exponent ¥ (we won't need to consider the singular point z = 1).
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More precisely,

Jo(z.0) = F(a, B, 7: )
folz,1=7)=2"""Fla-v+1,-v+1,2-y:2)
Jolz, @) =2 Fla,a—v+1l,a-f+1;27")
Jolz,B) =2 PF(B,B -7+ 1,8-a+1;z7"),

(B.16)

where
v o (@B
Fla.p.viz)= 3, M (B.17)

m=0
(Bym =p(p+1)---(p+m-1)
is the hypergeometric series. We take ~x < argz < x. By analytic continuation, we can
compare the 2 pairs of solutions; we have the classical result [18,19):
(Jo(x;0), folz:1 =) = (fxlxi @), foulz:B)) Pla,B,7) (B.18)

where, taking the path for analytic continuation along the negative imaginary axis, the
connection matrix is given by

=i LONT{3—a) e—Fila=7+1) r(2-~)l(3~0})

Pla.f.7) ) TEr=a) TE=FNM-9) (B 19)
a,f3.y)= .
6—yn]@l‘('y)l"(cx--m e~ riB=+1) F{2-~la-8)

o) l(v=—i Tlo=r+ D13}

for o, 8,v—a,7—0 ¢ Z. Both sides of the equation are analytic in z, a, 3,7, and the points
corresponding to a, 3,7~ a. or ¥ — 3 € Z are removable singularities. Since I'(z)I'(1-z) =
x/sin{xz), and sin(z) is an entire function. I'( =) has no zeros. Thus all the entries of the
connection matrix P(a, 3.) are non-vanishing unless one of a, 8,7 — a,y - 3 is an integer.

For a sequence of unitary highest weights (h; = hp, 4 )i=12.3.4, Such that Ay = hy,
there corresponds a vector space of 4-point functions of dimension 1 or 2 {or, trivially, 0)

spanned by
(hal®33 W ()223, (wlh1), b= hp a1 (B.20)

with the convention that a vertex operator is just zero if the vertex is not an allowed one.
We assume again without loss of generality that Ef.:l(p.' + ¢;) € 2Z. By the fusion rules,
the dimension is 2 if and ouly if

nrle{lm—ql+ Lln—ql+3....omin{lgs+ g0 = 1L.2Am+ 1) — g3 — g4 — 1)} (B.21)
or, symmetrically, if and only if

2 i <m—1 {i=L3.1).
mAm -t -n pmtn-n 22, and (B.22)
G+ g+ <2m.

The dimension is 1 if and only if one of the following holds:

’Il+1=!'f-'.5"‘14’+1 (B.23)
p-l=min(pg+u—-L.20m+)-qp—-qg—1)

28

or, symmetrically, if and only if one of the following holds:

fit+@—-q=0
Htqu-p=0 B.24
Btu-n=0 (B.24)

a+apta=2m+1).

Thus the dimension of the space of 4-point functions is 2 if and only if the connection matrix
P(a, 3,7) has no vanishing entries; the dimension is 1 if and only if it has precisely one
vanishing entry, whence the pair of solutions ( fy(2, 1), feo(z, ¥2)) that are multiples of each
other correspond to the 4-point function.

Finally, we compute the braiding matrix. Our normalization is:

(hifhi) = 1

(hal R, (2)lh,) = = hsthmha), (B.23)

Observe that, for |z3] > ||,

(h,.]d’:: ,.(:.1)4’2';.’.(:2 Why) = 3{“”"_""}:._;‘“"“"_"’[1 +..
- :3*2‘733 33—‘713:;‘717]'0(1.: v) (B.26)

= :3-'":*’7935;13:(1 - 1)—77:;]0(:“ v)

where z = 2z3/23, and
1~ ifh=h
V= {0 7! Pr.q1+1 (B.27)

ith=h, .1

And that, for || > |z;].

(hal®)2 ) (208007, (33)[hy) = 2y Pt =he) o=y )

= 5Py MM f () (B.28)

= 3;713"713 :{7!2(1 — 1)—”1;-3 l&(r; ”l)'

where

, a ik =hy, g4
v o= . 4 T4

{B ifh = hy g1, (B-29)
We choose a homotopy class of path in {(22,7) € C% = # =3} from [z3] > |z to
22| > |z3l. such that the class of path in the cut plane € ~ (—oc.0] is along the negative
imaginary axis. Then we have by analytic continuation along this path,

(1 =)™ = ¢=Tivs(y )=, (B.30)
Hence, denoting
hehahyahy =C
hpgaszihp gy - CEES
we have
Cy. C i
((_.‘:‘ C:‘:) = e~ P goy). (B.31)
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Observe that the braiding relations are invariant under (p;, ;) — (m — pi, m + 1 — ¢;), each
i = 1,3,4, as needs be.

The case h; = hj,; proceeds in exactly the same way, with corresponding results on
the non-vanishing of entries in the braiding matrix. Likewise writing

hahshai by

Rpgaraghrarg Cas,

we have the same formula for the braiding matrix.

Moreover, by inspection of the connection matrices for the analytic continuation of
solutions between other pairs of singular points, we obtain that the same results on the
non-vanishing of the entries in the braiding matrix applies if any one of the h; (i = 1,3,4)
is chosen instead of h; to be h; 3 or kg ;.

Appendix C. Pfaflian system with regular singular points

We consider a system of equations

4 .
Z:!"*',—‘)_—+h,~(1n+1):;“ =0 (m=0,%1)
boos (c.1)

i=1

J0 .
O(5,52) /=0

where coefficients in O(Z, 3"1) have convergent expansions when |z4] > «+- > |z;|; and the
Ansatz:

4
-~ _ 2123
f= ‘El M Flz), z= v (c.2)
i<j
4 4
Yovii+ > vi=2hi (=104 (C3)
2 51

reduces this latter equation to a Fuchsian equation in the variable z with 3 singular points,

at 0, 1, oo:
dn 1

dr (i

L L tta, = 4
[d:-" + ai(z) o et (x)] F=0 (C4)
where each

prlz)

m, P& a polynomial of degree < A. (C.5)

a(z) =

1t should be clear that all the equations above can be interpreted as equations between

formal series in the variables z; (i = 1..... 1). By F(z) is meant a formal series F that
satisfies the equations

m+1 OF

7 P,

az;

1

=0 (m=0.%1) (C.6)

&

1
i=1
The equation involving derivatives in the variable z is meant in the following sense: use the
projective invariance equations to replace the equation O(Z, :;3_-) f = 0 with one involving
only derivatives with respect to 2y, say, and then change variable from z; to z. There

30

is an obvious canonical correspondence between formal series in the variables (z;) and
formal series in the (wy), where w; = 2j/zi41 (i = 1,2,3), wy = 2. This change of
variables gives an analytic isomorphism from {(z(,...,21) € € [z] > -+ > [z]} to
D= {(wq,...,u) €C™: 1> [w] >0,i=1,2,3}.
We observe that
oF
w.a—uT'_

where each a;(w) is holomorphic on D. Explicitly,

= "““’)’% (i=2.3.4) (€1

=(w; = 1)(w,wiws — 1) w3(wy = 1)(wywa — 1)

as(w) = (w2 — V)(wqwy - 1) » as(w) = (w3 — 1 waw;z — 1) v as(w)=0. (C8)
Then for each r € Ny,
a (IF . [
Wi (5:) = ’}; '"‘i"‘("')a«x:: (i=2.3.4). (C.9)

where each A;r,(w) is holomorphic on D. Observe also that with the change of variables
from z to z; to wy,

a d
5—;}: = wa af m)-(;; (C.10)

where a{w), a(w)~! are holomorphic on D with the property that d"a{w)/dz" is holomor-
phic in D for each r € Ny. Explicitly,

(wy = 1){ws — 1)

a{w) = Twaw —Twrea = 1 (C.11)
Writing
AN dar
(u(«’);,—l) = é Bilw)—
2\ ; o (C.12)
i
-1 = i S 1 .
(a(w) (’hm) j.Zo 7"(W)I}w{ (i €No)
where the 3;(w), 7)':(101) are holomorphic on D, we obtain
oF L i no n—i i »F
m = Z Z ["'z Bitw) = afw)" w) a,,..,-(:r)] 750) m (C.13)

=0 i=v

By the Fuchsian property of (('.4), each w5 ai(x) is holomorphic on D. so that each of the
coefficients above is holomorphic on D. We conclude that

s Y- - gr-1
OF _Adw)l ., F= (‘7 F) (C.14)
r=1 n

dw; w; duwp~!

where each A;(w)is an n x n matrix-valued function, holomorphic on D. Unsurprisingly,
we readily verify that f = (0"=' f/duw """ )=1....a satisfies a similar system of equations.
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To show that the projective invariance equations plus a BPZ equation for a 4-point
function is equivalent to an integrable Pfaffian system of the form (C.14), we have to check
2 points. First is the compatibility of the BPZ equation with the projective invariance
equations, whence integrability follows from that of an ordinary differential equation. This
involves checking its invariance under Mébius transformations, which follows from its con-
struction. Second, to verify the form (C.14), we consider the BPZ equation given by O3,
which is Oy , with each L(m) replaced by

4
ff“(m):—-z z}',‘“%+h,- (m+1)z7. (C.15)
=2 ¢

The equation is of the form

e st . PR
st 2 Al =i i) =0 (C.16)
<1 i in >0

it bin=py

and it follows in a straightforward way, by noting the forim (C.15) of the LH1(—i)'s and
by inspection of the projective invariance cquations, which give all the other derivatives in

terms of 9 9
o0 (cam
that o
f::: (_TZIT) (CJS)
dwy r=l...pq

satisfies a system of equations of the form {C.14). Without considering the other BPZ
equations, this is sufficient to show that all the solutions to the full set of equations are
regular at the origin (wy,...,u) = 0.

Appendix D. Decomposing vertex operators

Here, we show that a su(2)n x su(2); vertex operator descendant from the primary
Bl p( . 2) OB (. ,2) (D.1)

can be decomposed as a sum of su(2)n41 X £, vertex operators descendant from the pri-

maries ) .
(22090 hy g (2) (D.2)

where p = 21+1. q = 2j + | etc., for values of j, j' and j” given by the GKO decompositions

of (ND)® (1,¢), (N, ') 2 (1,¢') and (N, ") © (1,¢") respectively. It is sufficient to show
that the su(2)n x su(2); vertex operator

v =wl )0 (D.3)

i ‘I
corresponding to the lowest encrgy subspace (¢4) of a summand of the GKO decomposition
(N+1L7)®(e.hyy) C(NDO(L.¢) (D4)
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decomposes as the appropriate su(2)y41 X £ primaries. The general case [ollows from the
observation that the su(2)n41 x £, descendents of such vertex operators span the entire
space of su(2)n x su(2) vertex operators descendant from (D.1).
By definition, we have the relations
Xnsr(m)¥(.,2)=0 (meN)
Xnar(0)¥(.,2)=¥(X.,2) (D.5)
Lyn(O¥(.,2)= AGN +1) (. ,2)

for all X € su(2), from which follows
Lvgi(m)¥(.,2)=0 (meN) (D.6)

and also the relations .
L{m)¥(.,2)=0 (meN)

. (D.7)
LAOY(.,z)=hpoW(.,2)
where the subscripts stand for the algebras Su(2)n4y and L.
We check directly that its conjugate
. 1. on 24 t
P ..z)= [i’(cj( -hz 5""“"'““‘""’”] (D.8)
also satisfies the equations (D.5)—(D.7), so that we must have
il ¢ ¢ 1" . il ¢ ¢ .
2 P PP R ] U [ (D.9)

where ¢;: V; — V7 is the antilinear anti-isomorphism from the su(2)-module of spin jtoits
conjugate module, defined by the inner product on the su(2)-module of spin j by restriction
to its lowest energy subspace. It has the property

X(cjl€)) = ~c;{X1e) (D.10)

where the sign comes from regarding Vi as a left su(2)-module.
It follows from the equations (D.5)—(D.7) for ¥( ., z) and its conjugate ¥=( ., z) that

[(Xngr(m), ¥(.,2)) =" ¥(X .,2)

[Lvgr(m), O( . 2)] = "M Ly (=1, 9., 2)] + AGN 4+ 1) (m+ 1) 2™ (., 2)
[Ldm), ¥( ., 2)) = =" [Lo(=1), W( . .2)] + hpp(m+ 1) 2" (.. 2)

(D.11)
for all m € Z. We of course have, with T(2) = Tw(2) 4+ Ti{z) = Tve1lz) + Tel2),
d¥( .,z
[L(=1), ¥(. .2)] = l‘d_—’ (D12)
From 1
[10), ¥( . ,2)] = = = .(1 Dy [hpq + AGEN + D] W( ., 2), (D.13)
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we have a decomposition into homogencous components
Y(.,z)= Z W(.in)zn (D.14)
ne
(D.15)

where
A=l +AGN+1)+ AN+ A ) - A" N) - AE"; 1)

and each ¥( . ;n) (n € Z) is homogeneous of degree —~n. As a corollary, for each j', ;" and
(D.16)

P =11 @ lhpg) € (N +1,7) 8 (e, hypg) € (N I) @ (1,¢")
$ = 1) @ [y gv) € (N +1,5") @ (¢, hpn gv) C (N, 1) ® (1,")
(2)Mhpg) (D.1T)

we have
S B TR ..M""‘
FARREA Y LA I WP

@I ) = Vi (19
for some Yju y € C, possibly vanishing. The equations (D.11) and (D.17) characterize
W¥( .,z) (as an operator-valued function): but they are satisfied by

(D.18)

. j Ay -
Y Vg @207 (2)
jt'j”
5o we are done. We will write
s s {
Yiu = Y5, [r‘ . ‘"‘t,] (D.19)
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