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Abstract 

We study the chiral vertex operators of the unitary discrete series 
for the Virasoro algebra. We prove an analogue of the coset construction 
for vertex operators and indicate how the arguments can be modified 
to prove the fusion rules under the assumption. moth'ated by Connes 
fusion, that a certajn completeness property characterizes them. We 
observe that the construction can be used to prove "'arious properties of 
Virasoro primaries, which are inherited from the corresponding properties 
of .su(2) primaries. In particular, we obtain the convergence of correlation 
functions of Virasoro primaries and indeed their expressions in terms 
of correlation fUllctions of ';u(2) vertex operators. We also obtain the 
braiding behaviour of Virasoro primaries. The usefulness ofthis approach 
to the study of otlter coset theories is pointed out. 
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1. Introduction 

Our immediate objective is to study the vertex operators (on pI) in the FQS unitary 
discrete series [1) for the Virasoro (C) algebra in a constructive approach; and secondarily 
to extend the approach to an arbitrary coset theory. In a rational conformal field theory, 
algebraic properties of vertex operators such as the existence and uniqueness of primary 
fields, and basic analytic properties such as the convergence of correlation fUllctions and 
the braiding of primaries, are best understood through the study of chiral vertex operators 
following Tsnchiya-Kanie [2). If the theory is unitary, the operator theoretic aspects such 
as establishing Sobolev inequalities for smeared vertex operators and Connes fusion can 
be studied following Wassermann [3]. In each instance, the canonical examples for the 
techniques involved have been the su(2)-WZW theories at arbitrary level kEN, and more 
generally the WZW-tbeories for any compact group modulo technical difficulties. In this 
paper, we use the GKO coset construction [4] to extend some ofthese results to the unitary 
discrete series. We shall consider the algebraic and basic analytic aspects, leaving the more 
•.echnically involved operator aspects for separate considE'ration in a sequel. The methods 
developed here are not specific t.o the unitaQ" discrete series and should generalize to any 
coset theory. modulo technical difficulties. One of our aims is to demonstrate that vertex 
operators of COSE't theories arE' more easily studied using a natural analogue of the GKO 
construction for primary fields. and that both algebraic and analytic properties do in fact 
follow from those of the corrE'sponding WZW theories. To this end, we develop the algebraic 
theory fOl"'the unitary discrete series independently from the GI\O construction and indicate 
how the same results follow. morE' easily. from their manifestation as coset tbeories. 

As far as the algt'hraic theory is concerned. t.herE' are 110 significant departures from 
the approach in [2] alld we relegate a discussion of the main (loints to Appendix A. The 
basic analytic result to consider is the cOllvergen('e of N-point functions or. equivalently. the 
composability of "ertE'X op('rators. To a Sl'CIIIE'ncE' h.v •... ,hl of unitary highest weights is 
associated a vector sparE' of N-point functions. ('onsiciered a priori as formal series, with a 
preferred bar;is: 

(OI~:;+1 k.y(:N)·"~Z~ kl(zdIO), ( 
h. 

I k ) an allowed ,·ertex. kl =kN +1 =O. (1.1)
k',+1 'j 

It is known [.5] that thE'se series are formal solutions to a system of 2N +3 partial differential 
equations. reflcctin,; the pairs of singular \'ectors of the corresponding Verma modules that 
generate the maximal submodule. and the projective irwariance of the "'acunm. In principle, 
we can prove the rOllvergencc of these formal solut.ions to bona fide holomorphic functions 
by showing that this syst.em of ('quations is E'«uh7l1<'llt to an int<'grable Pfaffian system with 
regular singularities. to whkh thE' seriE's in quest.ion are formal solut.ions at a singularity. In 
practice. however. the algebra is involv<,d for N > .1. 

In contrast. the prohlem admits a straightforward solution by exploitiug the coset con­
st.ruction for the IJllit.ary discret.e sE'ries. \Ve prove t.he analogue of the coset. constrnction for 
primary 6<'lds. in partirular that: every Virasoro primary fiE'1d of the unitary discrete series, 
c = 1 - 6/( IV + 2)( IV + 3). IV EN, occurs in the decomposition of some linear combination 
of tensor products of pairs of 011;,(2) vert<"x op<'rators. at levels IV and 1 respectively, with 
respect t.o t.he c1iagonal-,el;t(2) at level IV + I and t.he (Oi'lE't Virasoro algebra.. When the 
Virasoro primar,)o' is of the t.~·I)(' 

( 1.2)~~o(=). 
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the result is immediate from the GKO construction and the 'state-field correspondence'. 
Indeed, let .,pi,' = Ii} ® Ihp,,,} be the highest weight vector for the summand 

(N + I, i) ® (e, hp ,,,) (1.3) 

ill the GKO decomposition of the tensor product of the irreducible (bigbest weight, positive 
energy) 8u(2) modules of spin 1at level N, and spin e at level 1 

(N,/)® (1,e), (1.4) 

where p = 21 + 1, q = 2i + 1, i + I +e E Z. Then .,pi.l is an element of (N, I) ® (l,e) and 
corresponds to a vertex operator 'I'(z) descendant from the tensor product of the 8'"(2)­
primaries of spin I at level N, and spin e at level 1 

tio(l/},z)® t:o(le},z). (1.5) 

It follows that the restriction of \11(:) to tbe summand (N +1,0) ® (e, h),d in the GKO 
decomposition of (N, 0) 0 (1,0), 

\II(z)I(N+1,O)0(c,h l .1l = t1 oCli),z)0 .:::: o(z). (1.6) 

There is an obviolls generalization. Associated to the lowest energy subspace of an irre­
ducible 8u(2)-module ·H.,M of spin s at level AI is a set of 81,(2) pdmary fields 

t:.. ,,( .,z) (1.7) 

corresponding to the allowed vertices of spin 8 at level AI, each of which gives rise to an 
8·u(2).module of vertex operators isomorphic to 'H..,A/' Then, ill the same veill, associated 
to rb'" is also a vert<.>x op<.>rator descendant from the primaries 

.~" ,.(I/), z) 0 .!.. c,(le), z) (1.8) 

for each pair of s'"(2) allowed vertices ofresl)ecLive spins I, e at level N, 1, which we denote 
as 

'1').[' e (z). (1.9)1"" e"e' J 

We will show that tbis equat.es to a sum of tensor products of pairs of s1t(2)·primaries and 
£-primaries, r<.>spectively at I(>vel N + 1 and central charge c: 

L l~'j' , e J t j (I') 0')0."21+1.';+1 (.,.) ( 1.10) "e"e' i"i' J,.. ":II"+1.2i"+III"'+I.:li'+I· 
j".j' 

wbere thE' sllms ill i" and j' are given respectiv<'l.V by the GKO decompositions of{N, I") ® 
(I,e") and (N,I') 0 (I,e'), and the branching coefficients 

Jl'j{' i' , c 
I' e" e' (1.11) 

do not vanish for all allow(>d v('rtices 

(j'I/) . (1.12) 

When all the vectors {rbi,'} are known explicitly, verification of this proposition, i.e. checking 
that the branching coefficients do not vanish, is quite immediate. But we have no explicit 
form for such vectors in general, and so develop a proof that does not require it. 

Given this proposition, we easily show that the convergence of correlation functions of 
Virasoro primaries follows from the convergence of correlation functions of 8u(2) primaries, 
which is known [21. Minimally, it is sufficient for the convergence of correlation functions 
of arbitrary Virasoro primaries that we have convergence of correlation functions of the 
generating Virasoro primaries. However, the full coset construction for Virasoro primary 
fields is rather useful for other considerations when the intention is to transfer results, 
algebraic or analytic, in the 8'"(2) theory to the coset theory. In particular, this is the case 
for fusion rules and Sobolev inequalities for smeared vertex operators. 

The generating primary fields, in both the 8'"(2) and Virasoro theories, playa funda­
mental role, given the operator product expansion. More or less equivalently, the 8·u(2) or 
Virasoro modules of the corresponding highest weights playa fundamental role given the 
fusion product, which for 118 will ultimately be given by Connes fusion [3J. This is analo­
gous to Weyl's Invariant Theory approach to the construction of irreducible representations 
of a compact Lie group by decomposing the tensor product of basic representations into 
irreducible components [6J. 

The paper is organized as follows. In Section 2, we state some results on 4·point 
functions invoh'ing a generating Virasoro primary that are proved in the appendices. In 
Section 3, we state and prove, the main result. We indicate how the proof can be modifi<.>d 
to avoid using prior knowledge of the fusioll rules and argue, under a plausible assumption 
on the characterization of a complete set of primary fields, that this modification amounts 
to a proof of the fusion rules, and indeed of other properties of Virasoro vertex operators. 
We emphasize the utility of this approach in obtaining algebraic and analytic properties 
of vertex operators of a coset theory in terms of the properties of vertex operators of the 
corresponding affine algebra theories. In Section 4, we apply the main result to prove the 
convergence of correlation functions of Virasoro primaries and to obtain all alternative proof 
of the braiding behaviour of Virasoro primaries. In Appendix A, we present with a minimum 
offormalism a summary of the basic algebraic theory for the unitary discrete series i1l'order 
to make this paper self· contained, and to clarify our definitions and point of view. We also 
discuss the solution space of a system of BPZ and proj('ctive invariallce equations. In the 
r<.>st oflthe appendices, we prove some ancillary results required in the main text. 

2. 4-point functions involving a generating Virasoro primary field 

We establish for later use some results on "·point functions involving at least one 
generating Virasoro primary. Let h.. , ... , hi be a sequence of conformal dimensions, sllch 
that hi =h.,'l or hu for some i. Then the forrespollding 4-point fUllctiolls satisfy the BPZ 
equation 

[ 

;J lJ'i .. lJ___ ~-I 

:til. + 2lJ:~ + L, .j. 0.,.. -
I ,.. .J 

,1/1, 

J-2 
hj Zji /=0 (2.1) 

in addition to the projective invariance equations 

[~ ='."+I~ +h j (m +1) ZJ1
] / 0 (m=O,±I). (2.2)

L..,,) Oz' 
j=1 J 

,4 ... 

2 :1 
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The latter have the general solution 
.. 

Z,2%34IT %j):'Yi/t F(z), Z = --- (2.3) 
%13%24 

i.A.1 
i<A 

whE're the jjlt satisfy 
.. ..
L jjlt + L j):j = 2h): (k = 1, ... ,4). (2.4) 

;-1 i-I 
i<A i>A 

With this Ansatz, we verify in Appendix B that (2.1) reduces to an ordinary differential 
equation in the variable z, a Fuchsian equation with 3 singular points. at 0, 1 and 00. 

In fact, the equation is of second order and hence, with a judicious choice of the jjlt, a 

hypergeometric equation. 
We show in Appendix C that this fact is sufficient for the system of equations given by 

(2.1) and (2.2) to be equivaleut to an illt.f'grablf' syst.f'm of equations: 

oj Aj(lfI)j - (2.5). (lY- 1f)0=-- () = 1..... 4); f= () r-i 
Wj tllj w, r=......u 

where each Aj(w) is an n x n matrix-valued function. holomorphic in a neigllhourhood of 
the origin. and Wj = Zj/zj+1 (j = 1.2.3), W.I = %4. Here, n = 2. Formal series solutions to 

such a system 

4


IT w;i cn4 ...nl ttl:4 
•• 'W~I 
 (2.6)L 

_jENo 
i-I.....4

j=1 

are known [6,i] always to converge in some neighhourhood of the origin. It follows that the 

4-point functions 
(2.7)(01 ~Z: It. (Z4 ) ••• ~Z! It) ( zllIO) 

are convergent in a corresponding domain in {( z.. , ... , Z, ) E C·4 
: Iz.. 1> ... > 1%11}. 

Now let h3 be ont' of hJ:l. h2•1• We obtain the following result in Appendix B. For each 

pair of allowed v(>rticel; 
h., )(h~3!l) , ( h hI 

we have hy analytic continuation along soille path t.hat 

J. h3 (~)J.h.. ( ) _ "'" ",h~ ( )J.h3 (_) Ch4h3h,hl (2.8)
'l"h. h .. 'fI'''-hl til - L..." 'fI'h4 h' tfl 'l"h' hI "'h'h ' 

h' 

where the stirn is OVE'r aU allowed vertices. The braiding matrix (C~::3h,hl )h'h is an in­
"E'rtible matrix of order 1 or 2 with no vanishing entriel'. As a corollary, the fusion matrix 
(F;,4 h3h,h1 )h'h appearing in th(> operator product E'xpansioll, Iwl > Iz - till > 0: 

h 

~~~ h(%)~~:!hl (w) = L FI~,·,t3h:!hl L ((t'I'I~~: ",(z - "'Jlh:z) ~~: hl{ah" til) (2.9) 

h' r,r.' 

il' also an invertihle matrix of t.he same order wit.h no vanishing entries. Analogolls rt'slllts 
hold for the hra.icling and fnsion matrieE'1' invol\'ing a genE-rating "tt(2)-primary (of spin 1/2), 
i.e. t.hE're art' no vanishing ('ntrics. Thil' il'i oht.ain('(1 by iUl'pE'('tion of explicit formulae in 12]. 

·f 

3. The coset construction for primary fields 

The archetypal coset construction is the following theorem of Goddard- Kent-Olive 14]. 
The tensor product of (N, I). the irreducible highest weight su(2)-module at level N of spin 
I. N E N.I =O,I/2, ... ,N/2. and (I,e), the irreducible highest weight su(2)-module at 
level 1 of spin e, e =0, 1/2, is a direct sum of irreducible highest weight su(2) xC-modules, 
respectively at level N +1 and with central charge c =c(N) = 1-6/(N +2)(N +3), given 
by 

~ q-l
(N,/)0 (l,e) =W (N + 1'-2-)0 (c,h p•q ) (3.1 ) 

q 

where p =21 + 1, and the sum over q is such that p - q is even/odd if 2e is even/odd, and 
1 ::; q ::; N + 2. Each unitary highest weight Virasoro module with central charge c < 1 
appears in the decomposition of precisely 2 choices of (N,/) 0 (l,e). The s"u(2) x C action 
is given by the diagonal "iu(2) subalgebra of s"u(2) x su(2) and the coset Virasoro algebra 
C<:, i.e. the differenre of th(' Sugawara rOllstrurtioul' for 8"11(2) x su(2) a.nd its diagonal 
suhalgebra. We write t.lle r('!;pt'ctive sit(2) I'llhalg<'bl'as as S"It(2)N, Stt(2h, s1t(2)N+1' We 
want an analogut' of th(>se rel'ults for the vertex operators. 

We briefly recall the 'state-field correspondence': corresponding to an irreducible high. 
est weight, positive energy stl(2) modulf' (for sOllie spin and level), we can canonically 
construct spaces of (chiral) vertex operatorI'. earh an isomorphic .~"It( '2 )-module, spanned by 
a primary_field of corresponding spin and level and its descendents. The allowable primary 
fields at a. particula.r spin and level are determined by a.lgebra.ic conditions known as fusion 
rules. A similar correspondence holds for il'l'educihle highest weight modules of the Virasoro 
algebra. By the GKO coset construction and this correspondence, we have that a linear 
combination of tensor products of pairs of .fu(2)N and s"u(2h vertex operators decomposes 
as a linear comhination of tensor products of pairs of sit(2),v+l and C<: vertex operators. 

Let {tP~": a = 1, ... , dim Vi} span the 10WE'st energy subspace of the ,'Itt(2)N+l X C~­
m'odule (N +l,j)0(c, hp.,,), ronsidered as a summand of th(> GKO decomposition of(N, l)® 
(l,e), so that p =21 +1. q = 2j + 1 and j +I +e E Z. Here, the su(2)-lllodule Vj of spin j 
is considered as the lowest (>n(>rg.v subspace of (N + l,j). For earh pair of allowed vertices 
of spins I, !: 

C,/I' ), ( e';e' ) 

a.t levels N. I, let 

.[I ~]lII J 
'" .. , (., z) (3.2)

I Icc 

be the corresponding d('sc(>lldents of the ,.ill(2),v x "(II(2h-primary 

cfll.. ,,(II), z) cp~.. ~,(Ie), =). (3.3) 

Dy the GKO isolllOrphil'i1ll and the 'statE'-fi(,hl correspolHlf'llce', thil' IUllst be a..{Il(2)N+1 xCc­

primary of sl>in i and ronfol'lIHl1 <Iimelll'ioll "".q' Furl.h(;'r. WE' ra·n decomposf' t.his as a slim 
of primari('1' corr('l'iponding 1.0 the varionl' allo\\'('d v('rt.irE':l. and tlllll' it, can he writtE'1l as the 
slim 

Ie] ~j O ( _) iO. cr. h.... ( .. ) (:1.4)L 11'jl , '" J'" J ,--"! h"" II, , .,' .....lee .... .. .4 
j",j' 

!) 
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for some branching coefficients 

yi [' 1 c
i" i' ,"" ,"

I:
" E 

where p" = 2/" + I, p' = 2/' + 1, q" =2j" + I, q' = 2j' + 1, and the slim in j" and j' is over 
the values in the GKO decomposition of (N,I")®(l,e") and (N,I')®(I,e'). We shall take 
the convention tbat the branching coefficients are defined for all such values, but vanishing 
when 

(jij' ) 
is not an allowed vertex. It remains to show that none of the branching coefficients vanish 
otherwise. Appendix D gives a more careful argument for these assertions. 

Distinguished amongst the lowest energy subspaces (tP~") c (N + I, j) ® (c, hp,q) are 
those that lie in the lowest energy sllbspac(l of the corresponding (N,l) 0 (I,e), whence 

(3.5).~",,(. ,z)0.:",,(. ,z)= L q,i[,.,'" ,,,'c'](' ,z). 
i=I':t:c1 

Such (tP~·/) correspond to spin i and conformal dimension h2l+l.2i+l obeying 

A(i; N) + A(e; 1) = A(j; N + 1) + h 21+1,2i+l' j = II ± el (3.6) 

where A(s;!II) = s(s + 1)/(M + 2), which is an identity for each I, and e =0,1/2. The 
corresponding set of Virasoro primary fields that can be found by decomposing tensor 
products of 8'1£(2) prima.ries are only those of conformal dimension 

hp,p, P = 1, ... ,N +1 (3.7) 
hp,p-l , IJ = 2, ... , N + 1 

bearing in mind that hp,., = hN + 2- p,N+3-.,. This is the set of hp,q that do not exceed 1. We 
will call these Virasoro primaries the relevant operators, following the identification in [8} 
of precisely this set of opel'ators with the relevant Ol)erators of Lagrangian scalar ~ 2(N+l), 

theory at a non-trivial fix('d-point. In pa.rticular, the generating Virasoro prima.ries, being 
of conformal dimension ht,'J or h.l.1, are relevant operators. We have 

hl,'l =h'U+I,'li+1 ~ (I,j) = (O,t), (!f,lf) (3.8) 
h2 ,1 =h2l+l,2j+l ~ (/,j) = (i,O). 

In the following, we will first prove that the branching coefficients 

(3.9)l'}.L'..c.], (/,j)=(0.1). (t,O) 

for allowed vertices. ar(' non-va.ni,;hing. These are the cases when a. veHex operator cor­
responding to (!J'e) dccolllpoS('s as t('nsor products of trivial and g('IINn.t.ing primaries, 
whether regarded as a .~·1I(2)N x 8il(2). or ,~',,(2)N+1 x L.c pl'imary field. 

6 
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We then develop an inductive argument. By taking the operator product expansion of 
tile vertex operators 

q,iL'.. ..1:..]( • ,z), (/,i):#= (O,O) (3.10) 

successively with the primaries 

q,'L,f...'.](. ,z), (3.11)ef.}) = (O,t), (t.O), 

we show that all the branching coefficients (for allowed vertices) corresponding to (I + l,j) 
and (l,j + 1) (when defined) are non-vanishing if all tllose corresponding to (I,i) are non­
vanishing. Since the result is first established independently for (I,i) =(0,1/2), (1/2.0). 
we are then finished. 

We remark that (3.2), (3.4) illustrate the well-known observation that the fusion rules 
for the Virasoro theory at c = 1-6/(N+2)( N +3) rorrespond to the fusion rules for the slt(2) 
theory at level Nand N + 1, with the correspondence given by (taking p+ll+11" +q+q' +q" E 
2Z without loss of generality): 

6hp., ) (3.12)( at c = 1 - (N +2)( N +3)hp" ,'I" hp' ,'I' 

is an aHO\~ed vertex if and only if 

~ ~(ii.! iyl) at level N, (~-~) at level N + 1 (3.13) 

are allowed vertices. 

3.1 Branching coefficients for the generating primaries 

Corresponding to allow(ld vertices at le\'el Nand level 1 respectively, tile tensor product 

tl" ,,( . ,z) 0 .~" 1:,( • , z) (3.1~) 

of su(2)-primaries has the decomposition 

' j [' '1 t i ( ~) 0 • h,..~ ( - ) L l 
J." )0, ",. ", )'U jf .".... h" "h, , ..;, , (3.15) 

••, '11 " C ".4 ,..,.
),) ,J 

where p =21 + 1, q =2j + 1 and similarly for 1/, pIt, q', (I". The sum in i is given by the 
decomposition of ,,, ® l', into irreducihle 81t(2)-submodules; and iu j" and j' by the GKO 
decompositions of (N .1") (9 ( 1. e") and (N.1') 0 ( 1. e') respectiv(!ly. 

The operator produe't ('xpansion of a 811(2)'wprimary with its conjugate is, with 1=1 > 
Iw- zl > 0: 

t~, i"( . ,117).1" j'( • ,=) = L Fi;N;" L ((Lkl~{) • ,1/1- =)1, ) ~j, j'(llk. z) 
k Itt. (3.16) 

= f~{~1ij;" (()I~~;( .• m - =)1 . ) ~~, j' +.. ,. 

j 



It follows that the most singular term in the operator product expansion of (3.14) with its 
conjugate is proportional to the identity operator on (N,I') ® (l,e'): 

~f, I' ® ~~, e' (3.17) 

tensored with the trivial su(2) x su(2)-module 

(Ol~~ I( • •10- z)/. ) (Ol~o e( . ,10 - z)1 . ) ~ (V, ® V, ).,,(2) ® (Ve ® Vt: ).,,(2) (3.18) 

when 
F~:/~,,, F~' ~!!: :f O. (3.19) 

Being at level I, we always have that F{;~~!: :f O. Also, F~!/~/,, :f °for I = °trivially, and 
for I = 1/2 by explicit calculation [2]. 

It follows from tbe above considerations that when (/,j) = (0,1/2) or (1/2,0), then for 
ench pair of a\lowt'd vt'rtires (,! e j + I +Z) 

(3.20)( ,I/'" ), ( t';t' ) 

and for ench j' e /' + [' + Z. °:$ j' :$ (N + 1)/2. that, the branching cot'fficient 

. [/ e]YJ.. j' /" r e" t;' 

is non-vanishing for some j" e I" + t" + Z. °:$ j" :$ (N + 1}/2. When (I,j) =0/2,0), 
there is only the singlt' allowed vertex 

(3.21)(j'!j') = (j'0i') 
so that all the branching coefficit'nts for a\lowt'd vertices are non.vanishing, and we are done. 
When (I,j) =(0,1/2), tht're are either olle or two allowed vertices 

(j'!j') = (j'}t j' ), 0:$ j' ± ! :$ ¥. (3.22) 

When there is only one (when j' = 0, (N + 1)/2), we are again finished. If there are two, 
wt' now show that 60,11 of tht' corresponding hranching coefficients are non-vanishing. \Ve 
have (t" = 1/2 - e'): 

\"! 4)! (~)04)hl., (,,)~~ /' (9 ~!.. ~, (.. .:) = L L j" j' "'" h" .4" h,f .,' (3.23)j" i' ., ­
j' i"=j'±! 

wht're 
t.! _}'; [0 !] 
I jff jf - jll j' " I' ~"e' " 

Fix a value of q' =2j' + J, and let 

}' .\l'.! " :f 0. (3.24)
J. J j: j' = ° 

l't 

where {q+,q_} = {q' ± I} and i± = (q± -1)/2. To ohtain a contradiction. we examine the 
braiding behaviour of 

(3.25)~?, I' ® ~!" e'( • ,z) Pp',q' = Y j!j' ~t j'( . ,z)® ~~:;~f. h".f'(z) 

with its conjugate 

Pp' ,q' ~f, I' ® ~!, t:" ( . , 10) = f'j! j' 4)" i. ( .• 10) ® ~~:;:.' h" ,f. (to) (3.26) 

where pp'.q' is the projection onto the summand (N + 1,j') ® (c,h p'.9')' Braiding the 
left-hand·side, we get, Izl > 1101: 

! ] " ~ Ae'pp'.q' 4)?',,® [ ! (3.27)4)e'c,,(.,z)4)'''e'(''w) Pp'q' Ct:,,;,i 

whicb, by (3.2.5) and (3.26). has the decomposition, Izi > 1101: 

C;:,!.VlYi! i,12 [4),. i.( . ,z)4)1. i'( . ,tl')] 0 [4)~I;l, h, (Z)~:1;2 h • • (til)] . (3.28) , '. , .f. , ,f. , 'f 

We examine tht' operator product expansion of t.hill expfE'llllion with tht' Stl(2)N+l X Cc• 

primary 

4) ~ " ( . ,x) \'9 4)~, , h, .' (3.29) 
J- ) '.f • '. 

It is sufficit'nt to look af Iht' <~-lt(:.!)N+1 part of tht' opt'rator product. expansion. The mOllt 
singular t~rm in x - z ~ °is proportional t,o 

(3.30)[~({;I~! 11. " - =li·) ~Lj.I~",'I~L'I .. wJ] 
where {~tl}, {~:} is a dual basis for VI, wilh behaviollr 

"" (x Z)-2L1(1/2;N+lI+~(I:N+I). (3.31 ) 

However, on the right-hand-side. braiding p;ivcs.lzl > 

! { .\ I ., ,\1. ., } 
mIll. j.12 L ~J, j"'( .. .:)«1>1 p( . • 11') ('J"ij~) 

i"'=ij: 

o { "" ~hl.2 (z)4)h l .:I (tV)Ch"'.'hl':lhl.2h".~,} (3.32)
~ ",1 .of' hI" ..,'11 hI".,'" h,' . .,' hI" ,q"' hpl .'1+

,,"'=,,:!: 
and the .fu(2)N+I part of t,he 1U0st singular t<:'rm in x - z -- °in its operator product 
expansion with the primary fit'ld (3.29) is proport.ional to 

'-H'- "U"'\ .\Fgj' .J CLj~) (014)0 -} ( .• ,r - zll·) 4);_ i'( . • w) (3.33) 

with the b<:'haviollr 
"" (x _ :)-2..\(1 12;:\,+1) (3.3·') 

since, b).· explicit cakillat.ioll [:.!}. th<:' .<;1/(2) braidillg lIIat rix. all(1 hplI(,(, also the rusion matrix, 
involving a, gt'nt'rat.ing .<llt(:.!) prilllary alld an arhitrary primary has no vanishing ('nt.ries. 
This el't.ablillht's t.h(' contradiction. W(' ('on('I ..IIl' that, h<:' hran(,hing coeffiri<:'ntll ror allO\wd 
vertict's are non-\,anillhing ",11(,11 (I,j) = (O.l/:.!) and (1/2,0). 

!} 
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3.2 Branching coefficients for other primaries 


We consider the operator product expansions or the primaries 


'iI'["..r,,, e""c"]("z), (l,j) =(O,t), (!,O) (3.35) 

with the vertex operator 

.[' c] (3.36)'ilJ 1",' e" ,,' (., 1V) 

for fixed but arbitrary (I,i) f: (0,0). 

3.2.1 h,..,q - hp±l,9 


Consider the operator product expansion of 


o[ i i]( ~ i[' "le (3.31)'iI 1""" e'" e" • , .. ) 'iI ,,,,, e" ,,' . , w). 

Each coefficient of tIle expansion in powers of z - w is generically a linear combination of 
SU(2)N x s'u(2h vertex operators, each descendant from the primary 

I±! !-c (3.38) 

according to the power of : - IV being in 

-1±11 +Z 

t I'" " ( . , 111) 0 t eltt 1" ( • , u') 

(3.39)
-£+:2(N+2) 

and with dependence 011 the spin I" entirely contained in a scalar factor 

I'''!II' (3.40)F,±~ I" f: 0; 

the exceptional cases being when the rusion rules are more restrictive and allow only one of 
the two possibilities above, and this occurs when / =0, 1\'/2. On the other hand, in terms 
of their respective expansions in terms of 8"t/(2)''''+1 x .cc·primaries, we have 

"yO [i ! J},rj [' 1']
"-' j" j" II'" '"" j" jt ", ,i". i' I , " I I I I 

fI 
" 

•1.i ( I) 0 [thl (").h,,.9 (w)] (3.41 ) 
J'II J't 6, U <I h,lI" h" ".... h"" h, f •".. " .., " ..,,, .. 

Retaining only the terms (in powers of z - U1) that have coefficients that a.re also primaries, 
there are generica.1ly 2 terms, with the sallJ(> {'xf(>ptioIlS as berore: 

"(z - w)h",J:i. t - h" . .,-h2 •1 '\.""' Z~ . ['±~ i-e. '''] t i . ( .. w) (I .hh",J:i... h (w)
"-' "-' J" J' I"'" ,'U ,t , )" J' ,,'" .<if" II' •• 'J 

± j".j' 
(3.42) 

where 

Zi ['±i !-I. If] _ .. 0 [i i],i [' 1'] Fh"w ..,lIhl.1h,... h".9' (3.43)
i" i' ,'" I' ,'" 1'", - 1i" i" ,"'," c'" ,," } i" i' 1"" e" I' "",J:i.ot h,,".... • 

J() 

The remaining terms in the expansion have coefficients that are descendents of the coefficient 
or one or these two terms, and they come in integrally larger powers or z - w. 

Since 

h,..+l,q - hp- 1,9 =P - q + N 
p
+ 2 ~ Z, (3.44) 

we can identiry each or these linear combinations or S'U(2)N+1 x .cc·primaries with the 
coefficients or the corresponding powers or z - w. Now by the 'state-field correspondence" 
these SU(2)N x su(2h vertex operators are characterized up to a scalar factor by their 
decompositions into SU(2)N+1 x.cc vertex operators, and are thus, up to scalar multipication, 
the vertex operators 

.[ I±} i-c]( ) (3.4.5)'ilJ I'" I' e'" e' • , W 

so that, up to irrelevant scalar multiplication, 

i ['±i i-c ] - i ['±i i-e]1 I'" i"' (3.46)Yj " j' ,,,, I' c'" If' - Zi'i' /",,' em c' F'±i ,,, 

is independent of /". 

3.2.2 h"',9 - hp ,q±l 

We consider next the operator product expansion of 

'iI i[ I"0," 1''''i]I'" ( .... 
~ 

) 'iIi['/" I' c"I'e' J( • , U ' ). (3.41) 

Each coefficient oCthe expansion in powers of z-w is a linear combination of SU(2)N xsu(2h 
vertex operators. descendant from the primary 

, ~-ct,,, " ( . , tl') 0 .;", c. ( • , w) (3.48) 

and each term has behaviour "" (: - w)", It E -£ + Z. On the other hand, in terms of their 
respective expansions in terms of SU(2)N+l x .ct'-primaries, we have 

" y! [0 ! J},i [/ e J 
"-' i'" j" ," I" c", ," i" i' I" I' e" " 

j'II,j",i' 

[tj... i"( . •z).~" i'( ., W)] 0 [.!I;: ... h" ,,(:).!";: "h, ,(w)] (3.49)
" .., ",9 ".." ~. 

and retaining only the terms (in powers or : - tv) that have coefficients that are also 
primaries, there are It /Jt·io"; and generically oj terms: 

" (,"_u,)"C',i,iI.hl" Z~Io~2[ I i-e].il .(. W)O+hM2 (w) (3.50)
"-' .... "-' 1'" J' ,,, It t'" t' J"' J" hI''' . .,'" h", ... ' , 


iI,h=j±! j"'.j' 


where q'J, =2h + 1 and 

Zi:,; ~~ [ I i-I: J 
J J ,",','" e' 

I''\.""' y! [0 i ]l'j [' JFi"'ijj' Fh" ...... hl.,h" .•h,•..,' (3.51)L jt" j" I" I" ,'If ,t, j" if I"" ," " il j" h".•, h"" .,," 
j" 

II 
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and 
±(j -I) if il = il = i ± l; 

(3.52)s(i,i,it,h) = -r(' I) ± 2i +1 'f' . ± 1 • _ • -r 1{ T } - N +3 l}l =} '2,}2 - } T f' 

Again, the remaining terms in the expansion have coefficients that are descendents of the 
coefficients of one of these terms, and they come in integrally larger powers of z - w. The 
exceptions to the generic case occur when i =0 or N/2, whence the fllsion rules are more 
restrictive, and the four terms reduce to the one, corresponding to il =h = j +1/2 and 
i - 1/2 respectively. Then (3.51) is a sum over a single value only of j". given by i' and 
N /2 - i' respectively. 

But i + I + t E Z, and (2j + 1)/(N + 3) f/. Z, so that, for each pair of spins illl, p, we 
must have 

ZiJ,j2( I i-"]=o ifi.:l:il' (3.53)
jm j' l" l' ,,'" c' 

This is a notable property' for the branching coefficients. The fusion matrices in the sum 
(3.51) have no vanil;hing entrit's and are, of COllrSf'. invertible, so that (3 ..53) implies that 

Zi:ti,i±! [' !-,,] l~i [0 ! ]ld (' ,,] (3.54)
j''' j' I" I' t m ,,' ex jm i" I" I" ,,"'." i" j' I" I' ." .' 

for either and both of i" = i'" ± 1/2. 
So we have just the two terms whose cOf'fficients are S-U(2)N+l x Cc·primaries. The 

more singular term (as z - tt' - 0) is id(,lItifiE:'d with its corr('sponding term on the left­
hand·side and so can be written as a linear combination of S·U(2)N x su(2h vertex opera­
tors, and it follows that the same is true for any of its S"U(2)N+. x Cc descendents. Since 
21i - II E Z, we should also id('ntify the less singular term with some linear combination of 
Stt(2)N x 8·u(2). vertex op('rators, after appropriately subtracting away some descendents 
of the more singular term. In both instances, once more using the 'state-field correspon­
dence'. the decOlnl)Osition of t.he stL(2)N x s"u(2h vertex operators as a linear combination 
of S-U(2)N+l x C~·primaries of particular spin aud conformal dimension characterizes it up 
to scalar mult.iplication as 

",i±~ ( I i-c ]( •• w) (3.55) 
I" " ~'" £' 

so that, up to a scalar mult,ipl('. 

yi:ti I ~-t] _ j:t!.i:ti [ I ~-.] (3.56)
j'" j' , '" , - Zj''')'' '" , •I. • I"11." • 

2 When we come to constl"llct a fullnon-chiral theory. we will want to consider. for each 
pair of conformal dimensions (Il. h). only particular linear combinations of tensor products 
of chiral and antichiral primari('s of the corr('spondillg SpillS. Braiding and the op('rator 
prodllct expansion of Ilairs of slIC'h primarivs should 1I0t produce n('w linear comhinations of 
chiral·antkhiral pairs. Here. th(' situation is silllilar but witb th(' a,nticltiral primary replaced 
hy a <~il(2)N+I primary. Ohsen'(' that the brauching cOf'ffidents are highly constrained 
hy this property, whkh is gnarant<'Cd by the fact that these particular combinations of 
,~il(2)N+l x C primari('s CI111 he written a.t; si/(2)N x .~i/(2h v('rtex operators.c 
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3.3 Remark on rusion rules 

We have proved the analogue of the GKO coset construction for Vira.t;oro vertex oper· 
ators of the unitary discrete series. In particular, a Cc·primary 

41:" h'(z) 

that is allowed to exist by the fusion rules established in Appendix A can be found tensored 
with a sit(2)N+J primary by projecting a suitable sit(2)N x s-u(2h vertex operator onto 
the relevant GKO summands. It is natural to ask if we can turn our arguments into a 
proof of the fusion rules. In this paper, fusion rules bave been defined to be the sufficient 
and necessary conditions for the existence of primary fields. We now argue that we can 
modify our arguments so that we do not need to assume any prior knowledge of the fusion 
rules. Then we have a proof of sufficiency. Proof of necessity will rely on some plausible 
assumptions. The modifications suggest that the fusion rules for other coset theories may be 
proved in a similar way and, by a similar approach, other properties of the vertex operators 
may also follow as they will for the case at hand lwre. 

The gen('ratillg Virasoro primaries \\,('I'e found witbout any recourse to the unitary 
discrete series fusion rilles. Now. we used the operator product expansion for Virasoro 
primaries in order to find the remaining prilllaries. Tbis is valid if we know t.he fusion rules 
or, more precisely, that th(' primary fields which app('ar when w(' braid pairs of primaries 
are already known to exist; and not valid if we do not already know this. This is the 
usual obstruction to proving the (sufficiency of) the fusion rul('s from knowledge of the 
generating primaries. Here, however, this problem can be circumv('nted. Consider (analytic 
continuations of) matrix ('Iements of (3.3;), (3.'11) alHI their expansions in powers of z - w, 
corresponding to the operator product expansion for (3.3i), but not necessarily so for (3.41), 
though each 

1{711if>h2. (.,.)4>h".4 (lillie) (3.5;)
hit." .,," hpu .t".... Ii,," .4" h", .• ' '" 

certainly has such an expansion. This expansion corr('sponds to the ana.lytic continuation 
of this local solution of the corr('Sponding hYI)(>rgrolll('tric equation at the singular point 
z = w/z = 0 to the singull1.r point z = 1. Now the operator product expansion of (3.37) 
is a sum of descendents of the primaries (3.:)8). and the coefficient of each d('scendent is 
independent of I'" ,I', Em, E', and dependent on I", E" only by a scalar factor (an entry of the 
fusion matrix) that is the same for each family of descendents. In particular, w(' can look 
at the case I' =E' = 0, so that I" = I, E" = E, t'" = 1/2 - E; and at the action of (3.3i) on 
the Stt(2)N x su(2h-vaclllllll vector 10) (10). Then (3.41) gives 

4t~, ( .• w)IO) ® ( if> h ~.I (z)4> h ,'. (w)IO) ] (3.58)
)0 11"", .• 11,... 11,..• 0 

and the operator product ('xpa.llsion of tliis pair of Vira.c;oro primaries can be used because 
the Virasoro primaries if>: 0(.:) are known t.o ('xist alr('ady, shnl)l,\' by the 'state-field corre· 
spondenc(" for the ,Q-1I(2) throry. So \V(> ha\,(', in Ihis sl)ecial case. (:1..12). As b('fore, We can 
pick up the coefficient on the left-hand-side corresponding to the powers of z - It' appearing 
in these two terms. Dut hy th(' 'state-fi('ltl corrNipond('nce', tlu."r(' is a unique des('('ndent of 

l:t! 4-t)
~,:t! o( •• 111) 0 if>~_.o( II' (3.59) 

whose action on the ,·a.CIlUlU is giV(,1l by 

<I>~ ( • ,111)10)
J 0 

«JI",." I.~ (lI'liO)
",,, 1•• 0 

(3.60) 

I:J 



so we can identify it as 

q,j( I::I::! !-4')(. ,w). (3.61)
I::I::! 0 i-co 

We go back to the general case. It follows that for arbitrary I"', I" ,I', e"', ell, e', 

(3.62)qlj I'±'~, c~,~;, ] ( . , to) 

is tbe coefficient of the same power of z - w in (3.57) as for (3.61), and we have obtained 
(3.42) and (3.43) again, with the fusion matrix in (3.43) now understood to be a connection 
matrix for a hypergeometric equation, which we have to show to have non-vanisbing entries. 
This follows from Appendix B. The same applies to the arguments for the induction in the 
direction hp,q - hp,q::l::)' 

III the next section, we will show that correlation functions of Virasoro primaries con­
verge to holomorphic functions and call be written in terms of correlation functions of s'u(2) 
vertex operators. Moreover, independent of a. direct analysis of the 4-point BPZ equations, 
pairs of Virasoro primaries braid under analytic continuation, and in particular have op­
erator product expansions. The set of Virasoro primaries found by tbe coset construction 
obviously has the following COmlJ/eteness prol>erty: it contaius the Virasoro primaries 

~~o(z) (3.63) 

for each unitary highest wl."ight hj and it contains e!lough Virasoro primaries for the braiding 
behaviour 

~hl (,.)~h:l (tv) = '" cph2 (UI)cplil (,.) Chlhlll,,,, (3.64)
hi 0 - 0 h, L" 1 " ,. '., - h 0 

II 

to make sense for allullitary highest weight.s h" Ill. In fact. if we can establish that none of 
the braiding ma.trix elements in (3.6-1) vanish. only the entire set of Vil'asoro primaries has 
this completeness property. We conjecture that such a completeness property characterizes 
the fusion rules for coset theories in general. The reason is that sllch a complete set of pri­
maries is expected to be sufficient data to define Connes fusion, a commutative associative 
(up to equivalence) product on the category of unitary positive energy representations of 
the symmetry algebra of the coset theory. (The W-algebra case is still unclear.) The corre­
sponding representation ring is given by the fusion ring which we can construct abstractly 
from the fllsion rilles, as it should be. 

4. Correlation functions of Virasoro primaries 

We now show that t bE' fOuvergence of forrelat.ion functiolls of Virasoro primaries follows 
from the result for 8;/(:2) I>l'imaries and tbe constructions of the previous section. In either 
case, convergence for general vertex operators follows from convergence for primary fields. 
The M-point function 

(qlM(' ,ZM)''''''I(' ,zd) H.1) 

of S',,(2)N x ,,',,(211 vertex operators is knowlI [21 to converge for IZMI > ... > wb('re 

,T•• ( ~.) _ .r.j; [" c,] ( .,..) (·1.2)'1', ..... -" , " , .. • _, (i=l, .... M)
',+1 I, 8,+1 8 , 

with I~ =1~\l+l =E~ ='<\1+1 =O. Now this is a. linf'al' mmbinatioll of t1i{' terms 

( 
",jl' ~ .iI _) ( .... hpA/.~AI • .d..'·PI'~1 _) ( 'l)
't'j' j' (. , .. AI) ".i~j'( · ..... d '1'/., , h, , (.;..\1)"''1'11, ,,,, ,( .... , ,L, 

1'+1 AI - 1 "A'+I'~AI+I "AI-~A' "2'·, "1'·1 

1-\ 

where i: = i~l+J = 0, and tItei: range over the obvious values. The first factor is a ~"-point 
function of su(:2 )N+l primaries and thus a convergent series. But by projecting (4.1) onto 
an appropriate irreducible stl(2)-submodule of the tensor product 

ViM 181 "'181 Vjp (4.4) 

we see that each term in the sum converges separately. We do this by first projecting Vj, 181 
Vii onto the irreducible component isomorphic to Vj; for a choice of j~, then sequentially 
projecting each Vj, 181 Vj; onto Vj!+l for a choice of i:+l' for i = 3, ... , M - 1. By inspection 
of the operator product expansion of a pair of su(2) primaries, we see that this obviously 
works, that only one term in the sum of terms (4.3) survives the projection. This is a notable 
property. It follows that the second factor, a M-point function of Virasoro primaries, is also 
convergent. As an immediate coronary of the proof, we have the expression of a correlation 
function of Virasoro primaries in terms of correlation functions of the corresponding 8u(2) 
theories. Indeed, each is a sum of quotients of SU(2)N x su(2h correlation functions by 
S"U(2)N+J correlation functions, as befits a 'coset theory'. 

Actually. it is sufficient to know that correlatiou functions of generating Virasoro pri­
maries converge to obtain that those of arbitrary Virasoro primaries converge. For 4-point 
functions involving at least one generatiug I)rimary have already been shown to be con­
vergent, so that the operator product expansion of a generating primary with an arbitrary 
primary is understood. Beginning with a corrdation function of generating primaries, we 
successlve1y replace a pair of primaries. one a gen<>rating primary, with a primary field 
appearing in their operator product expallsion. The result is also a cOllvergent correla­
tion function. But we easily show that we can obtain an arbitrary correlation function in 
this way, using the fact tbat the braiding matrices involving a generating primary have no 
vanishing entries. Thus is the term 'generating primary field' also justified. 

It follows from Appendix A that pairs of Virasoro prima.ries braid under analytic con­
tinuation but it is better. particularly when considering other coset theories. that we do not 
have to analyze systems of partial differential equations to provE' this. We now show that 
this property is inherited. via the coset construction, from the same for 8t,(2) primaries. 
This is straightforward to establish by consich.'ring the hraiding 

qI is [h CI] ( ) ",i" [" 4''1] (
I'" I" ~'" ~" . , Z .. lit" ,r' l .. 11') = 

"" C''''IJ/ll'cc'''cJ4''J4'' "'i'J[ 12 C2]( to) q,iI ['I Cl]( .. ) (4.5)
ItL..., II" cc I'" I 4'''' C ., I " c c' • ,­

1.« 

in terms of tbe 81,(2)N+1 x Cc components. To sC'e this. observe that if we lJroject the ",,(2)­
module "Til ® Vi:! onto ('ach of its irreducihlC' suhmodulC's in turn, the (matrix elements of 
the) 0Derators 

cp;:" .. z).~i', i'( .• w) (4.6) 

as j" varies, are pairwisl" lilleal'ly dC'pelldpllt.. and analytically cOllf.illll{, to an operator 
proportional to 

cp;~" j( .• w)CP~li'( •• z) (..1.7) 

for any of the "aitll"s of j. t.ht'se operators bC'ing likewise pairwise linC'arly dependent. The 
number ofop('rators (·I.(i) indf'x{'(1 by j" is e'lual to the number of operators (.1.7) illdex('d 
by j, and this is again the IlHlIlhN of dHft'f(>nt I>fojC'flions onto all ira'edllcible slIbmodllle 

I:' 



of Vi. ® Vj, such that (4.6) does not vanish identically. This last assertion follows from 
considering the operator product expansion of (4.6), i.e. the analytic continuation of (4.6) 
from Ixl < 1 to 1(I-x)/xl < 1, where x =w/z. We are, of course, just performing a change 
of basis for the solution space of a system of KZ equations. 

The braiding (4.5) implies, for each jilt, j', the equality of 

I. ~.] Y h [" ~,]
L yj.:'i" I" It'" Il" j" i' I" I' Il" ~. 

i" .j. ( ).i, ( ) ® ."'1'.' ( )."'2'.' () (4.8)i'" j" ., Z j" i' ., w ",.....". "," .•" z ",...... ",' .•' w 

with 

""" e,m,.,,; e~"'~'~21l' yh [" Il'] yi. [" Ill] 
,~ 1/" u" i'" i I'" I Il'" Il j j' ," Illl' 
.~.i 

4)h ( )4)iI ( ) (I() 4)""'.' ().""".I () (4.9)j'" j .• W j j' •• Z _ I,,."'.,,'" ",.• ttl ",.9 ",' .• ' Z 

in the sense of analyt.ic continuation. By I)('fforming each of the projections onto the 
irreducible components of 1-]1 0 1'J, in (4.8) and (4.9), and factoring out the 8u(2)N+1 con­
tribution, we obtain a systt>Jll of equations for tht" braiding of particular linear combinations 
of the Virasoro primaries (4.6) which, by a change of basis, is of the form 

."1'1'.1 (z)."',··, (w) = 
h,.flI .•". hpu .f" hp" .f" h.", .,,' 

'""" • "'2'.' (11')4)"'1'.1 (z) e"'''' .•'" ""1 .• ' ""2'~' ",., .•' (4.lO)
~ "..'" ...''' ",.. ".... ",'..' "...."," .•"".... 

ror some braiding matrix. in principle computa.ble from the braiding of su(2) primaries and 
the hranching coefficil"nts. 

5. Comments 

We have proved an analoguE' ofthe GKO coset construction for Virasoro primary fields. 
This lets us deduce properti('s of vertex operators ill the unitary discrete series from the 
properties of vertex operators in the .!u(2)-WZW theories, which are easier to study. This 
is our guiding principle. Here. we have obtained a.c; a corollary the fundamental p~operty of 
convergence of the Virasoro correlation functions without the need to analyse differential 
equations that are more complex than a hypergrometric equation. The construction also 
gives a proof of the Virasoro fusion rules under the assumption that a completeness property 
characterizE'S them. Properties such as the braiding h('haviour of primaries. and therefore 
also their operator product t>xpansions. can lik('\\'is£l hE' obt,ainE'd from this construction. We 
hope to give furtht"r applicat.ions in a future paper. 

The considerations her(' also a,pply to the unitary discretE' series for the super-Virasoro 
algebra. In particular. we can ohtain tht> fusion rules (with the same caveat) in an ele­
mentary way. It also givE'S us a simple cOllstruct.ion of the 'twist-fields' that intertwine the 
NE'vE'u-Schwarz and Ramond sect.ors, which are difficult to define algebraically. We will ad­
drE'ss thE's(' qut"stions in a forthcoming pap<'r. More gt>nerally. we helieve t.Ill" approach taken 
here will be useful in st.udyillg analoguE'S of primary fields in coset t.ht>OriE's. say for which 
thE' extend('d algf'bra is a. W-algt·bra. Tilt> silllplt·!!t. of such ana.loguE's are the 'twist-fields' 
or the super-ViraRoro algf'bra. W(' exp('ct that th(' utility of th(' approach taken here will 
increase a.<; we proce('(\ 1.0 study th(' It>ss ulHh'rst.ood ('os('t theori('s. 
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Appendix A. Basic algebraic theory for the unitary discrete series 

We present a summary of the construction and basic algebraic properties of vertex 
operators of the unitary discrete series, following Tsuchiya-Kanie [2], followed by a short 
discussion of the solution space of a system of BPZ and projective invariance equations. 

We will be concerned with unitary positive energy modules for the Virasoro algebra, 
where unitarity is with respect to a contravariant inner product (9). An irreducible highest 
weight module N(e,h) for the Virasoro algebra is the quotient of a Verma module M(c, h) by 
its maximal submodule J(e, h). Of these, the unitary ones are the irreducible components 
of the unitary positive energy modules. For central charge e < 1, they constitute a discrete 
series given by [1,4]: 

c-l- 6 • m=:),4, ... 
- m(m+ 1) 

(A.I) 
- [11(m+I)-(j7n}2- 1, 11 =1, ... ,m-l; (J 1..... p.

It - 4m(m+ 1) 

We will adually let 1 :5 p :5 m - 1, 1 :5 (J :5 JIl, and take appropriate account of the 
double counting given hy hp,q(c) hm-p.rn+l-q(c). It is known [lO,tI] that the max­
imal submodule J(c, hp.q(c)) is generated by a I)air or singular vectors Op,q(c)lhp,q(c», 
Om_",m+l_q(c)lh".q(c». reRpectively at levt"ls l'Q, (m - p)(m + 1 - q). 

Given some Virasoro modules. we ca,n try to ohta.in new modules from tll('01. \Ve can 
take direct sums and tensor products. but the central charge is additive under the latter 
operation whilst it is nat.u ra.l to t.ry to remain wit.hin a class of mod Illes with the same central 
charge. We might hope to take the tensor product of a, uuit,ary positive en('rgy module with 
another which has vanishing central cllarge, bllt thl're is only thE' trh'ial module (12]. On 
the other hand, we have the spaces of 'densities' 1'",,/3 (9] (irreducible if 0' r/. Z or !3 i- 0, 1) 

Vk =zk+.:>(d.:)/3 (k E Z) 
(A.2) 

L(n)l'k -(k+O'+f3+{JII)Vn+k 

"­
which are modules with vanishing cE'ntral chal'g(', for which L(O) is diagonal with finite-
dimensional illtegrally-gratlf'd eig('nspac('s. htlt whose spectrtlm is IIl1hoUlldE'd above and 
below. Then we can try to find a, spac(' of 'densities' whose tensor product. with a unitary 
highest weight module POSSE'sses a unitary highl'st weight quotient, i.e. cOllst.ruct a module 
of linear operatorl! from a unitary highest wt'ight lIIodulE' to anothE'r which transforms as a 
'density': a Vira.<;oro prima.ry fi('ld. These constructions are la\H·II('d by a tl'ip\et of numbE'rs 
a. !3 and t.he highest w('ight. (c. Il) of the initial unit.llry high('st wdght module, With no 
loss of generalit.y. a can b(' chos('11 stich that the nf'W unitary highest weight module bas 
highest weight (c, It fl' /J). We a.r(' 1('<1 t.o th(' df'tNlIlinatioll of tilt> fusion ""nl of the 
IInita,ry discrete serif'S of the Virasoro algehra: for each c. the set of tripi('ts of nllmhers 

( ,,~ ) ( A.3)
Ii:) hi 

Ii 
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called allowed verticts. for which 

lI(c,ha) ~ Va-,ll 0 H(c,hd/-, 0 = h'l +hi - ha -1, P= 1 - h2 (A.4) 

as an isomorphism of highest weight modules, where II (c, hll, H(c, ha) are unitary highest 
weight modules and the quotient is by the maximal proper submodule containing the strictly 
negative eigenspaces of L(O) - ha. That is. we have a module of operators 

~(k): H(c,hd - lI(c,ha) (k E Z) 
(A.5)

[L(n), ~(k)] = - (n +k +"I - h3 - nh:ll ~(n +k) 

or, equivalently, 
~(z) = L ~(k) Z-k-(h2+hI-h,) 

keZ (A.6) 
d~(z)

[L(n), ~(z)] = zn+1--;rz- +h2 (n + 1).;n ~(z). 

It is easy to see that ~(z) is uniqllely determined by tllese relat.ions and the normalization 

(113/ ~(z) Ih l ) = z-lh2 +hl-h3J (It.7) 

where Ih i } e H(c,hd (i = 1,:1) are hight'st wt'ight vectors of unit norlll. We call ~(z) the 
Vimsoro IJrimary fiei(l corresponding to the l'iTlex (A.:1). and h'J its conformal dimension, 
and write it 3.<; 

~:~ hi (z). 

Its conjugate is defined to he 

~·(z) = [z-'Jhl~(~)r (A.S) 

and is easily seen to be ~~~ /1,(':). Equivalt'ntly, ~(z) is a SeS(luilinear forlll on lI(c,h3) x 
H(e, ht}, and simultaneously a degenerate form ¢(z) on AI(e, ha) x M(e."tl that factors to 
the quotient space: 

q>(~. '1; .:) ((I ~(z) Ii)} (A.9) 

where (= ~ + J(c,h3 ), i1 = '1+ J(c,hd. 
Now, for any pair of unitary highest weights (c. hd. (c, ha) and h2 E C, there is a 

unique sesquiJinear form ¢(z) on M(c,h3 ) x M(c,h l ) such that 

4>(lha}, I/l I }; z) = z-lh2+hI-h)J 

(A.10)4>(L(-n)~, 1]; z) - <p(~, L(n)ll; z) = [;n+lfz +h;dn+ I)Zn] tP(~, 'I; z) 

for all ~ E U(c, "3), 'I E M(c. hd. n E l. 11('I'{'. by ahuse of notat.ion. Ih;) e M(e, hi) (i = 
1,3) are highest weight vectors of ullit norm. '1'11('11 ¢(z) defines a primary field if and only 
if it factors to the quotient I/(t'. h~) x /I(t'. hll. ('C't. h j = II pi ,9, (i = 1,3). We easily see 
t.hat it fa("tors if and onl.,· if 

tj)(0p,.?Jlha}, Ih l }; z) = 0 
(A.ll) 

<p(Om-p"m+l-",.lha).III.); z) = 0 

IX 

and 
~Iha}, 0PI,9111l1); z) =0 

(A.12)
tj)(lha}, Om-PI,m+1-91Ihl); z) = O. 

Using (A.IO), each of these reduce to a polynomial equation in h2 • The left-hand-side of 
the equation corresponding to Op,9Ihp.9) is a differential operator of order pq acting on 
z-f hl+hl- h3), giving a polynomial of degree l)q ill h'l' 

We now appeal to a result [13-15] 011 the BPZ equations for a a-point function. Let 

PI91 

OPI,91 = L L afll:'~:N L(-i.)· .. L(-iN) (A.13) 
N=1 i ......iN>O 

i 1+ ..·+iN=PI91 

and 6g;I,91 be the same with eacb L(rn) replaced by 

i.3:1(1II) = - L zj':+l a +h j (m + 1) zji. (A.l") 
j=2,3 

Then 

.,. )Plql"3:1 -~21_-~)l_-.J.)I_ -32 _-~21_-.J.J2_-~JI
0p.,91 z21 "'32 -al - ( -;-::- Yp"ql(l12. l1a) "'21 "'32 --:H (A.I5) 

-12"'31 

where .1.21 = h'l +hI - h3 etc., and gpl,91(h2.Il:!l = 0 is a polynomial ill hl of degree Plq, 
and the roots are given by 

" 
uJ(m +1) - qm]2 - I, ]1= 1'3 - 1)1 + 1.113 -III +3,., .,1'3 +1)1 - 1 

4m(m+l) (A.16) 

q = q3 - fll + 1. (h (II +3•...• (/:} + fit - 1. 

It is noteworthy that both 112 aud I1 p3 ,q3 can bl' arbit.rary complex: uumbers at this stage, 
but that the pair of equations 

gp",It(/~2.113) =0, Ym-pl"n+l-QI (1'1. h:}) = 0 (/t.1 i) 

force hp3•93 to be a unitary highest weight. It is now easy to see that the pairs of equations 
(A.11) and (A.I2) are equh'alent and that thc solutions are givl'n by 

112 =hp,9' 

P =1113 - lId + 1, /113 - lid +3••••• miu(/}3 +PI - 1, 2m - 113 - III - I) (A.IS) 

q = Iq3 - (Id + 1. 1'13 - (It! +:l.... , mill( (h + (/1 - 1. 2( m + 1) - (tl - fll - 1) 

and we Itave th<.> wdl-known fusion rilles for til(' nnit,try discrt'te st'ries. III particular. III is 
a unitary highest weight. It is cll'ar that. t.hE' fusion rul('s are sym metric: a vertex (A.3) is 
allowed if and only if th(' v('rtices obtain(·d by lu'rlllllting hI, 11 2• "3 are also aUowf.>d. We 
can dt'fine a commutative ring with identity, t.he ffl.'lI'()Il riny. which. as a Z-modllle. has a 
basis given by the sp" of uuitary highest w('ights (for sOllie fixf'd ("clltral chargc), and with 
mllltipikation given by 

hjhj = L t'jjkhl· (11.19) 
4· 

J!) 



where eijlc =1 if 

(h~t) 
is an allowed vertex, and vanishes otherwise. Commutativity is immediate and associativity 
can be checked directly but also follows from the fact that the 4-point functions span the 
solution space of a system of OPZ and projective invariance equations for a 4-point function 
(see below). The fusion ring will be the representation ring (for unitary positive energy 
representations at a fixed central charge) of the Virasoro algebra, when fusion is defined. 

Let 
T(z) =L L(n)z-n-2. 	 (A.20) 

nEZ 

Recall that a unitary highest weight module 11(e, h) decomposes as a direct sum of finite­
dimensional positive eigenspaces of L(O): 

l1{e,h) = E9 l1(c.h: r) 	 (A.21) 
r €h+No 

and the inner product identifies its algebraic dual as 

li(t.h)= n ll(c.h;r). 	 (A.22) 
rEh+No 

It is useful to think of primary fields and T( z) as functions 011 C· taking values in linear oper­
ators from the unitary modulf's to t.lteir duals. holomorphic in tht> sense that matrix elements 
are holomorphic (say. in Z E C·. -lI' < arg( z) < lI'). The chief interest is the composition of 
these 'fields', by which we lIIea.n for a St>qllf'IICl" ~li( z;) = Ln. Ai( n;)=;-"; -..1; (i = 1, ..• , N), 
ir the rormal sNies 

L (f/IA",(uN)" ·Aduall{) Z;'"N-~N .. 'Z~"I-AI (A.23) 
"Ntu ·,"1 

is convergent on some domain in I=NI > ... > IZII, for all 11. {. A sequence ofT( Z )'s and a Vi­
rasoro primary field is composable. converging on I=NI > .. > 1=11, and ca.n be analytically 
continued to a holomorphic function. single-vahlE"d. 011 {(ZN," .,ztl E C·N : Zi -# ij, i -# n. 
Moreover, any permutation of th(' fields yields the same function. In particular, in the sense 
of analytic continuation 

T(z)T(m) = T(lI1)T(=) 
(A.24) 

T(z)~(tfI) = ~(IIJ)T(=) 

and for Itvl > 1= - tvl, we have convergent expansions ill powers of z - w: 

T(z)T(w) =	~ + 2T(tv) +_l_dTCtt.) + ... 
(=-tv)" (z-III)2 =-w (lw 

(A.2.5)
h~(fO) ~(fI')

T(=)~(It') =--., +-- + .... 
(z - tI')- z - tI' 

For (lach primary field ~(=) cOl'r('sllonding t.o ,t vertt'x. of couforma.1 dimension h. we can 
define an irrcdurihle high('st \\'l·ighl. 1110(1111(· wit It higlwst. weight. II spallllt'c\ by 

i(mN)" ·i.(ml )~(:). 	 ( A.26) 

i() 

which are, like the primary field they descend from, holomorphic functiolls on C - ( -00,0] 
taking values in sesquilinear forms Oil products of unitary highest weight modules; given by 

~ 1 ... 1 dWN" .dw) (WN - z)mN+l •. -(WI - z)ml+l T(WN)" -T(Wl)~(Z)
(2l1'l) TeN Tc l 

(A.27) 
where each contour encircles z and Ci goes around Ci-l. The action of the Virasoro algebra 
on this space is the obvious one which we can check by the usual 'contour trick' or directly 
using 

L(m). (z) = [t. a,( -z)'L(m - r)j ;P(z) - .(z) [t. a" _z)m+l-,L( r - l)j (A.28) 

where (1 +x)m+l = L~o (lrXr, Ixl < 1. Irreducibility follows from (A.l!). That is, for 
h = h'P.9' we have 

Op.q~(z)=O 
(A,29)

Om-'P.m+l-q~ (z) =0 

where, of course. each Op,q is O'P.'I with the L(m)'s replaced by i(m),s. Elements of these 
modules of 'fi('ld operators' are the ehiml tJertex 0IJemtortt. For earh 'I/J E /l(e. h), we write 
the corresponding deSCE"lldE"llt of «)~II h' (=) a.<; 

~~" h,(tb.z). 

An N-point function or Virasoro primaries 

(~N(ZN)" '~I(ZI») 	 (A.30) 

where ~i(Z;} =~::+l k.(=il, hi =hp ;.9; (i =1, .... N) is n I>riori a forma.1 series: 

L (OI~N(nN)" '~I(ntlIO) =;.nN -..1 N .. ,zl"I-..1I . (A.31) 
nNt •.. ,ft, 

From (A.29), we obtain ror IZNI > ... > IZII the 2N nrz eqnations [5J: 

O~:~. (~N(ZN)" '~I(ZIl) =0 
(A.32)

6~~p..m+l_q. (~N(ZN)" ·c{lI(ZI)) = 0 (i=1. ... ,N) 

where 6:'~i is likewiSE" OM with each L(m) replaced hy 

N 

iN;i(m) = - Lzji+liJ~' +hj(m+ l)zji. (A33),-. -} 

I'"~ 

Tht> coefficient.s in the diffCl'ential operators havf' COII\'Ngent. s('ries ('xpansiolls and the 
equations arc uudE.'rstood to he t.hose of forlllal seri('s. In addition. WE.' haw' thE" :1 projective 
invaria.nc .. equations 

t (zj+l £~. + h j (m + 1)=r] (~N(ZN)" . cf»rf =d) = () =O. ±l).(111 (A.:l4) 
j=1 V_) 

il 
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Thus, corresponding to a sequence hN, • •• , hi of unitary highest weights is a system of 2N+3 
differential equations. A corollary of the results in this paper is that the corresponding N­
point functions converge. We would like to know that they also span the solution space of 
this system of equations (see also [16]). It will emerge that any 2 of the N pairs of BPZ 
equations can be disregarded, as is already apparent for N =2,3. 

In the rest of this section, we will suppose that we have already determined that the N­
point functions are convergent. We now show that there are no other regular non-logarithmic 
solutions. The change to the variables of Tsuchiya-Kanie [2] 

Wi =Zi/Zi+1 (i =1, ... ,N - 1) 
(A.35)

WN =ZN 

is an analytic isomorphism from {(ZN, ••• ,z.) E C·N: IZNI > ... > Izd} to {(WN,,,,,Wl) E 
C·N: IWil < 1, i =1, ... , N -I}. We consider the system of2N +3 equations corresponding 
to the sequence of unitary highest weights hN•... , hi, hi =hpj,qj' A regular non-logarithmic 
solution at the origin is a convergent series solution: 

"IV 0"1 "\"' .nlV_1 fli 
Ul N "'11'\ L-,; efllV_I"'fll "'.\,_1 '''U'l (A.36) 

fllV_I ...·.fI'~O 

for some OJ E C, with ON = - L~I hi, 0N-I =ON + 211",. and 01 =O. In terms of the 
z-variables. 

N-l 
..- 2h lV II _-(h;+kj -k,+I1 "\"' e .,.-n.v ••. ,.fI;-n._, ••. ,.fI, (A.37)-N "'j L-,; flN_,· ..n, -N -j -I 

i=2 nN_I .....nl2:0 

where kN = hN. k'l = hi. Denote this solution by f(=........ =I). analyt.ically contilluing 
it when necessary. and ohliel've that its lending term a.<; =2 - ZI - 0 ha.s behaviour "" 
(Z2 - zd-(h 2+h l -kJ 1. Let 

- -) - 1 i ci- (- - )h2+h,-kJ -I f(,. - ) (A.3S)o( "'N"',,"3,-1 - - -2' "'2""2 - "'\ -N'''·,':'I
Ira C 

be the coefficient of this term. Observe that (A.IS) implies that 1.:3 is a unitary higbest 
weight sucb that 

(A.39)(k~~l.) 
is an allowed vertex. Wl' now show that. g( =N •• ••• Z:\' =\) is a solution of the 2( N - 1) + 3 
equations corresponding to liN> ••• , 1l3> k 3• Th(' proj('cth'(' equations are easily seen to be 
satisfied. It is suffici(>nt to show that it also sal.isfit·s the N - 3 pairs of DPZ equations 
corresponding to "N, .. .• ".\. Then, by induction on N. WE.' are dOlle, since the case N =4 
is dear. 

Observe that, for I=NI > ... > 1=.1. 

f(ZN, .... ztl = (OI!fl~~IV(ZN)FN(ZN- ...... Z:!lcJ>:: o(z.)/O) (AAO) 

where FN( ZN-I' ••.• z:!) is a holomorphic funcl,ion in its \'a1'iahles taking values in sesquilin­
car forms on H(r,h",) x I/(r..lltl; dcfin('(1 hy 

(h N IFN(ZN_I ..... Z2111l 1) = lim lim =~hlV f(ZN .... ,:;;d (rI.4I)=,-0 :N-·x., 

1:1. 

and 

N-t a 1 
[L(m).FN(zN-t. .... Z,)]= 

[ 
L z;"+1o,.. +hdm+l)zi FN(ZN-I •...• Z,) '(A.42) 
i=2 -I 

for aU mE Z. This is well-defined by the BPZ equations corresponding to hN and hi' From 

2~i [ dz'l z:'+hl-k3-t{hNIO~IV.qIVFN(zN_"" .• z:dlh l ) =0 (A.43) 

we have 

Optu "u [lim lim Z;';IV 9(ZN, ... ,Z3,Zd] =0 (A.44) 
.,,~.. =1-01:IV-OO 

where O:,q is OJ,q with each L(m) replaced by 

N-I a
L z:n+1a_. +h;(m+l)zi· (AA.'j) 
i=3 "'" 

But. by the projective equations, this is the stat('m('nt that g( =;v•... , Z3, =1) satifies the 
BPZ equation corresponding to 0pN,qlV !h,v}. The same arguments lead to t.he DPZ equation 
corresp'on(ling to Om-PIV.m+1-,,1V IIlN). 

Analytically continuing the functions f( =N•... , =1 ) and g( =!\/ ..... Z3. =1 ) t.o the domain 
Izi\ > IZNI > ... > I=d. for j = -1, ••• , N - 1. we can repeat the construction above to 
obtain Fj(ZN> ... , ij, ... ,:2). holomorpbic and taking values in forms on //(e, hj)x H(e, hd. 
The precise paths for analytic continuation are unimportant. and the leading behaviour in 
Z2 - ZI - 0 is unchanged. We thus obtain that g( ZN, . .. , ZI) satisfies the BPZ equations 
corresponding to hj in the corresponding domain and thus, by analytic continuation along 
the reverse path, in the original domaill as w(>l1.. So we have shown that the N-point 
functions spall the regular non-logarithmic solutions of the DPZ and projective invariance 
equations. To show that all solutions are regular at the origin (U'N ... •,111d =0 and are 
non-logarithmic is a little more involved, unless N ~ ·1. 

For N =4. the projective invariance e(llIat.ions plus one of the DPZ ('quations can be 
shown to be an integrahle Pfaffian system wit h regular singularities of the tYI)e considered in 
Appelldix C. Tht'll all the solutions are r('gular at tit", origin and it rC'maills to show that none 
are logarithmic. Since N = .1. this is the Ilrohl(,lll of an ordinary dilTerential equation with 
a regular singularity at x = O. Recall that logarithmic solutious OCCIII' only if the indicial 
equation has repeated solutions. whence thl')' must occur; or if it has solutions dilTering by 
integers, wht'nce they can but 11('('(1 not al)p(>ar. In th(' latter ca.'Ie. we ca·n keep track of the 
possibly logarithmic solutions by keeping trark of the solutions to the iudicial equations. 
since they are all distinct. To find the indiciill {''Ination. cOllsid{'r a fonnal solution 

·1 
=12=:1-1II J'~ (log.r)" [1 + ...j. x=-- (rI.-I6) 
ZI:\=Z,I

i,):1 
i<j 

where Lj.i<j/ij + Lj.i<j1ji = ·l.h j (i = 1. .....1). Ll't Iz,d > ... > 1=11. and the leading 

b('havior as Z\2 - 0 h~ "" (loJ.!; =12)r Z~2(hl+112-l'''. TlU'n the !l·ading hehaviour as =3~ -­

i:J 



k3o is "" (log Z34)" z;r3+h
.- ). It fonows easily from (A.15) that the iudicial equations 

corresponding to the 0"1091 and Om-Jllom+1-QI equations are respectively 

9"I,91(h2,k3) = 0 (A.41) 
9m-"I,m+1-91(h:hk3) =0 

and corresponding to tbe 0".,9. and Om-"••m+1-9. equations are respectively 

9".,9.(h3 ,k3 ) = 0 (A.48) 
9m-Jlt.m +1-9.(h3,k3) = O. 

The common solutions of the indicial equations correspond precisely to the 4-point function 
solutions. Hence there are no logarithmic solutions. We do not have a proof for N > 4, but 
the general case is less important for the following reason. 

The fundamental corollary is the braiding relation: 

(11141!: h( Z)41~~'ll (w )!~) = L (f11 41!! h/( 1/1)41~~ h, (z)I~) C:,4~13h,hl ( A.49) 

h' 

in the sense of analytic continuation. for all 'q,~. The braiding matrix (C:,4hhlh:t 
h 

l )h'h, which 
depends on the dass of path chosen, is necessarily square. with h. h' ranging over values 
such that the respective vertices appearing above are allowed. It is easy to see that (A.49) 
holds for arbitrary 'fJ, ~ if it holds for higbt'st weight vectors. W(> can also see that the same 
relation still holds if each of the primaries above is replaced with one of its descendents. 
It follows from the braiding relations that N-point fUllctions. defined in one domain, are 
always analytically continued to other N-poiut functions. (leHned in another domain. If the 
DPZ eqllations did ha\'t' furt.h('r solutions. t.he space of solutions is ne\'ertheless 'reducible' 
in this sellse. 

It is ea.'1y to show that for each vertt'x olwrator "'( z). 

fL(-l). "'(z)j =d"'(.:) (A.50)
d.: 

from which follows for Izi > 1101: 

w(.:)ewL(-l) =ewL1-1)W(z - tv) (A.51 ) 

and 
>t~0(~'• .:1I0) =e:Lt-11ltt·). (A.52) 

Th('n it is straight.forward to show that Wf' hav(' for 111'\ > I.: - wi: 

41!! h(z)41~'hl(t/!) = L F:'i.h3 h:thi L «(f1i114l~~ h:t(Z - 111)1112) c)~: hl(ah', w), (A.53) 
h' 4A' 

wh('re {ah'} is a homog~nrol1s orthonormal hasis of 1I(l'.h'), and 

F~.hhlh2hl = ct :,1 1"0 C~,4hh3h Ih2 C::~~10 • (A.54) 

giv('s the f1lsion matrix in I.PrlllS of hraiding nmlrk('s. For similar arguul<."IIt.s in a mt'romor­
phic cOlltext, S{~ [Ii]. 

2·1 

Appendix B. Computing braiding matrices 

Let h4,h3,h2,hl be a sequence of unitary highest weights, hi =h"',9' (i =1, ... ,4). 
with h'l = hI., or h,.I' We want to calculate the braiding matrices (C:'·hh3 h2hl )h'h. Recall 
that 4-point functions satisfy a system of (BPZ and projective invariance) differential equa­
tions which reduces to a system of o.d.e. 's of Fuchsian type with 3 singular points. which 
we can and do choose to be 0,1 and 00. It will be apparent that the braiding matrix is 
essentially the connection matrix for a Fuchsian equation (for some path), relating the local 
solutions at the singular points 0 and 00. Since h, = hI,'l or h'1.I, one of these Fuchsian 
equations is of order 2, and thus after suitable transformations a hypergeometric equation. 

Corresponding to h2 = ht.'J or hu, we have the DPZ equation: 

2 

[ 
3 8 + "'" -I 8 h 

%j2
-'] 1 ° (B.1)

411, + 2Fzi ;=7.3.4 Zj'l 8zj - j = 

in addition to the project.ive invariance equations: 

4 f) ]L Z;+I ."l,.. +h j (m+l)zj 1=0 (m=-I,O,l). (B.2) 
[ j=l U~J 

We will consider this system of equations. which we r('dllce to a. hypergrollletric equation 
H(o,f3~,T, unique up to Kummer's 24 glmerically dislinct transfonnatiolls that take one 
hypergeometric equation into another: 

(p1 dl 
z(l- z)-d.) + h - (0 + IJ + l)x}-1 - o!31 =° (B.3)

r- IX 

with Riemann scheme 
01 

~)o 0 (B.4) 
( 1-, ,-rr-{3 

Our problem then reduces to the c1a.'lsical connection problem for the hypergeometric equa­
tion, whose solution is known [18.19]. 

The projective in\'ariance ('quations have ,.h.. general solution 

.. 
':11Z34IT Zij'Tii I(z). Z=---. (B.5)
Z13':24...... 

t<i 

where the ,ij are arbitrary solutions to 

~ .. 
2hi = L ,ij + L ,ji (i =1, .... 4). (B.6)

1-. )a'
t<i i<, 

W(> can choose. say. ,1'2 and T1:1 a.rbit.raril~.. <Iud obtain 

11:) ="1 + 112 + II:) - h,l - il2 - ,21 

"}<I ="'1 + h'l - h~ - 113 +12:1 (n.n 
1:H =2h2 -,12 -,2:S 

':S·1 = 111 +h4 - "1 - 112 +112' 

2!) 



With this Ansatz, the BPZ equation above reduces to 

3 d'l f ( [1 31'12] 1 [1 31'23] 1 ) df (B.8)4h2 + 2 dz2 + - 2h2 + 1 :; - - 2h'l + 1 1 - z dz 


- [~ +"'] [3"Y12hI2+1) _ '" _ h ] [3"Y2J("Y2J+I) - .... _ h ])
~ 113 .l1i2 +2 ,12 I ~h2+:! .23 3 

( z(l-z) + z· + 'J f = o.'J (l-z)­

Now let 1'12,1'23 be respectively solutions to 

31'1l(")'12 + 1) - (4h2 + 2)(")'12 + htl = 0 
(B.9)

31'23(1'23 + 1) - (4h2 + 2)(")'23 + h3) =0 

so that we get the bypE'rgt'olllt'tl'ic equation lI(a,p, i), with 

4hz +2 • 
1'=-3-- 21'1l 

8/h +1 
a + rJ = --3- - 2(")'12 + 1'23) (B.10) 

4h';! +2
a/J = 21'12123 + -3-1'13' 

Further, we easily check that 

{O, 1- 1'} = {{hpJ,'II:i:1 - hi - hz + 1'1:d if hz = hl.2 
{hpl:i:I,'l1 - hi - IlJ + 1'1l} if h'l = h2,1 

(B.11) 
{O',P} ={{ll p4 '94:i:1 + III - II.. - 1'12 - 1'23} if h'l =hi,:! 

{hp.:i:I,'l4 +h2 - h4 - 1'12 - 1'23} if h2 = hz,l' 

or course, h,,'l nE"ed not be a unitary highest weight for p, '1 1I0t in tbe usual ranges. 

The 4 generically distinct choices for hu, 1'23) correspond to the Kummer transforma­
tions that act trivially on the variable z. For definiteness, we take: 

-1 - b'l(m + 1) - (Jim) -1- []1J(1I1 + 1) - (13m]hz = hl •2 : 1'12 = 2( lit + 1) • il:l = 2( m + 1) , 

a}p = hp4 .'I4:i:1 - hp4 ,9. + liz - (1'12 + i23) 

1 (B.12)=2[1 + (1'1 + 1'3 =F p.d - (1/1 + (/3 =F q4 )] + ql_ +(13 =F 1]4 

l' = 1 +hI +"2 - 1'12 - h"1091+1 


=1 +/'1 - (II +~ 
m+ I 

2(j 

., 

and 

1+{PI(m+1)-'1lm] 1+[1'3(m+l)-1]3m]
h'J = h2•1: 1'12 = 2m ' 1'23 = 2m ' 

p} = h,.:i:I.'l4 - h'4.'l4 + h2 - (")'12 + 1'23) 

1 ~+P3~~ (B.13) 
= '2 [1 - (PI + 1'3 ~ p . .) + ('11 + 1]3 ~ '14)] - --­

l' = 1 + hi + h'l - 1'12 - h'I+I.'l1 

= 1 - PI +ql - ~. 
m 

Replacing (P.. ,q.. ) by (m - P4,m + 1 - '1.. ) interchanges Q and f). Replacing (1'3,'13) by 
(m - P3,m + 1 -1]3), (p.,'1') by (m - Pltm + 1 - q.), or both, implements a Kummer 
transformation, given equh-a.iE"ntly by (a,IJ,;') I- (")' - f)" - a,1'), (0', f), 1') ...... (1 + a ­
1',1 + f)- 1', 2 - 1'), (a,f),1') I- (1- p, 1- 0',2 - 1') rE"spE"('tively. Together with the identity, 
these transformations form a subgroup of I\nmmer transformations (£!! lz x l2). 

We look at the case: h2 =h l •z. Observe: 

i-I = PI - (II + 111 
lJl+ 1 ' 

tf3 
a+JJ-1'=P3-(13+ m+l' (B.14) 

tf·1 p- a = P.. - (14 + 111 + 1 rt l. 

The conditions 1', Q +f) - 1', IJ - a rt l respecth'ely guarantee that the local solutions at the 
singular points 0, 1. 00 are nOll-logarithmic. Because of the othE"r 7 BPZ equations, which 
we have ignorE"cl so fa.r, we are intE"rested only in the. case when at least one of 

hpJ.9J ) 
( h'4.Q4 hpl.'lI:i:1 

is an allowed vertex. Then we have, exrlusi\'ely. eith('r that 1'1 +1.IJ+I'" E 2l+1, ql +q3+q.. E 
2l; or that PI + 1'3 + 1''', (II + (13 + (I.. E 111 + 1 + 2l. E(IUh-alently, Et=I(Pi + q;) E 2l 
or 2l + 1, respecti\-ely. These two casE'S are E"xchanged by anyone of the involutions 
(Pi,(ld .... (m -1'j,m + 1 - (/;). i = 1,3,·1. so thert> is no loss of generality in restricting 
attention to onE" caSe only. We consider the forlll('r case. Then: 

a E l ¢> (II + (13 - q.. = 0 

13 E Z ¢> (II + (/3 + q.1 =2( m + 1 ) 
(B.15) 

H - 'j E l ¢> (II + (1.1 - q;s = 0 

;J - l' E l ¢> (/3 + '1.1 - (II = 0. 

Observe that these are Illlltll<llly exclush'e conditions. Each of the equivalent left- and 
right-hand-side conditions has a simple interllrt>tation: 

Let 14(z.II), (' = 0,00, denote the local solutioll of /{(a.tJ,i) at the singular point 
z = a, with characteristic expollent II (we wOlI't n~d to consider thE" singular point z =1). 

2; 



More precisely, 

/O(x.O) = F(o,p,"1;x) 

foe x, 1 - "1) = X 1-..,F( 0 - "1 +1,P- "1 +1, 2 - "1; x) 
(B.16)

/oo(x,a) = x-a F(o,a - "1 +1,0 P + l;x- l ) 

/oo(x,{3) =x- IJ F(P,{3 - "1 + l,p - 0 + l;x- I 
). 

where 
Il ) ~ (a)m(P)m mF( o.I-',"1;X = L.,; ( ) (1) x , 

m=O "1 m m (B.17) 

(P)m =1'(1' + 1) ... (I' +m - 1) 

is the hypergeometric series. We take -11' < argx < 11'. By analyt.ic continuation, we can 
compare the 2 pairs of solutions; we have the classical result [18,19): 

(/0(:r;0), /o(x; 1 "1)) = (/.x;(x;o), /ox,(x;{3)) P(a,{3,"1) (B.18) 

where, ta,king the path for analytic continuation along the negative imaginary axis, the 
connection matrix is given by 

-;ri(\' rh)r(IJ-,,,) e-lfi(a-"'I+1l r(2-"'Ilfll)-0) )
f 1(j))th-o) t{iJ-"'I+ III It -0) 

(B.19)P(a,/J."1) = lI'i,Hh)r(o-d)( e-Ifi(/J-",+l) r(2-"'I)r(o-.8)
e- r{o)th-IJ) t(o-"'I+ I W( I-a) 

for a,p, "1-0, "1- P f/. Z. Doth sides oCthe equation are analytic in x, 0,{3, "1, and the points 
corresponding to a,p, "1- a. or "1- PE Z are rt>movahle singularities. Since f( z)f(1- z) = 
11'1 sin(1I'z), and sin(z) is an t>ntire function. r(z) bas no zeros. Thus all the entries of the 
connection matrix P( a, fl. "1) are non-vanishillg IInless one of a, {3, -,- 0, "1 - {3 is an integer. 

For a sequence of unitar.... highest w~ights (hi = hp..9, )i=I.2.3,4, such that h'l =h1•2 , 

there corresponds a vector space of 4-)>oint functions of dimension 1 or 2 (or, trivially, 0) 
spanned by 

(11 .. 14>:: II(Z).~2"1 (/fI)/ht), It = hph91 ±1 (B.20) 

with the convention that a \."Nt(>X operator is just zero if the vt>rt{'x is not an allowed one. 
We assnme again without loss of g~nerality that Et=I(Pi + (/i) E 2Z. Dy the fusion rules, 
the dimension is 2 if and ollly if 

ql ± 1 E {Iq:) - q41 + l.lq:) - q,d +3, ...• min(q3 + f/4 - I.2(m+ 1) -lJ3 - q.. -o} (B.21) 

or, symmt>tricall)', if and onl,\' if: 

2 :5 qi :5 11/ 1 (i =1.:1..'). 

(/1 + q3 - q.\. "1 + q,. - (tl, q3 + q., (/1 2: 2, and (B.22) 

ql + (/3 + q.. :5 2m. 

The dimension is ) if a.nd onl.... if one of the following holds: 

ql + 1 =Iqa - q11 + 1 (B.23) 
q, - 1 = min( qJ + (/·1 I. 'i( m + I) -lJ3 - (I" - 1) 

'i~ 

or, symmetrically, if and only if one of the following holds: 

ql +f3 - q.. = 0 

ql +f .. - lJ3 =0 
(8.24)

lJ3 +q.. - ql = 0 

ql + f3 + q4 = 2(m + 1). 

Thus the dimension of the space of 4-point functions is 2 if and only if the connection matrix 
P(o,p,"1) has no vanishing entries; the dimension is 1 if and only if it has precisely one 
vanishing entry, whence the pair of solutions (/0(X,1I1), /oo(X, 112)) that are multiples of each 
other correspond to the 4-point function. 

Finally, we compute the braiding matrix. Our normalization is: 

(hilh i ) = 1 
(8.25)(hd4>~~ hj(zlilli) = Z-(h.+hj-ht). 

Observe that. for IZ31 > I=JI. 

(h'II4>~: h(Z:!l.z,~lil~(Z2)lhl) = z;lh3 +h-ht )z;(h:l+h l -h l [1 +...J 

= z;;"':13 z;"'I13 =;"'11' /o(x; /I) (8.26) 

= =;"'113 -"'1'3 =i"'I' (1 - x) -1"3/0 (x; /I) 

where x = z21z3, and 


I - "1 if h =hp1091+1

{ (8.27)

II = 0 if h =hpl.III_I. 

And thM, for 1=21 > 1=31. 

(h·l4>h, (,. )4>lIl (,. )111) .,.-1112+h'-ht l ,.-(II<,+h l -Ii')[1 + J
' h t hi ~2 I,' hI -3 I ~2 -;) •.• 

=Z:;"'r~3 =;"113 =;"'rl~ / "XI (x; Ii) (8.28) 

==;"'rIJ-"ll3 Zi"lI~(X _ 1)-"'123 /ox,(:r; /I'), 

where 

1/ = {a ~f h; =hpt.llt+1 (8.29) 
{3 If It =hpt .'1t- I ' 

We choose a hOlllotopy class of path ill {(ZZ,Z3) E C .. 2: =2 ::f z;J} from 1=31 > 1=21 to 
I='ll > IZ31. sllch that the class of path in tlw Cllt plane C - (-00.0) is along the negative 
imaginary axis. Theil we ha\'(' h)' analytic conlinllation along this path, 

(J .r)-""J = (,-:ri"'r2J(:r _ 1)-"'123. (8.30) 

Henct>, dt>lloting 

Chthlhl.2hl = C±±, 
'h~t'''t:l:lh~I'~I:l:1 

we have 

( C+_ c++) = ('-lfi"'r2~P((l./j.'i'). (fl.31)C__ C_+ 

2!) 
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Observe that the braiding relations are invariant under (Pi, qi) ...... (m - Pi, m + 1 - qi), each 
i =I,3,4,as needs be. 

The case h'J =h'l.t proceeds in exactly the same way, with corresponding results on 
the non-vanishing of entries in the braiding matrix. Likewise writing 

Ch h h h 
4 3 2.l l = C:I:::b 

h'4:t I... h"l:t 1.41 

we have the same formula for the braiding matrix. 

Moreover, by inspection of the connection matrices for the analytic continuation of 
solutions between other pairs of singular points, we obtain that the same results on the 
non-vanishing of the entries in the braiding matrix applies if anyone of the hi (i = 1,3,4) 
is chosen instead of h'l to be h t •2 or h2•1• 

Appendix C. Pfaffian system with regular singular points 

We consider a system of ('(Illations 

.. 0?: ':jn+! 8,:. + hi (m + 1) zj'1f =0 (m = O,±I)
[

J=I J (C.I) 

o 
Off, of) f =0 

where coefficients in O( f, £,) have convergent expansions when IZ41 > ... > IZII; and the 
Ansatz: .. 

f = II Zij"'i F(x), x=~ (C.2) 
Z13%24i.i=l 

i<i 

.. -t

L iii + L iji =:2hj (j =1, ... ,") (C.3) 
i=1 i=1 
i<j i>i 

reduces this latter equation to a Fuchsian equation in the variable x with:} singular points, 
at O. 1,00: 

(tn tln -
I ] 

[ (il. n + al{x) dx,,-I + ... + (In(X) F =0 (CA) 

where each 
}Jl.:lxl 

(Ik{ J~ I = .rk ( 1 ~ ~)I.:' /lk a polynomial of dt'grC'(' $ k. (C.5) 

It ShOlJld be clear that. a.U tli(' e(llIations above cau be interpreted as e(llIations between 
formal series in t.he variablt·s =i (i. = 1•.... -1). D)o' F(x) is lllE-ant. a formal series F that 
satisfies the equations 

·1 m+18FL zi 0,... =0 (m =O.±1). (C.6) 
i=1 -J 

The equation involving derh·a.tivl"s ill the variable x is m('ant in the following SE-nse: lise the 
projective invariance equatiolH; to replace '.he ('<Illation O( f, I!) f =0 with olle involving 
only derivatives with reslw('t t,o =.. say, a.nd th('11 change varia hIe fl'OlII =1 to x. There 

:m 

~ 

is an obvious canonical correspondence between formal series ill the variables (zd and 
formal series ill the (Wi), where Wi = zdzi+1 (i = 1,2,3), W4 = Z4' This change of 
variables gives an analytic isomorphism from Hz.. , ... ,zd E C·4

: IZ41 > ... > IZtl} to 
D ={(w.. , ... ,wtl E C·4: 1> IWil > 0, i = I,2,3}. 

We observe that 
OF 8F. 

10;-0 =Qi(W)~ (t =2,3,4) (C.7) 
Wi vIOl 

where each Qi(W) is holomorphic on D. Explicitly, 

( ) _ -(WI - 1)(wlw~w3 - 1) () _ W3(WI - I)(WI W2 - 1) () _ 0 (C 8) 
O''l W - (W2 _ 1)( W2 W3 _ 1) , Q3 W - (W3 _ 1)(W'l W3 _ 1) , 0'4 W -. • 

Then for each rENo, 

8 (8
r
F) r 8'F 

lVi- -0" (i =:2.:J.4). (c.g)' =L Ai.r..(ll')~
OWj Il'j ..=1 vILli 

where each Ai,r.s( w) is holomorphic on D. ObsNve allio that with the change of variables 
from x to ZI to 'It'l, 

o II
-0 = U'2 0 (W)- (C.lO) 

WI clx 

where O'(w),o(w)-t are holomorphic on D with t.he propl"rty that (JTo(u')/dxr is holomor­
phic in D for each rENo. Explicitly, 

("'2 - 1)( W3 - 1)
o(wl= ". (C.Il) 

( W:! W3 - 1)( WIlL':! 1 )­

Writing ,)"-1 rn-I((I( It')~ ='" j3k(U.)_l_
(Ir L Il.rr 

1.:=0 
(C.I2)

0 ) i j . OJ 
( o(w)-I~ = L iJ(W):-j' (i E No), 

VIOt j=O OWl 

where the l3i(w), iJ(1I1) an' hoJolllorphic 011 D, we> obtain 

n-I j 
, ,i)JF

O"F =L L ;3;( w) - n( 1/')" 1/';-' tI,,_i(l')] 1'j( w) -.-J' (C.I3) 
Owj' j=O ;=0 iJw l 

By the Fllchsian property of (C..I), each lI·t (Ik(.t) is hololllorphic 011 D. so that each of the 
coefficients above is hololllorphk on D. We conclnde that 

OF _ Ai( /I')F (i = 1. .....1), _ (or-l F)
f' = --;:::-r (C.I")

OW; - lI'i iJII', r=I ..... rt 

where each Ai(u') is all 1/ X /I mat.rix-vahlt'd fuuct.ion, hololllorphic 011 D. UlIsnrprisillgly, 
we readily verify that j = (iJ r

- 1f IOml r-I ),.; I ....." lial.ilifies a silllilar syst('1II of equations. 

;JI 

http:0(W)-(C.lO


To show that the projective invariance equations plus a BPZ equation for a 4-point 
function is equivalent to an integrable Pfaffian system of the form (C.14), we have to check 
2 points. First is the compatibility of the BPZ equation with the projective in variance 
equations, whence integrability follows from that of an ordinary differential equation. This 
involves checking its invariance under Mobius transformations, which follows from its con­
struction. Second, to verify the form (C.14), we consider the BPZ equation given by O~:~, 
which is 0,.9 with each L(m) replaced by 

. .. {} 
L4:1(m) = - L z;,;+1_ +h. (m + 1) zii. (C.I5)

_=2 Oz. 

The equation is of the form 

{}'P9 " a~,9. l4:1 (-i) .. ,j}:I(-i ~1)] I = 0 
O.,.'PtI + . 4t '1"" AI 1 , (C.16) 

[ -I .1 ....,'/>/>0 

i l +,,·+iA/=P9 


and it follows in a straightforward way, by noting the form (C.I!) of the L":l( -i)'s and 
by inspection of the projecth'e invariance C(llIatiolls, which gh'e all the other derivatives in 
terms of a () 

(C.I7)
aWl = z:! OZI • 

that 
.= (or-II) (C.IS)I Owr - I 

1 r=1 .... ,'P9 

satisfies a system of <'qllations of the form (C.14). Witbout considering the other BPZ 
equations, this is sufficiE'nt to show that all the solutions to the full set of equations are 
regular at the origin (ttl." • . • ,11'1) = O. 

Appendix D. Decomposing vertex operators 

Here, we show that a <IIil(2)N X Sil(2)1 \'('rt(!x opl'rator d("l;cendant from the primary 

I):" /' ( • ,z) 0 I)~" £,( • ,z) (D.I) 

ca,n be decompo!led (1..'1 a !lUlU of .'-:U(2)N+1 x Cc vert.E'X operators dE'scendant from the pri­
maries 

. " I)~" jO(. ,z)01),,:;:.... h".~,(z) (D.2) 

where p = 21 +1. q = 2j + 1 etc., for values of j, j' and j" given hy the GKO decompositions 
of (N,/)€! (l,e). (N,I') (;) (I,e') and (N,I") (9 (I,e") respectivply. It is sufficient to show 
that the s'II(2)N X ,Q-,,(2)1 "('rt.C'x operator 

Ift( • ,z) =1ft).(/... "£], I . .z) ID.3) 
/ / £ £ 

corrE'sponding to the lowest enNg,v subspacE' (q,~.I) of a !lummand of the GKO decomposition 

I N + J. j) ® (l'. "P.,,) c (N./) 0 (1. e) (DA) 

:11 

decomposes as the appropriate SU(2)N+1 X Cc primaries. The general case follows from the 
observation that the 8u(2)N+1 X Cc descendents of such vertex operators span the entire 
space of 8u(2)N x 8u(2h vertex operators descendant from (D.1). 

By definition, we have the relations 

XN+l(m)t( • ,z) =0 (m EN) 

XN +1(0)t(. ,z) = t(X . ,z) (D.5) 

LN+1(O)t( ., z) = ~(j; N +1) t( . ,z) 

for all X E su(2), from which folJows 

LN+1(m)t(. ,z) =0 (m EN); (D.6) 

and also the relations 

Lc(m)t( . , z) = 0 (m E N) 


(D.7)
L,,(O)Ift(. ,z) = "P.9 1ft! • ,z) 

where the subscripts stand for the algebras .<111(2).'11+1 and Ce• 


We check directly that its conjugate 


Ift-( .• z)= (Ift(Cj(. ),~)r:!hp.t-2A(j;N+I)r (D.S) 

also satisfies the equations (D.5)-(D.7), so that we must have 

,[ / £]- .[ / c] 
1ft) /" /' e",' (., Z) OC 1ft) I' 1" £' £" ( • , z ) (D.9) 

where Cj: Vj -- Vl is the antilinear anti-isomorphism from the su(2)-11I0duJe of spin j to its 
conjugate module, defined by the inner product on thE' .,-,,(2)-lllodule of spin j by restriction 
to its lowest energy subspacl'. It has the property 

X(Cj({» =-Cj(X t{) (D.IO) 

where the sign comes from r<'garding Vj- as a left slt(2)-modlile. 

It follows from the equations (D.5)-(0.;) for Ift( . ,z) mul its conjugate Ift-( • ,z) that 

[XN+I(m), "'( • • z)] = .:'" 1ft IX . ,z) 

[L N+1(m), Ift(. ,z)] =.:m+1 [LN+t!-l). Ift(. ,z)] + !l(jjN + l)(m+ l)zmlft(. ,z) 

[Le(m), Ift( .,z)]= .: 111 +1 [(",,(-l), Ift( .• z)] + hp,q(m+l).;mlft( .• z) 
(D.ll) 

for all mE Z. We of COlIl'Sl' han', with T(z) =7~v(z) +T.tz) = T:"+I(Z) +T,,(z), 

[L(-I), \(I{ .• .:)] =dlft( . ,.:) (D.12)
d:: 

From 
(liJI(.z) [I . ]'T'[L(O), "'(. ,z)] = z---;r;- + Ip.q + !l(J;N + 1) ,..(. ,z), (D.13) 

:J:J 



we have a decomposition into homogeneous COllll)onent.s 

\II( • ,z} = L \11(. ill} z-,,-~ 	 (D.14) 
nEZ 

where 

~ = 11,,'1 +~(j; N +1) + ~(/'; N) + ~(t'j 1) - ~(/"; N) - A(t"; 1) (D.15) 

and each \lI( . ; n) (n E Z) is homogeneous of degree -no As a corollary, for each i', i" and 

1jJi' ,I' =Ii') ®lhp',9') E (N + 1,/) ® (c,hp',9') c (N,I') <:9 (l,t') 
(D.I6) 

1jJj",I" =Ii") ®lhp",9"} E (N +1,i") ®(e, hp",9") C (N, I") ® (1,E") 

we have 

p 9(tI,i" ,r' 11If( . ,z)II/J',,.} = 1'J'" j' (j"I.J~" J"( • , Z)Ii') (hp" ..," l4»hh ' h (z )Ihv' ,'I') (D.17) 
P" •.," "t ..,' 

for some ljll j' E C, I)ossihly vanishing. The C(luatiolls (D.ll) and (D.17) characterize 
1If( . ,z) (as an operator-\'alued fUliction): hut they are satisfiro by 

. h 
)'j.. j' +J~" J" ( • , z) 0 +1& P;: " hi' (z ) (D.18)L 	 It·"

jt1j" 	
P.9 

so we are done. We will write 

It]l'i" j' =Yj., j' 	 (D.19)
l' ," t' • 
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