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Abstract. Many coaltractionl in mathematic. caa be ,nerali.ed by replacin, traa.po
lition. of .ymbols by a braidin,. AI,ebraic informalion now ftows alon, braids. Physically 
this exknd. the philosophy of saperlymmehyto the cue of braid slali.lici and provides 
a new approach \0 'Yltematically q-deformin, everylhin" by q-deformin, lhe DolioD of 
teDlor prod act itself. Sach deformationl offer the pOllibilily of re,alarisin, ,nJinities 'D 
phYlics. We report on this approach as developed over the lut three yearl by the author. 
We delcribe the braided Lie al,ebra ,I, iD detail. 
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1. Introduction 

In recent yean there has been much interest in developing some kind of 
quantum or non-commutative geometry. This should be more general than 
usual notions of non-Euclidean geometry, namely general enough to be use
.cui in the quantum domain. Usually, when we enter quantum physics we 
are forced to throwaway the large part of our intuition concerning classi
cal geometry, because of Heisenberg'S uncertainty principle. Probably it is 
commonly accepted by now that there is a clear need for developing new 
tools to recover this geometrical picture in the quantum world, and this is 
the long term goal of quantum geometry. This point of view is somewhat 
looser than the concrete models and predictions coming out of operator al
gebras in the work of A. Connes and othen[1][2] as we have seen at this 
conference. On the other hand, if quantum geometry can be developed as 
systematically as Riemannian geometry then we will have a powerful new 
language in which many questions that involve both quantum physics and 
macroscopic physics can be resolved. In the author's view this includes is.. 
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sues about quant um measurement as well as interactions between gravity, 
information theory and quantum statistical mechanics. 

From this point of view, which is that of developing a language, we expect 
quantum geometry to be useful for the formulation of questions (rather than 
the making of predictions) well below the Planck scale. One might also use 
the geometry to ask questions and make predictions about physics at or 
beyond the Planck scale[3][4]. . 

There is also another point of view in which the parameter, controlling 
the degree of non-commutativity of the quantum geometry is not Planck's 
constant, but rather is viewed as a formal deformation parameter used to 
regularise infinities in quantum theory[5]. The case of interest would then 
be , =1 and singularities in physics could appear as poles at , =1. In this 
line of development the parameter, is considered orthogonal to physics as 
we know it. For this makes it an ideal regulator since all usual constructions 
should be preserved (albeit ,-deformed). in contrast to more conventional 
regularisation schemes (such as momentum cut-off) which seriously disrupt 
the mathematical structure, making it hard to renormalise in anything other 
than a formal power-series. 

This is a slightly ambitious programme because from this point of view 
one should not expect serious predictions until all structures that we use 
in quantum theory (not only geometrical ones. but quantum mechanical 
ones also) have been ,-deformed. It is not generally consistent to ,-deform 
one aspect of our theory and leave another alone. This provides then a 
mathematical challenge: how to ,-deform everything in a systematic way? 

We also recover our previous more restrictive point of view if , is made 
a function of 1 but this is not necessary. Conceptually speaking, these two 
points of view on , are different and we propose that they should not be 
confused. In this note we want to argue that they correspond in fact to 
two different kinds of non-commutativity in physics. Non-commutativity 
of the first kind is the usual one proportional to 1 and corresponding to 
quantisation within a given system. Non-commutativity of the second kind is 
the outer or statistical non-commutativity encountered between independent 
systems with fermionic or other statistics. Associating , whole-heartedly 
with this second kind of non-commutativity turns out to be very powerful, 
and we shall see that many questions that physicists have asked in recent 
yean concerning ,-deformation are solved at once using the techniques that 
we explain here. 

To understand the nature of these two different kinds of non-commutativity 
it is necessary to appreciate that in the algebraic description of geometry 
there are two different structures. One is the algebra A which we think of 
as like C(X) the functions on some 'quantum space'. This is well known by 
now. The second structure is how we think about two independent copies of 
the space. This is expressed algebraically in the notion of tensor product of 
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algebras. So A 0 A is to be thought of as like C(X x X). This is relevant to 
the product and also to the coproduct A - A 0 A if our quantum space is 
some kind of group. Here the coproduct directly allows one to do random 
walks etc so our statistical point of view is a very precise one[6). Thus, or
thogonal to the idea of making the algebra A non-commutative is the idea 
of making the tensor product 0 non-commutative. We have 

1. Non-commutative geometry: A is allowed to be non-commutative, but 
o is the usual one. 

2. 	 Braided geometry: A remains in some sense commutative but 0 becomes 
non-commutative. 

In non-commutative geometry the non-commutativity is often determined 
as quantising a Poisson bracket etc. Likewise in this second conception of 
quantum geometry, which we call braided geometry, the non-commutativity 
of 0 is controlled by a structure " the braiding. We will See that the R
matrix revolution which in recent years has provided us with a rich supply 
of non-commutative geometries in the form of quantum groups A(R) etc 
[7](8), provides equally well a rich supply of braided geometries in the form 
of braided groups B(R) etc [9]. Moreover, these two directions for quantum 
geometry are orthogonal in the sense that they are perfectly compatible with 
each other. There are also functors of transmutation and bosonization that 
broadly connect these approaches, 

IN~~ hAlaillD 
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Some quantum groups are more naturally braided groups and vice versa via 
these functors. For example, one setting where the braided versions should 
be more natural is as the generalised internal symmetries in low dimensional 
quantum theory, where the generators of the symmetry should be built from 
fields with braid statistics. In other situations the braided geometry is not 
only natural but seems to be essential. 

Not only geometry but other structures too can be systematically braided. 
Mathematically, this process of braidijication is a generalisation of the more 
familiar process of superisation that was popular some years ago. Recall that 
in supersymmetry the idea is to replace the transposition operator implicit in 
all constructions by the super-transposition It = ±I corresponding to Bose
Fermi statistics. This forms a representation of the symmetric group. Other 
representations of the symmetric group give essentially the same results. 
Now we go further and replace the symmetric group by the Artin braid 
group. The possible representations of the braid group are much richer than 
just one parameter q. But in particular our braidification process also solves 
the problem of q-deforming everything in a completely systematic way. 

This systematic notion of braided geometry has been introduced over the 
last three years by the author. Just as the simplest geometries are groups, 
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so the first main notions were those of braided groups[10)[9). But by now, 
braided lines, planes, matrices, differential operators and also a proposal for 
braided-Lie algebras have all been found(10)[1l)[9)[12113)[14)[15). There are 
about thirty papers, some with collaborators, and also two review articles 
(16) and '[17] for physicists and mathematicians respectively. The present 
note is intended as an invitation to these works. 

Preliminariel o~ braided wiring diagram, 

Our first task is to formalise our notion of tensor product. Thus we need 
a collection of objects V, W, Z etc, which the reader can keep in mind as 
vector spaces. Between any two we need a tensor product V 0 W again 
in our collection. There should be an identity object 1 and isomorphisms 
V 01!!!!V!!!!1 0 V and V®( W 0 Z)!!!!(V 0 W) 0 Z expressing the identity and 
associativity. These isomorphisms obey all the usual coherence properties 
and will be suppressed. The fancy name for all this is that of a monoidal 
categorY[18)' The reader can keep in mind 1 =C or other field, and the 
usual vector space tensor product. 

A braiding in this context is then a collection of isomorphisms tv,w : 
V 0 W - W 0 V. It expresses a degree of commutativity of 0. and has 
the usual natural properties that We take for granted for transposition or 
super-transposition. These are 

ItV0W,Z = Itv,z.w,z, .V,W0Z = .v,z.v,w (I) 

v 
.w,z(~ ®id) =(id 0; ).v,z, • z.w(id 0;) =(; 0 id).z,v V; ! .(2) 

W 

Such a • gives what is called a braided-monoidal or quasitensor category. 
These have been studied in category theory[19) and also arise in the repre
sentation theory of quantum groups[20. Sec 7] for example. 

Our goal is to start doing algebra and geometry while working entirely 
in such a category. The key to this is a good notation, which is just the 
notation used by electronics engineers when writing wiring diagrams. Each 
operation is a box or node with inputs and outputs. These are joined up 
with wires. Obviously a lot of mathematics can be expressed in this way 
(and it has become fashionable in recent times in other contexts). We adopt 
the convention to write all maps with information generally flowing from 
top to bottom. As every engineer knows, it will generally be necessary at 
some points for wires to cross on our diagram. It means lexicographically 
that symbols are being transposed. The idea of braided mathematics is to 
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put at all such points the braiding t for an over crossing and t -1 for an 
undercrossing 

VW vw 
'P \,..J 'I' 

-I 

v,w· ,""\ W,v 'X wv wv 

Note that we did not suppose that these two isomorphisms V ® W - W @V 
coincide. This is the main difference between braided mathematics and usual 
or super mathematics. The functoriality condition (2) now says exactly that 
we can take morphisms as boxes through braid crossings just as an engineer 
might pick up a wire and move it over or under to the other side of a chip. The 
coherence theorem for braided categories combined with this fundoriality 
says that we can rearrange our operations or wiring diagrams in this way 
and always get the same answer if we do not cut any wires. We will use this 
in all our calculations below. 

One can generalise these ideas to higher dimensions easily enough, but we 
shall content ourselves here with the above three-dimensional calculus. One 
more ingredient which is familiar for vector spaces and which we also need to 
generalise is that of duals. One can have left duals, right duals or both. They 
come with evaluation and coevalutation maps represented by cups or caps 
in the diagrammatic notation since 1 is represented by omission. Inclusion 
of these duals turns our braided calculus into a knotted one. 

2. Braided algebras and groups 

We work in a braided c~tegory as described informally in the preliminaries. 
Now a braided-algebra means B in our collection of objects and morphisms 
tJ : 1 - B and . : B ® B - B obeying the usual properties of an associative 
algebra with unit, which we write as diagrams 

(3)CS!i~ ~+~ 
The fundamental construction which we need is 

LEMMA 2.1. {IO} Let B, e be algebra, in a braided category. Then there i, 
an algebra B§!C al,o in the ca'egor" the braided tensor product algebra. It 
i, hilt on B®e "ith product (·B®·C)'IC,s. Here B,e are ,ubalgebra,. 
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The proof that this is associative is 

~·w~~·w 
Be Be Be Be 

where the two blocks on the left are each the product in B§2,c and we have 
to show that the combination is the same as the products in B§2,c taken 
in the other order. The middle equality is associativity (3) in each of B,C. 
Note also that in the concrete case the product is explicitly 

(a®cX6®d) =a'lc,s(c®lI)d, Va,lI E B,c,d e C 

in analogy with the super-tensor product of super-algebras. 
Just as easy is the notion of braided-coalgebra. This is an object B with 

counit f : B -- 1 and coproduct AB - B§!B morphisms obeying just the 
axioms above turned up-side-down (tum the pages of this book upside down 
to see them). 

DEFINITION 2.2. {I OJ A braided-HopI algebra or braided group i,(B,f,A,5J 
where B i, a braided algebra and cool,ebra "itla f : B-1, A : B - B§!B 
algebra homomorphi,m" Tlae laomomorphi,m propert, 01 A and llae aziom, 
lor the braided-antipode S. : B - B are 

tJ.wct;J ~.~ .~
rN ~C;J ~ T t1 

We shall use the term 'braided group' fairly loosely to include the case 
without antipode also. There are also more restrictive notions of commuta
tivity etc which can be studied under this general heading[lO][ll]. Our task 
now is to convince the reader that these braided groups naturally behave like 
groups or algebras of functions on groups. The latter is our motivation, but 
the axioms are self-dual and one can just as easily think of B as modelled on 
the group algebra CG generated by elements of a group G with tu =, @g, 
19 = 1 and 5..g = ,-1, and trivial braiding. One finds indeed that many (but 
not all) constructions familiar for groups or Hopf algebras work just as well 
in this braided setting. For example, S. is like an 'inverse'. Usual inverses are 
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anti-multiplicative and likewise we have 

~=~=~.~a~ 
Here we used the axioms and the braided wiring diagram techniques above 
with the additional shorthand of collapsing the boxes representing products 
or coproducts to nodes. See [16] for a full explanation of the proof. Another 
important construction for groups is that of the adjoint action. This and its 
action property are now 

~.J ~.~ 
(4) 

The definition here is given by breaking down how we think of the usual 
adjoint action for groups into steps, and writing the steps as boxes. One can 
have a lot of fun proving this and other main results of braided group theory 
in this waY[16][17). One has of course to be careful to choose consistently 
between under and over crossings and check every time that the construc
tions do not get tangled up. Suffice it to say that the braided-representation 
theory, braided actions and coactions and cross products, braided-invariant 
differentials, braided-invariant integrals etc all go through. One notion that 
takes care is that of braided-commutativity or cocommutativity which is 
introduced in [10][11) in a weak (but useful) form as relative to an action. 
Another problem where one can get tangled up is the notion of tensor prod
uct of braided groups. This can be done so far only in a small class of braided 
groups[21). . 

3. Braided lines, planes and matrices 

Here we would like to introduce the reader right away to a whole bunch of 
examples. Many recent puzzles in the theory of quantum groups are resolved 
once one realises that the relevant structure to. look for is not that of a quan
tum group but a braided one. Throughout, we let q be a generic parameter. 
We can work over any field. I would like to stress that the above abstract 
braided group theory led to the following examples of braided coproducts of 
interest to physicists, and not the other way around. 

8 SHAHNMAJlD 

3.1. Braided line. 

We take B = e[z) the polynomials in one variable. The braiding, counit and 
coproduct are 

t(zm®z") =qm"z"®zm, 1:1z=z®l+l®z, {z=O. 

This innocent example is the structure underlying the familiar q-analysis[22). 
For example, let [m;q] = Ii!; then formally 

00 zm 
e,(z) =E [m;q)!' 1:1e,(z) = e,(z)® e,(x), {e,(z) = 1. 

m=O 

This provides an abstract characterisation of the well-known f-exponential 
e,(x). It takes a Lie-algebra like element x to a group-like one. 

3.2. Free braided plane,. 

We take B = e(Xj) the free non-commutative algebra on generators x = (Zi) 
which we regard as a row vector. We let REM" ® M" be an invertible 
matrix solution of the QYBE ao RJ2R13R23 = R23R13RI2. The braiding, 
counit and coproduct are 

t(XI®X2)=X2®xIR, 1:1x=x®1+1®x, {x=O. 

Group-like elements are formally provided by the R-exponentials eXPR (xl"') 
constructed later in (5) with ... = (Ii) an ordinary vector. This is the natural 
generalisation to n-dimensions of the braided line and its plane-waves. 

3.3. Quantum plane.. 

We can quotient the previous braided group by. introducing relations of the 
form X1X2 = X2X1R' for certain matrices 8'[13]. This is the general braidetl 
CC1tJectC1' algebra. For example, in the Heeke case one can take 8' ()( R so we 
have a braided group structure on the usual quantum exchange algebras for 
GL,(n) etc. 

For example, consider the celebrated quantum plane algebra B = e(z,y) 
with the relations yx = fZY. As usual we can write the generators x = 
(x,y) as a row vector. They are like the co-ordinate functions on e2 as is 
well known. But how about adding such quantum row vectors? Our general 
construction provides us precisely such an addition law in the form of a 
braided group with linear coproduct as above. The braiding t is given by 
the GL,(2) R-matrix. 

Remember that the braided coproduct 1:1 maps into the braided tensor 
product algebra B~B. Writing the generators of the second copy of B with 
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a prime, the algebra B~B has the two copies of B as subalgebras and the 
cross relations or braid ",di,tic, 

z'z =(PZZ', z'y =qyz', y'y =q2yy', y'z =qzy' +(q2 -I)yz'. 

The fact that A is a homomorphism then says precisely .that the vector sum 

(z",y") =(z,y) +(z',y') 

obeys the same quantum plane relations. The same construction works for 
the fermionic quantum plane where the statistics tend as q - 1 to fermionic 
ones. There are also examples where the limit q -.1 is a mixture of bosonic 
and fermionic co-ordinates. Any R-matrix normalised so that the corre
sponding braiding operator has an eigenvalue -I leads to associated coveetor 
algebras like this[13]' 

3.4. Quantum matrice,. 

Now we come to the celebrated quantum matrices A(R)[7][8]. They have a 
matrix t =(ti) of generators with the relations Rt,t2 = t2t,R. Everybody 
knows now that they form a usual quantum group or bialgebra with coprod
uct ~t = t ® t corresponding to matrix multiplication. But how about the 
addition of quantum matrices? We show in [23] that one has 

"(t l ®t2)=R2,t2®t,R, At=t®l+l®t, 1t=0. 

So we have both addition and multiplication of matrices on this algebra. 
The two are distributive in the form 

(id ® ')T23(~ ® ~)A = (A ®id)~ 

(. ® id)T23(~® ~)A = (id ®A)~ 

where T23 is usual transposition of the middle two factors. This construction 
works for R of Heeke type, which includes the GL,(n) series. So atleast in 
the Heeke case we have a quantum ring. It is a hybrid objeet part quantum 
group and part braided group. The same coaddition holds for the rectangular 
m x n quantum matrices[21] associated to a pair of Heeke R-matrices. This 
reduces to the quantum row or column vectors in the 1 x n or m x 1 cases. 

The usual 2 x 2 quantum matrices 1\1.,(2) are an obvious example and one 
can compute their explicit braid statistics as we did for the quantum plane. 
Then 

(a" 6") _(a 6) + (a' 6')
e" d" - cdc' d' 

obeys the M,(2) relations when the a,a' etc have the right statistics. By 
contrast, their matrix product obeys the same algebra when the two copies 
commute. See [231 for further details and an application. 
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3.5. Braided matrice, and q-Min/Cow'/Ci 'pace. 

Finally we come to the braided matrices B(R) introduced by the author in 
[9] by transmutation ofthe quantum matrices. They have a matrix U = (ui i) 
of generators with the relations R21UtRu2 = u2R2tUtR. There is a braided 
comultiplication 

"(R-Iu} ®RU2) = u2R-1 ®UtR, Au = u®u, 1U = id. 

For example, for the 2 x 2 case we have the algebra BM,(2) in [9]. We 
can multiply them as 

( a" 6" ) ( a 6) (a' 6' )
c"d"= cd·c'd' 

provided we remember the corresponding braid statistics between two copies 

(a· 6·) (a c)computed from". There is also a natural *-structure c. d* = 6 d 

appropriate to iaermitian malrice, and a bosonic and central braided deter
minant BDET(u) = ad - q2c6. All of this makes this particular algebra 
ideally suited to serve as f-Minkowski space. The generators 

_I 6 +c 6 - c 
.zo = qd + q a, Zt = -2-' Z2 = T' Z3 = d  (I 

are some natural self-adjoint space-time co-ordinates while BDET comes out 
as 

q2 2 22 22 (q4+1)q22 (q2_1)2q 
(q2 + 1)2z0 - q Zt - q z2 - 2(q2 -+ 1)2z3 + q2 + 1 i ZOZ3 

and provides a q-deformed Lorentz metric. See [24] for details and an ap
plication. Conceptually, the transmutation process mentioned in the intro
duction naturally turns the usual Euclidean quantum 3-sphere SU.,(2) into 
a Lorentzian one. 

But what about the addition of these braided-Hermitian matrices, i.e. 
addition on q-Minkowski space? This has recently been found by U. Meyer 
in [25] in the braided form 

"(U} ®U2)= u2®u}RL, Au=u®I+1®u, 1U=0 

where RL is a new 16 x 16 solution of the QYBE and defines also a q
Lorentz group with respeet to which the q-Minkowski space is covariant. 
The general scheme of [13] then ensures that there is also a q-Poincare group 
(with dilatation) given by the semidirect product of the braided-addition by 
extended q-Lorentz transformations. See [25] for the details for this example. 
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4. Braided differential operators 

We can now begin to do some braided geometry. The most basic notion is 
that of differential operator. We do not mean here one forms etc, which in 
our approach come later. Rather, we define as differentiation the operators 
corresponding to infinitesimal actions of braided groups on braided spaces. 
The simplest case is the braided covector algebras above. The coaddition 4 
corresponds to translation. Writing the shorthand a == x ® 1 and x == 1 ® x 
we know that the braided tensor product B§t.B is generated by a, x with the 
cross relations XtaZ = azxIR = alx2(PR) in the compact notation. For the 
second form we used P the permutation matrix. Then we define oj ; B - B 
as the operator[14] 

0' f(x) = (ai'(f(a +x) - f(x») == coeff of ai in f(a +x).
&=0 

This is just the definition due to Leibniz or Newton of differentiation as 
infinitesimal translation! We have 

Oi(XI .. ,Xm) 	= coeff•• «al +xlXaz +xz)··· (8m +Xm» 


= coeff•• (atX2'" Xm +... +Xl'" Xm-I8m) 


= coeff•• aIX2 ···Xm[m;Rh..·m 


= eiIX2" ·xm[m;RlJ...m 


where e i is a basis covector (el ); = 6i j, i.e. 

OJ:r:il · .. :r:i = 5;h:r:h ... :r:j",[m;R1!::::f::m 

and 

[m;R] = 1 +(PR)lz +(PR)12(PRh3 +... +(PR)lz ... (PR)m-l,m 

is a certain matrix living in the m-fold matrix tensor product. We call these 
matrices bf'(Jided integerl. 

In the one-dimensional case R = (q) we recover the usual q-differential 
8f(:r:) = /(f:!)<r). So, the celebrated q-differential is derived from some
thing deeper, namely as an infinitesimal translation on the braided line. Its 
q-derivation property is interpreted now as a braided-Leibniz rule where 8 
has degree -1. The general form is 

oi(ab) = (o;a)b + .• -1(8; ®a)b 

.-1(0; ®XI ... X,.) = eilX2'" X,x,.+I(PR)IZ ... (PR),.,,.+I ® 0,.+1' 

Moreover, the oi obey the relations of the associated quantum vector algebra 
of the form 0102 = R'8201• The vector algebras here are defined like the 
covector algebras in Section 3,3 and have a linear braided coproduct. 
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In the free case of Section 3.2 we can assume that the braided integers 
are all invertible. Then[14] 

00 

eXPR(xlv) = E XI'" Xm [m; R]l.~.",,, .[2;R]:~I,m V"," ·Vl· (5) 
m=O 

j
is an eigenfunction 8 eXPR(xlv) =eXPR(xlv)vi . The eigenvalues vi can be 
usual numbers. With the ordering shown, they could also be elements of a 
non-commutative algebra, such as the vector algebra. Using this, one can 
prove a braided Taylor's theorem 

expR(alo)f(x) = f(a +x). 

A general vector field is of the form /;(x)8i i.e. an element of the vec
tor space B ® B* where B* denotes the quantum vector algebra. Since B* 
acts on B one may make a braided semidirect product B'>4B* which is the 
braided Heisenberg-Weyl algebra. This is the basis of R-quantum mechanics 
and recovers the usual ,-quantum mechanics algebra pz - fZP = 1 in the 
one-dimensional case. On the other hand, all these constructions work quite 
generally. One may define left-invariant vector fields etc in a similar way on 
any braided group. 

5. Braided Lie algebras 

Many authors have sought some form of Lie-algebra like structure for the 
quantum groups U,(,). One even knows good generators for this purpose[8] 
but what axioms should they obey? The right ones appear to be the follow
ing, coming out of braided geometry. 

We begin by studying the formal properties of the braided-adjoint action 
(4) of a braided group on itself. We suppose also that this action is cocom
mutative in the sense of [10] since of coune a usual enveloping algebra would 
be cocommutative. This is the key assumption and one finds various prop
erties of the map [ , ) = Ad : B ®B - B. If C C B is stable under Ad and 
4 then these same properties apply to C without knowing all of B. This 
gives the following abstract notion of a braided-Lie algebra(15). Namely, a 
braided-Lie algebra is (C, 4.1. [ , ]) where the first three are a coalgebra in 
a braided category and [ • ] : C® C - C obeys 

W.L,~ ~ =~! ij c~¢:IV Uf ~ I~ ~ ~~ (6) 

Note that for ordinary Lie algebras there is an implicit additive coalgebra 
4~ = ~ ® 1 + 1 ® ~ in the Lie algebra with 1 adjoined. If one puts this 
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form into (6) one has something a bit more classical-looking. But we are 
not tied to this form. Thus, there are many forms or flavours of braided
Lie algebra depending on what form of A we assume. A convenient one is 
the mUltiplicative form Au =u ®u. The braiding as in Section 3.S and a 
suitable bracket(26] fulfill the above axioms in this form. 

The main result about our notion of braided-Lie algebra, not possible in 
other attempts so far, is that we have also an enveloping algebra functor U 
that associates to a braided-Lie algebra C a braided group U(C). See (15] 
for details. Again, in general this is done diagrammatically. In the example 
above we have U(C) =B(R) the braided matrices again!. So these braided 
groups are both like the algebras of functions on a braided space and like 
the enveloping algebra of a braided-Lie algebra. If we change variables to 
X = u - id then the coalgebra and relations of U(C) are 

A.x =X® 1 +1 ® X +X ® x, R'lX1RX, - X,R'lXIR =Qx, - x,Q 

where Q =R,I R. Typically as q - 1 the matrix Q becomes close to 1, and 
it is the rescaled generators X= A-IX that tend to a usual Lie algebra. This 
is exactly how a braided-Lie algebra deforms a usual Lie algebra. Moreover, 
for general q one has the algebra of U,(g) as isomorphic to U( C) modulo 
further determinant-like relations[15]' 

Without dwelling on this general theory we give an example, namely 
the braided Lie algebra gl,. This is the four-dimensional vector space C = 
span{a,6, c, d} with matrix coalgebra and braiding as in Section 3.S. This 
is an example of the general matrix-Lie algebras described above. For com
parison with the classical limit it is also convenient to change variables to 

H) (d-a): =(q' -ltl 6 	 (7)(
"'f . q-'(a-:)+d-1 

which all lie in the kernel of,{. In terms of these, the general braided-Lie 
bracket in Usl becomes 

[H,X] =(q-' + I)X =-q'[X,H] 
[H, }r] = -(q-' + l)q-'Y = -q-'[Y, 
[X,Y] = q-'H = -[Y,X] 

[H,H] =(1- q-4)H, {:1 =(\ - ,-'){ : 

with zero for the others. We see that for q - 1 the 'Y mode decouples and we 
have the Lie algebra 'u, $ u(I), but for q :# 1 these are unified. There is also 
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a braided-Killing form provided by the braided-trace of the braided-adjoint 
representation(lS] which comes out in the above basis as 

[4;q-'][2;'-'] 0 0 0) 
-4 0 0 ,-'[4;,-'] 0 


, 0 [4;,-'] 0 0
( 
o 0 0 ,'(I - ,-4)'[3;q-'] 

Thus the natural braided-Killing form on III is non-degenerate for generic 
q :# 1, i.e. the ,u, and u(1) are truly unified. Moreover, as, -1 we recover 
the usual degenerate Killing form for 'u, $ u(1). This means that in a q
deformed electroweak gauge theory with bare Lagrangian based on the norm 
of a III curvature tensor via this Killing form, the u(l) part would decouple 
as q - 1 and enter with infinite bare coupling constant into the Lagrangian. 
This suggests the possibility indeed of q-regularising electroweak theory. This 
is a direction for further development. 

Finally, the braided-enveloping algebra comes out as our old 2 x 2 braided
matrices BM,(2) in Section 3.5. So 

U(Ill)!!q - Minkowski Space, q :# 1. 

This braided group isomorphism is an example of a ,.re/, quantlml ,Ae
nomenon in the sense that it holds only for generic q :# 1. As q - 1 the left 
hand side tends as we saw to U(,u, $ u(1» a classical enveloping algebra. 
The right hand side tends by contrast to the algebra of co-ordinate functions 
on Minkowski spacetime! The H, X, Y, 'Y generators are needed for the first 
interpretation, and the tJ,6,c,d generators for the second. Their connection 
in (7) is singular as q - 1. 

This kind of unification of two completely different classical concepts is 
attributable to a remarkable self-duality property of a number of braided
groups. This in turn is made possible by the self-duality (or input-output 
symmetry) of the very axioms of a braided-Hopf algebra or indeed of an 
ordinary Hopf algebra. If , :# 1 due to quantum corrections to the classical 
geometry, then we might expect this self-duality to be physically manifest at 
the Planck scale. This is a genuinely new phenomenon in physics which might 
in principle be experimentally verified. The same self-duality phenomenon 
is also known for the Hopf algebras in [3] arising as quantisations of certain 
homogeneous spaces, where it was interpreted physically as a symmetry 
between observables and states. Moreover, the requirement of self-duality 
there forced one into a singular dynamics roughly resembling motion in a 
black hole background. 
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