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Abstract. 

--.We study Kahler metrics of zero scalar curvature in fOllr real dimensions admitting -j 

an isometric action of SU(2). 

o. Introduction. 

A procedure for studying SU(2)-invariant anti-self-dua.l conformal structures on fonr

manifolds has recently been developed by Hitchin [H2J. The idea is to use the twistor 

correspondence of Penrose to asociate to sllch a four-manifold a complex three-fold (the 

twistor space) with a holomorphic SU(2) action, and to show that the twistor lines of 

this space are determined by an isomonodromic family of connections on IP 1. In the 

generic case considered by Hitchin this family in turn is determined by a solution to 

the sixt.h Pailllev~ equation. This is one of a family of second order ODEs colleetively 

known as the Painleve equations, describNl for example in [AC]. The upshot is that 

the conformal struct.ure on the four-manifold is specified by a solution of Painleve VI. 

On another fmnt, PcdC"rsen and Poon [PP] and Tod [T] have produced ansatzt" 


which give SU(2)-invariant. sCllliu-na.t, I\iiltlpr met,rirs in four (real) dimensions. The-


ODEs arising from these ansatze Rre equivalent to a special case of the third Painleve 

equation. It is known [G] that Kahler metrics of zero scalar curvature (in four real 

dimensions) are automatically anti-self-dual. 

The purpose of this paper is to apply the twistor methods of Hitchin to attack the 

general problem of finding scalar-flat Kahler four-manifolds with SU(2) symmetry, 

and to interpret the results of [PP] and [T] in this framework. In the special case of 

diagonal Bianchi IX metrics we are also able to tackle this problem by direct methods. 

'Ve shall primarily work locally, although in the diagonal case we determine which of 

our metrics can be completed (even these complete examples are not compact). We 

assume throughout that the generic orhit of the SU(2) action is three-dimensional. 

Our techniques are not well suited to the case when the metrics are Ricci-flat. For 

Kahler metrics in four real dimensions this condition is equivalent to the metric being 

10cal1¥ hyperkahler. However there is no loss in excluding this case because SU(2)

invariant hyperkahler four-metrics have been completely classified [AH], [GP]. 

The layout of the paper is as follows. Section 1 describes the Penrose twistor con

struction and its application by Hitchin to SU(2)-invariant conformal structures. In 

section 2 we explain how the extra data of a Kahler structure on the four-manifold 

affects the twistor space, and in section 3 we show how this leads to an isomonodromy 

problem involving Painleve III. In section 4 we consider the special case of diagonal 

Bianchi IX metrics, and in 5 we compare these results with those obtained by di

rect calculations. Section 6 cont.ains an ana.lysis of which of the diagonal metrics are 

complete. 

1. Twistor spaces. 

Let Al be an orient.ed Ripmannian fonr·manifold with metric !J and let, A~ denote 

the bundle of selfdual 2-forms. We define Z to be the sphere bundle or A~ and lpt 1r 

denot.e the project.ion from Z to M. We ~an idf'ntify the fibre of 1r over a point, m 

of Al with the set. of complex strncturps on TmAl compatible with the metric !J /'lncl 
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with the orientation. 

Using the Levi-Civita connection we can split the tangent space to Z at a point 

z into horizontal and vertical spaces H and V, where H can be identified with the 

tangent space to M at ?I"(z) and V is tangential to the two-sphere fibre of ?I" over ?I"{z). 

Now z represents a complex structure on T".(z)M so induces a complex structure J1 

on 11. Also we have the standard complex structure on S::Z which defines a complex 

structure J::z on V. We can now define an almost complex structure J on Z by setting 

J=J. eJ::z. 

The fundamental theorem of Penrose [Pel, [ABS] asserts that this almost complex 

structure is integrable if and only if the metric on M is antiselfdual. In this situation, 

Z is called the twistor space of M. 

There is a complex four-parameter family of projective lines in Z, each with normal 

bundle isomorphic to 0 (1)$ 0 (1); these lines are called the twistor lines. Moreover 

Z carries a free antiholomorphic involution T, called the real structure, and there is 

a real four-parameter family of twistor lines, called the real twistor lines whiCh are 

preserved by T. In fact the restriction of T to each real twistor line is the antipodal 

map. The real twistor lines are precisely the fibres of the projection ?I" from Z to M. 

The above construction depends only on the conformal class of the metric 9 on M. 

Moreover, the complex manifold Z, its twistor lines, and the real structure together 

determine this conformal class. 

IIitchin [B2] now assumes the existence of an isometric SU(2) action on 1\1. This 

lifts to an SU(2) action on Z with associated vector fields Xl, X::Z, X3 • Using the 

complex structure of Z we oht.ain holomorphic vector fields XI, X::z. X3 satisfying 

[.til .t::zl = -.t3 etc. These vector fields generate a local SL(2, ([: ) action on the 

twistor space. We have a holomorphic section s = .t. A .t::z A.t3 of KZI 
, the anti

canonical hundle of Z. Assuming that s is not identically zero, it will vanish precisely 

on some anticanonkal divisor E on Z. Now we have the exact sequence 

o-+ llP 1 -+ T Z \1' 1-+ N -+ 0 

:1 

, A. 

" 

where N is the normal bundle of a twistor line IP I and 1lP I ~ () (2). Taking de

terminants, and using the description of the normal bundle given ahove, we see that 

KZI ~P I ~ () (4) so each twistor line is either included in E or meets E at four points, 

counted with multiplicity. 

On Z - E the vector fields X, are linearly independent so we can define a one-form 

~ on this open set by 

~ = O't 11 +O'::z/::z +0"3 /3 

where iii are one-forms dual to .t and I, are the elements of the Lie algehra .1{2, C ) 

corresponding to .t. If we use the local S L(2, C ) action to identify a neighbourhood 

of a point in Z with an open set in 8L(2, C ) then on this neighbourhood 4' is just 

the Maurer-Cartan form, so is flat. 

. \Ye thus obtain a flat meromorphic connection (which we also denote by 4') on Z, 

holomorphic on Z - E and with poles on E. Restricting to twistor lines gives us a 

family of flat connections A(t}, each meromorphic on IP 1 with poles at four points 

(with multiplicity). In the case considered by Hitchin, corresponding to a generic 

anti-self-dual confOl'mal structure, we do in fact have foul' simple poles for generic t. 

Moreover, hecause each stich connection is a restriction of our flat connection 4' on 

Z, we see that the holonomy of the connections around the poles stays constant as we 

vary the co.nnection within the family. 

\Ve can view the family of connections as defining a family of ordinary differential 

equations with four regular singularities on IP I. The above statement about the holon

omy remaining constant becomes, in this interpretation, the statement that this family 

of differential equations is isomonodromic. This condition was analysed hy Painleve 

and his school [AC] and shown to be equivalent to the condition that a certain func

tion defined in tf.'rms of the coefficients of the connection form A(t) should satisfy the 

sixth Painleve eqllation. Here t is the dependent variahle of this differential equation. 

Conversely, given a solution of a Painleve VI equation we can recover the isomon

o(lromic family of connections. This family in turn determines the restriction of the 
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twistor lines to the open s('t Z - E of the twistor space Z, and this is enough to 

determine the conformal structure of Af. 

To summarise, the conformal structure on M is determined by the solution of 

Painleve VI. 

2. The anticanonical divisor. 

Let us now consider the case when M admits a scalar-flat metric 9 and a complex 

structure I with respect to which 9 is Kahler. As noted earlier, 9 must now be anti

selfdual so we can associate to .At a twistor space. The twistor spaces of scalar-flat 

Kahler surfaces have been studied by Pontecorvo [Po]. 

Now the complex structure I on .At gives a global section of the twistor fibration, 

and the image of this section is a divisor D on Z intersecting each real twistor line 

once. Similarly the reverse complex structure -I gives another divisor tJ intersecting 

each real twistor line at one point, and the two divisors are interchanged by the real 

structure T of Z. In the case when 9 is Kahler with respect to I Pontecorvo shows 

that the divisor class of D + tJ is given by 

[D + tJ] = /(;1/2 

We now relate the divisor E to Pontecorvo's divisor. As mentioned in the intro

duction, we are assuming throughout this paper that the generic 5U(2) orbit on the 

four-manifold is three-dimensional. We are interested principally in the local form of 

the metric, so in what follows we assume, by restricting to an open set if necessary, 

that the orhits of 5U(2) on M are all tlut"('-dimensionaL 

, Lemma 2.1 

Let M be a four-manifold with an SU(2)-invaria,nt scalar· flat Kahler metric g, 

not locally hyperkahler, where SU(2) acts with three-dimensional orbit.s. Then the 

section '<1 of [(zt is not identically zero. 

!) 

Proof 

The vector fields .'t1, X2 , X3 on Z span an integrable distribution. If s is iden

tically zero then these vector fields are everywhere linearly dependent so the rank of 

the distribution is of complex dimension two or less. As we have assumed that the 

5U(2) orbits on AI all have real dimension equal to three we see that the rank of the 

distribution is in fact precisely equal to two. For each point z in the twistor space we 

therefore have a complex surface I: passing through that point, such that ;~'h X2 , '~3 

are tangential to E. These surfaces are just the orbits of the local 8L(2, ~ ) action 

generated by the vector fields Xi. 

The assumption that the metric is not hyperkahler implies that the space of co

variant constant two-forms will have dimension less than three. However this space is 

a real representation of the isometry group 5U(2) and hence will be acted on trivially 

by. thjs group. Hence the Kahler form {} and complex structure I on M are preserved 

by the 5U(2) action. It follows that 8U(2) acts on D, and so the vector fields gen

erated by this action are tangential to D. As D is a complex submanifold of Z the 

holomorphic vector fields .t are also tangential to D, so D is a union of members of 

the family of surfaces discussed above. 

The members of this family define (locally) a family of sections of the twistor fibra

tion, which induces a local hyperhermitian structure on AI. That is, we have complex 

structures It. 12, 13 (here II is the given complex structure I on M) multiplying like 

the quaternions, such that 9 is hermitian with respect to each of It, 12,/3 • 

Now there is a unique torsion-free connection, the Obata connection V , such that 

\l/,=O (i=1,2,3). 

As explained in [PS] , [PPS] there is a I-form (.;..' such that 

\l.l} =w0g 

and morrover 

d{}j=wAOi (i=1,2.:1) 
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where OJ is the two-form defined by 9 and Ij. 

However by ollr hypothesis I = II is Kahler so we have dOl = O. As 0 1 is 

nondegenerate this means that w is zero, so d02 = d03 = 0 and all the complex 

structures are Kahler. 

The metric on M is therefore locally hyperkahler and we have the required con

tradiction. 0 

Theorem 2.2 

Let AI be a four-manifold with an SU(2)-invariant scalar-flat Kahler metric, which 

is not locally hyperkihler; suppose also that 8[T(2) ads with three-dimensional orbits. 

Then the divisor E where s vanishes is equal to 2D +2D. 

Proof 

Note first that because s is 8U(2)-invariant, and because the SU(2) orbits are 

three-dimensional, if s vanishes on a real twistor line then it vanishes everywhere. It 

follows from Lemma 2.1 that this contradicts the hypotheses of the theorem, so we 

deduce that E contains no real twistor line and hence E meets each real twistor line 

at four points counted with multiplicity. 

As shown in Lemma 2.1, the 8U(2) action preserves the divisor D, and so the holo

morphic vector fields Xl, .f2' X3 are tangential to D, and hence are linearly dependent. 

It follows that our section s of [(Zl vanishes on D (and, using a similar argument, on 

D). Note that this argument shows that s vanishes on any SU(2)-invariant divisor 

on Z. We see that the divisor E where s vanishes is equal to D + D + F where 

[F] = KZI
/
2

• As E, D, Dare 8U(2)-invariant we see that F is also SU(2)-invariant. 

Assume now that F =F D +D. Let PhP2 be holomorphic sections of KZI/'l with 

divisors D+D and F respectively. Now as D. Dare SU(2)-invariant ,the image of PI 

under the 8U(2) action has the same divisor as PI, so mllst be of the form P~ = f PI 

where f is a nowhere zero holomorphic function on Z. However any holomorphic 

function on a twistor space is const.ant, [Ht], so p~ mllst he a constant multiple of PI. 

lienee the one-dimensional subspace of I/O(Z, 1\;.1/2) spanned hy PI is a representation 

\ 

of SU(2) and so is acted on trivially by SU(2). In particular PI is SU(2)-invariant. 

The same argument shows that P2 is also SU(2)-invariant. 

Consider now the two-dimensional space of 8U(2)-invariant sections of Kz'/2 

spanned by Pb P2. As above, two such sections define the same divisor if and only 

if they agree up to a constant, so we obtain a pencil of distinct 8U(2)-invariant divi

sors in the linear system I KzI/'lI. But s must vanish on every member of this pencil, 

so will vanish on some twist or line at more than four points with multiplicity, thus 

contradicting the hypotheses of the theorem. It follows that our assumption that F 

and D + D are unequal is false, and the theorem is proved. 0 

3. The isomonodromic family. 

In the light of Theorem 2.2, we know that our flat meromorphic connection ~ has 

double poles on D, D and is holomorphic elsewhere on Z. We shall next show that 

restriction to the real twistor lines defines an isomonodromic family of connections, 

leading to the appearance of the third Painleve equation. 

Let C be a curve in AI transverse to the SU(2) orhits, and consider the region 

U of the twistor space projecting onto C. Let t he a coordinate along C and x a 

coordinate on the real twistor lines such that D, D meet each twistor line at 0,00 

respectively. 

The restriction of our connection form to U is given in these coordinates by 

-A d.l - B dt 

where A, Bare .1(2, C)-valued functions of x, t. 

From our comments ahove about the poles of ~ we can write A, B as 

A_I A_2 
A = Ao + --;- + -;2 

and 

i 8 



· . 

2 B B_1 B-2B =B2x +Blx+ 0+-+
x x 2 

where Ai, Bi are functions of t taking values in .((2, q: ). 

We shall assume that there is a range of t where the eigenvalues of Ao and A_2 

are nowhere zero, and restrict ourselves to this range in the following calculations. 

By rescaling x we can take Ao and A_2 to have the same eigenvalues and hence 

be conjugate. If the eigenvalues of Ao, A_2 are constant in t it is easy to show, using 

the flatness of -Adx - Bdt, that we can gauge B to be zero and A to be constant in 

t. Excluding this trivial case, and restricting the range of t if necessary, we can choose 

t so that the eigenvalues of Ao and iL2 are !t, -jt. Moreover, by a choice of gauge 

we can take Ao to be diagonal. 

We write Ao, A_I. A_2 as 

~t 0) (p q ) (u v )Ao = I'A_I = ,A-z = t( o -'2t r -p w -u 

where 

u
2 + t'tIJ 4' (2) 

We can perform a gauge transformation by a diagonal matrix in S £(2, q: ) (de

pending on t) to ensure t.hat 

Bo = D ) (3)('-I p 

f t-Ip 

for somp functions 6, f of t. 

We say that A, B are in canonical form if (1 )-(3) are satisfied. 

Thf" Aat.nesR condition for the connpct.ion is 

811 aB
---+ B] O.
(Jt iJ.r 

!) 

This is the isomonodromy condition for the ordinary differential equation 

tl2 ( A_2 ) _= Ao+ +-::.. 
x2X 

and it is well known that this condition is equivalent to the Painleve III equation. We 

now give details of an argument to show this equivalence. 

Equation (4) is equivalent to the relations 

[A_2,B_z] o (5) 

2B_z + [A-z, B_ 1] + [A_I. B-zJ o 
dA_z B----;n- + -I + B-zJ + [A_I! B_1]+ [A_z, Bo] o (7) 

d~;l + [Ao, B-11 + [A_II Bol + [A-2' B I ] o (8) 

dAoTt BI + [Ao,Bo] + [A_I! Bd + [A_ 2,B2] o (9) 

-2Bz + [Ao, BI]+ [A_I, BzJ o 

[Ao,Bzl o. (11 ) 

Let us now analyse these equations. 

The first and last equations imply that B_2 = tI'A-z and B2 = .pAo for scalars ¢> 

and t/J. Multiplying (10) by Ao and (6) by A_z and taking the trace implies that .p 
and t/J (and hence Bz and B_2 ) are both zero. 

Equations and now show that B_1 = IlA_2 and BI = AAo, where A, It are 

scalar-valued functions of t. 

We obtain the equations 

d;;Z + I,A_2 + /1[A_I, A_2]+ [A_2' Bol 0 (12) 

(lA_I
----;n- + ,,[Ao, A_2] + [A-I, Bol + A[A_2' Aol 0 (13) 

dAo-;u - A/to + [A", Dol + A[A_I' Aol O. (11) 

The! last. ('quat.ion that A = ,-1 (so B. = ,-1 Ao ) and that 
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1t-:lp 
t- q ) = rl A-I.80 = ( 

t-1r _t-1p 

Observe from (12) that 

d 2 2
dt'TrA_2 = -2pTrA_2· 

But we know that TrA:2 = ~t2, so Jt = _rl and B_1 = -r1A_2. 

The flatness equation (4) now becomes 

dQ 
2t[P,RJTt 

dR 
2(R,QJtTt 

where P =-rIAo. Q = -A-l and R =r 1A_2 • 

This system of equations (together with the condition cIJ: = °which is automatic 

in our case) is a reduction of the self-dual Yang-Mills equations and has been studied 

by Mason and Woodhouse [MW). They show that it is equivalent (if neither r nor tv 

is identically zero) to the third Painleve equation 

~1} 1 (dy )2 1dy ", ly2+ "'2 3 "'4- =- - - -- + +"'31} +
(1l2 11 dt t dt 11 

where 11 is defined by 11 -tt. 
The constant parameters Kj (i = 1,2,3,4) are given by 

8 Tr(A_ I A_2 /t) (15)"'I 


"'2 4 - 8 Tr(AoA_I/t) (16) 


"'3 = 4 (17) 


"',I -4. (18) 


Any Painlev6 III eqllat.ionwith 1\~3 and "'4 nonzero may be brought to t.his form by 

scaling 11 and t. 

II 

, .... 

If r or w is identically zero we can use the substitution 1} = -;, to obtain Painleve 

III, unless q or v is identically zero, when the flatness equation (4) becomes trivial. 

In the latter case both r, w, q and v are all in fact identically zero. 

The next theorem summarises our findings. 

Theorem 3.1 

Let AI be a scalar-flat Kahler, not locally hyperkahler, manifold of real dimension 

four, admitting an isometric action of SU(2) with three-dimensional orbits. Suppose 

that the matrices Ao,A_2 of (1) have nonzero, nonconstant eigenvalues, and that 

r, w, q and tJ are not all identically zero. Then we have an isomonodromic deformation 

problem leading to the Painleve III equation. o. 

Finally, it is straightforward to show that matrices Ai, Bj (i = 0,1, 2;j =-2, -1.0,1,2) 

sa~is(ying equations (5-11) and such that A, B are in canonical form are determined 

by 1} = -tt up to a gauge transformation. 

Ai -+ eA je-1 , Bj -+ eBj e-1 (19) 

where e is a diagonal SL(2, £ )-valued matrix, constant in x and t. 

Therefore our solution of Painleve III <letermines the connexion 

~ = -A dx - B dt 

up to constant gauge transformations. 

Now, the real twistor lines in U are embcd<led int.o Z by a family of maps It. 
Equivalently we have a map from C xlP I into Z given by (l,x) f-+ I,(x). Restricting, 

we get a map 

:F: C x (IP 1 - {O, oo}) -+ Z - E 

Morrover the restriction of -A(/;t· - Rdt to the domain of :F is the pullback by :F 

of the rest.riction of 4> to Z - E. 
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Locally we can identify () with the restriction of the Maurer-Cartan form to an 

open set in SL(2, ~ ). Under this identification F is a fundamental solution for the 

equations 

aF _ -FA ax 

aF _ -FB.at-
The general real twistor line in Z is given by 

X 1-+ F(x, t)G 

for some t and some G e SU(2). 

We see that • = -A dx - B dt determines F up to premultiplication by a 

constant matrix in SL(2, ~ ). Also, conjugating. by a constant matrix a as in (19) 

just corresponds to postmultiplying F by a-I. These transformations do not affect 

the conformalstructurej (see section 4 for a more detailed description of how to recover 

the conformal structure from A, B). 

We have the following result. 

Theorem 3.2 

The conformal structure is determined by the solution y of Painleve III, where 

y = -;,- and r, tv are as in (1). 0 

4. The diagonal case. 

In this section we shall consider the special case when the metric can be put in the 

form 

29 = h2
dT2 +a 0': + b20'~ +C21'1~ (20) 

1:1 

where O't, 0'2, 0'3 are invariant one-forms, satisfying the relations dO'l = 0'2 1\ 0'3 and 

cyclically, T is a coordinate orthogonal to the orbits of SU(2), and a, b, c, h are func

tions of T only. We refer to this as diagonal Bianchi IX form. We can choose the 

coordinate T so that h = abc. 

Let us now apply the techniques of the preceding sections to this case. Because 

the metric is in the diagonal form (20) we have, for each point m in At, a copy of 

the four-group V. ~ Z2 X Z2 which preserves the metric 9 and fixes m. The non

identity elements of the group change the signs of two of the one-forms 0'1,0'2,0'3. This 

action lifts to a holomorphic effective action of V. on the twistor space preserving the 

real twistor line over m. So we have an injection of V. into the group of Mobius 

transformations of this line. 

As before, we choose a coordinate :r on the twistor line so that D, jj intersect the 

line at 0,00 respectively. 

There are two possibilities; either v.. fixes the Kihler form or else two of the order 

two elements change the sign of the Kihler form and the third order two element fixes 

the form. But the first possibility means that the V. action on the twistor line must 

fix 0,00, and the only Mobius transformations with square equa.J to the identity which 

fix these two point.s are x ....... x and x ....... -x. This contradicts the effectiveness of the 

action. 

So we must have two order two elements interchanging 0 and 00 , and two elements 

fixing these two points. This means that on the twistor line the action of the four-group 

must be by the Mobius transformations 

x ....... x 


x ....... -.r 

r 
x ....... 

x 
r 

;1: ....... 
x 

for some r e Q: •• 
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The 11(2, (! )-valued one-form 4> transforms by the adjoint representation under the 

v:. action. So, restricting to a twistor line, we see that the connection form -A(x, t) dx 

will be conjugated by an element of 8U(2) when we apply the Mobius transformations 

above. 

This implies that there exist ell 8 2 such that 

e (A A_I A-2 )e-I A A_I A-2 
1 - 0-7-7 I = 0--;-+7 

and 

e (A A_I A-2 )e-1 rAo + A_I + r-1 A 
2 - 0 - 7 - 7 2 = ;r -;- -2· 

We deduce that Tr AoA_l and Tr A_IA_2 are zero. Referring to our expressions 

(15)-(18) for the parameters of the Painleve equation in terms of Ao, A_I and A-2' 

we have the following result. 

Theorem 4.1 

The Painleve III equation arising from a scalar-flat Kahler, not locally hyperkahler 

metric in dlagona.l Bianchi IX form has parameters "1 = 0, J(2 = 4, J(3 = 4, J(4 = -4. 

D. 

Remark 

Tod [T] has found an ansatz to produce scalar-flat Kahler metrics with 8 1 action. 

A special case of this ansatz gives diagonal Bianchi IX solutions. The differential 

equation produced in this case is a rescaled version of the ahove Painleve HI equation. 

If the metric is of diagonal Bianchi IX form we can find the conformal structure 

explicitly in terms of Painleve transcendents. 

Recall from section 3 that the real twistor lines are locally given by 

.r 1-+ ;F(x, I)G 

where G E SU(2) and F is a fundamental solution to t.he eqllations 

11) 

aF = -FA (21) 
ax 

aF _Tt- -FB. (22) 

We can view t and G as giving coordinates on the four-manifold AI. An element 

(i, a) of the complexified tangent space at (t, G) may be identified with an infinitesimal 

deformation 

aF. . 
TtGt + FG 

of the twistor line. Here a is an element of 11(2, (! ). 

We can rewrite this using (21 ),(22) as 

- F BGi +Fa. (23) 

The conformal structure is defined by declaring the tangent vector to be null if 

and only if the projection of the deformation (23) onto the normal bundle of the real 

twistor line vanishes for some x. This is equivalent to (23) being tangential to the real 

twistor line for some x. Now the tangent vectors to t he real twistor line are multiples 

of (aFjax)G = -FAG, so we see that (i,G) is nun if and only if 

-Bi +GG-1 = -AA 

for some x, A. 

Using our explicit expressions for A, 8 from section 3 we find after some calculation 

that the conformal class of the (real) metric is represented by 

(12 (12 8(11/2 _ 1)(12
? dt2 I 2 4 3 
- + 2\11 - 1 + 211/ + 1 + (~ )2 

where \II = -u and u is a.'l in (l) of section 3. We can relate 'II to the Painleve 

transcendent by remarking that the equations (12-1·l) imply that 

1 'II -! -I d \II - ! 
Y = :r( \11 +1) ;U( \II + ! ) 

2 2 

where 11 is our solut.ion to Painleve. III. 
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5. A direct approach. 

In the case of a diagonal Bianchi IX metric we can also classify the scalar-flat Kahler 

examples by direct methods. These involve an argument used in [DS], which we first 

review. 

Suppose that we have a Kahler, non-hyperkahler, diagonal Bianchi IX metric ex

pressed in the form 

9 = (abc)2dT2 + a2u~ + b2U~ +c2ui (24) 

where a, band c are functions of T, and u. are the invariant one-forms satisfying 

JUt = U2 A U3 etc. 

We denote the vector fields dual to dT,ut,U2,U3 by *,X)'.\2,X3 . 

These satisfy the relations 

[:T'X,] =0 

and 

[X), X2 ] = -X3 and cyclically. 

abc dT,el aUI, e2 

bU2,e3 = CU3, and we choose the orientation so that 

We have an orthonormal coframe for 9 given by eo 

0+I eo A el +e2 A e3 

0+
2 eo A e2 + e3 A el 

0+3 eo A e3 +e I A e2 

are selfdual two-forms. 

As remarked in t.he proof of Leomma 2.1 , the a.c;snmpt.ion that the metric is not 

hyperkiihler mf'ans t,hat t,h(' Kiihler form 0 is SU(2)-invariant. 

Now t.he Kiihler form on a comple'x stlrfaf'(, is always self-dnal, so Wf' deduce from 

t.he ahovp r('marks that. 0 is givf'n by 

Ii 

0= SlOt +S20t +S30 t (25) 

where SI, S2, S3 are functions of T only. 

Now the Kahler condition dO =0 is equivalent to the equations 

(Slbc)' SIa2bc (26) 

(S2ac)' S2ab2c (27) 

(S3 ab )' S3abc2 . (28) 

where we use a prime to denote differentiation with respect to T. 

If we now introduce the standard variables lOt = bc, It'2 = aC,W3 = ab and· define 

fu~ctlons 0, /3, "( by 

WI
, 

W2W3 +OWl (29) 

10
I 

2 W3Wl + /3w2 (30) 

103 
I lVtW2 +"(W3 (31) 

then the equations (26-28) become 

S; -OSI (32) 

S~ -!~S2 (33) 

S; -,,(S3' (3·1) 

We see that for each meotric 9 there is a 3-dimensional space of closed, selfdua.l, 

SU(2)-invariant t.wo-forms, which are candidat.es for Kahler forms. 

Givf'1l stich a form 0 we can mw the metl'ic to df'filH' an endomorphism 1 of the 

tangf'nt bundlf' hy 

g( IX. j') = O(X..Y). 

18 
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With n given by (25) the endomorphism is defined by 

fJ _ 
S.WIX1 + S2W2X2 + S3W3X3 (35)I fJT 

_ SI .!... + S3W2 X _ S2W3X3IX. 2 (36)
WI aT Wt WI 

_ S2.!... _ S3W I XI + SI W 3 X3IX2 (37)
W2aT W2 W2 

_ S3.!... + S2W1 XI _ SI W2 X 2.IX3 (38) 
w3aT W3 W3 

Moreover I is an almost complex structure if and only if S~ +S~ +S5 = 1. 


If S"S2,S3 satisfy this constraint as well as (32-34) then n is a Kahler form 


precisely when I is integrable. Let us now check when integrability holds. 

Assume first that Sl is not identically ±1. 

Then we can take 

XI = :T - iSIWIXI - iS2w2X 2 - iS3W3X 3 

and 

is. fJ v iS3W2 " iS2W3 v
X2 = -- +.'\, - --·'\2 +--"'\3

WI fJT WI WI 

as independent (1,0) vector fields (that is, vector fields such that Ix = ix). The almost 

complex structure I is integrable if and only if L'(bX2] is also of type (1,0). 

Using the equations (29-34) to simplify expressions, we find that the Lie bracket is 

given by 

fJ
h'" \2] =W, fJT +H'lXI + 1'/3 X2 +W"X3 

where 

iSI (? t112 W3)w, -- _0+-
WI WI 
W1W3

W2 
W, 

iS3UJ2 (.J W 2 t1J3 )IV3 -- 1'-/)+0+-
till w, 

iS2Wa«(.l tlJ2W3 )n;:, --1' f~-Ct---. 
W, till 
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After some calculation we find that h.'t. \'2) is a (1,0) vector field if and only if the 

equations 

OSl -iS2S3(; - P) (39) 

0(1 + sh = (S: - S~)(; - /1) (40)

°(S3 - iSt S2)(0 - /1 +1') = (41 )

°
(S2 +iSt S3)(; - /1 - 0) = (42) 

hold. 

It is now straightforward to show, using equations (32-34), that two of 0, /1, l' must 

be equal and the third must be zero. This is also true if SI is identically 1 or -1 (in 

fact in this case we have 0 = °and P=1'). 

Moreover if 0 = °and /1 = l' we must have either S2 == S3 == °or else 0 = 

P= l' =°(in which case our metric is hyperkahler). Similar statements hold, with 

appropriate permutations, in the cases /1 =0,0 = l' and l' = 0,0 = /1. 

We summarise our conclusions as follows. 

Theorem 5.1 [DS] 

Uthe metric 9 of (24) • with Ollr choice of orientation, is Kahler and non-hyperkahler 

then one of the following three statements is true 

(i)o=O,/1=, 

(ii) /1 = 0, Ct = l' 

(iii) l' = 0,0 =/1. 

Conversely if one of these statements holds then the metric is Kahler. The Kahler 

forms are 

(i) n = W2tv3 dT /\ 0', +W'0'2 /\ 0'3 

(ii) n = tv3W\ dT /\ 0'2 + W20'3/\ 0'1 

(iii) n =Wlt02 dT /\ (13 + tIIJ(1, /\ (12 

respectively. 0 
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Hyperkahler structures with triholomorphic SU(2) action correspond precisely to 

the case 0'= /3 =7 =o. 

In the last section we considered the action of V4 on the Kahler forms. It is clear 

from the expressions given in Theorem 5.1 that there will be two elements of V4 fixing 

n and two elements changing the sign of n. in accordance with our previous discussion. 

Let us now require that the scalar curvature R.ca/ar is zero. 

Using the expressions of Pedersen-Poon [PP] for the connection forms of the metric 

we can calculate the Riemann curvature tensor and hence the scalar curvature. We 

find that 

R.ca/ar = 4 
-1 

(20" + 2/3' + 27' + 0 2 + /32 + , ../ - 20'/3 - 2/37 - 2(7). (43) 
10, 102103 

Comparing with the expressions of (i),(ii),(iii) in the statement of Theorem 5.1, we 

find that the sca,lar·fiat condition forces a, /3. 7 to be constant. 

We summarise our resllits as follows. 

Theorem 5.2 

The general scalar·flat. Kahler, non-hyperkahler metric of diagonal Bianchi IX form 

compatible with our choice of orientation is given (lip to permutations of WI, t02, tV3) 

by 

2 W2W3 2 W3W I 2 tvlW2 2
9 = Wl tft2W3 dT + --0'1 + --0'2 + --0'3 

WI 102 103 

where 

, 
WI W2W3 + aWl 

,
W 2 103101 + aW2 

, 
tv3 1OIW2 

and 0' is a nonzero const.ant.. 
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Note 

Choosing the opposite orientation just corresponds to reversing the sign of T. 

Remark 

The metrics of Theorem 5.2 are precisely those arising from the Pedersen.Poon 

ansatz [PP]. So we have shown that this ansatz produces all scalar-flat Kahler non. 

hyperkahler diagonal Bianchi IX metrics compatible with ollr choice of orientation. 

As remarked in [PP}, the metrics with lOt = 102 are the U(2)-inva.riant examples 

of LeBrun [L}. 

Let us compare the metrics of Theorem 5.2 with those which we obtained using the 

m~th.9d of isomonodromic deformations in section 4. 

As explained in [PP}, if one makes the substitutions 

tOt =eaTFI , 102 = eaTF 2 , W3 F3 

~ 1 ~ _ 1 
Ft =?(Y + -= ). F - -(y --=)

2 - 2 Y- y 

and 

(= a-I eaT 

in the system of eqnations given in Theorem 5.2, then Ll is constant and fj satisfies 

€Pfj = ~ (dii )2 _~ dfj ~~2(r.1_';).
d(2 11 d( ( d( + 4 .~ y 

This is the Painlpve III eqllation with paramf't,f'rs 

1 
11':1 = ti2 O, li3 = -11':4 = :tLl2. 

Of COllfse, this substit1ltion is only valid where tvl :f= T112, hut in fact. it follows from 

t.he equat.ions that. if w, and 1/12 are not. identically <'qllal t.hen t.hey are neVf'r eqllal, 
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so the above procedure is valid except in the special case WI == W2 (when we get the 

metrics or [LD. 
Now, ir we change variables by 

1z = __Ll2(2
2 ' 

we arrive at the equation 

£ily (1 1) (dY) 2 1dY Y 
(44)dz2 = 2Y + Y - 1 dz - -; Tz + -; 

which is Painleve V with parameters 

KI K2 = K4 = 0, Ka = 1. 

(We are lead to this change or variables by a comparison of the calculations or [PP] 
and [TJ), 

In these variables the metric is 

dY (dz
2 

Z 2 Z 2) (dY) -1 2 
dz 2(Y - 1)2 - Y(Y _ 1('1 - Y _ 10'2 +2Y Tz O'a' 

Letting 

\II-!z = 2t2 
Y= \II+! 

we find that the metric is 

d\ll ( t2 0'2 0'2 8(\112 _ !)0'2)t ? 1 2 4 a
dt .d + 2\11 - 1 + 2\11 +1 + (~~ )2 

and 

1 dY 1 ('11- 1)-1 d \If - 1 
Y=4"Y-I Yt =4' 'II+i d"t('II+P 

satisfies Painlevc III with parameters. 

"I = 0, K2 = 4. Ka = 4, "'4 = -4. 

This agrees with the expression for the conformal structure we derived by twist,or 

methods in section 4. 
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6. Completeness analysis. 

In the case or diagonal Bianchi IX metrics we can classiry the complete scalar-flat 

Kahler examples. This analysis has already been perrormed ror hyperkahler metrics 

[GP],[AH] so, as in the rest of this paper, we exclude this case. 

Theorem 5.2 gives us a description or the metrics we are interested in. It is conve

nient to cast the equations or Theorem 5.2 in terms or a, b, e. They become 

a' 
1'2 a(b2 +e 2 

- a 2 
) (4.5) 

b' 
1'2 b(e2 +a 2 

- b2 
) (46) 

e' 
1'2e(a2 +b2 

- e 2 +20'). (47) 

. kg we are assuming the metric is not hyperkahler we take the constant 0' to be 

nonzero. 

Consider a solution to (45-47), analytic on a maximal interval (e,71). It is clear 

from the equations that if anyone of a, b, e is zero at some point in this open interval, 

then it is identically zero. As this will not give a metric with three-dimensional orbits 

we can exclude this case, and hence assume that a,b,e are nowhere zero in (~,71). 

It rollows that the metric will be defined ror T E U, 71), so to decide whether it is 

complete we need to study the behaviour or a, b, easT approaches ~ rrom above and 

71 from below. 

As the equations and metric are invariant under sign changes or a, b, ewe :;hall take 

a, b, e ~ 0 from now on. 

We record some useful facts about t.he equations (45)-( 47) in the next lemma. 

Lemma 6.1 

(nb )' (/be2 

(be)' bc(tt2 +C\') 
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(ac)' ac(b2 +a) 

(a2 _ b2 )' (a 2 _ b2 )(c2 _ a2 _ b2 ) 

(~y
b 

~(b2 _ a2 )
b 

(abe)' 
1 
'2abe(a2 +b' + c 2 +20'). 

The critical points of the equations (45-47) are the points (a,b,c) satisfying 

(i) a = b, e =0 or 

(ii) a =b =0, c = J20 (if a > 0). 


o 


We see that either a is identically equal to b or else a is never equal t.o bon (e,11). 


In the former case the metrics are those of LeBrun [L]. If a is never equal to b then, 

by the symmetry of the equations, we can without loss of generality take a > b. 

FrQm the above remarks, we can take a 2: b. It follows from (45-47) and Lemma 

6.1 that band ab are increasing; moreover i is greater than or equal to 1 and either 

identically equal to 1 or else strictly decreasing on (e, 11)' In particular, note that if i 
tends to 1 as T tends to e, then a is identically equal to b. 

We first consider the situation when a is positive. 

It follows from Lemma 6.1 that b, ab, ac, be are increasing on (e, 11)' 

Case 1. Suppose that e is finite. From Lemma 6.1 we see that abc is increasing 

on (e, 11) , so tends to a finite limit as T -+ e. Hence the geodesic distance 

iT abc 

is finite, and to get a complete metric we would have to add a nut (point orbit of 

5U(2» or bolt (t.wo-dimensional orhit of SU(2) at T = e. In the former case we 

would have a, b, c =0 at, e; in the latter case one of a.l1, c would be zero and the other 

two would at,tain nonzero finite limits at. e. Both case!'! would force at le(\.'It one of 

a, b, e to be identically 7.f'ro. giving a contradiction. 

Case 2. So complete Inrt.rics can only arise if the maximal interval is (-00,11). 

Lt-t us now s('e when this can happen. 

2,) 

As b, ab, be, ac are increasing they tend to finite nonnegative limits ..\), "\2, ..\3'..\4 as 

T tends to -00. 

(i) If the limit ..\1 of b is nonzero then a, c also tend to finite limits, so (a, b, e) tends 

to a critical point (P,..\I, v) with ..\) positive. By Lemma 6.1 we must have ..\1 = Jt 

and v =0, so i tends to 1 as T tends to -00. From our comments following Lemma 

6.1 we deduce that a is identically equal to b. The trajectory is an unstable curve of 

the critical point (p, p, 0). 

(ii) Let us assume therefore that ..\) =0, that is, b tends to 0 as T tends to -00. 

Using Lemma 6.1 we now find that (ae)' tends to ..\40' as T tends to -00. However we 

know that ae tends to a finite limit as T tends to -00 so, as a is nonzero, it follows 

that ..\4 = 0; that is, ac tends to 0 as T tends to -00. 

2 2If b2 + c - a is negative at some To then it follows from the equations that the 

detiVativeof this expression is positive at To. Hence b2 +c2 _a2 is negative on (-00, To) 

and b, e are increasing and a decreasing on this interval. We deduce that 

a -+ v, b -+ 0, C -+ I' as T -+ -00 

where v is positive and may be 00, while p is nonnegative and finite. 

Since ae tends to zero as T tends to -00 we have I' =O. By considcring the limit 

of a' as T tends to -00 we find that v =00 and it readily follows from the equations 

that a becomes infinite at a finite value of T less than To, giving a contradiction. 

Similar arguments show that if a2 + [,2 - c2 +20' is negative at some point To then 

c becomes infinite at a finit.e value of T less than To, again giving a contradiction. 

So we see that we need 

2 a 2 :5 b2 +c , c 2 :5 a 2 +b2 +20' 

on (-00,11). 

This implie!'l t.hat fL, b. c are increasing so t.rnd to finite limits as T tcnds to -00. 

That is, (a, b, c) t.en<ls t.o a crit.ical point. !\1orrover, rrca,1I that b tends t.o 0 so this 

critical point, is ('it.hel· (0,0.0) or (0,0. ..;20). If t.hf' nitkal point is (0,0,0) t.hen t.he 
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equations imply that abc decays exponentially fast as T tends to -00. Hence the 

geodesic distance 

L:abc 
to -00 is finite and to obtain a complete metric we must have a nut at T = -00. 

This means that as T tends to -00 the terms a, band c all tend to zero like! times 

the square of the geodesic distance, and it is easy to see that this is inconsistent with 

the equations. 

If, on the other hand, the critical point is (0,0, J2(i) then for T large and negative 

we have 

a ~ "leOtT,b~ ":iIeOtT,c~ ~ 

and it easily follows that the metric is incomplete. 

To recapitulate, if 0 > 0 there are no complete metrics except those arising from 

unstable curves of (/"p, 0) for positive I" Such metrics all have a identically equal to 

b. 

Let us now consider the situation when 0 is negative. 

Case 1. Suppose first that eis finite. 

As above, band ab are increasing so tend to finite limits Al, A2 as T tends to e· 
(i) First assume At > O. We deduce that a tends to a finite positive limit also, as 

T tends to e. 
If A~ + 0 ~ 0 then ae is increasing so ac, and hence e, tend to finite limits at {. 

This contradicts the fact that { is a singularity. 

If I\~ + 0 < 0 then ac is decreasing for T neoar eso ae tends to a limit, possibly 

00 as T tends to e. As ~ is a singularity this limit is in fact 00 and c tends to 00 at 

~. Ther('fore abc is increa.'1ing near ~ so tends to a finite limit at e. It follows that the 

geodesir distancf' 

feT abc 

2i 

is finite, so the metric is incomplete. 

(ii) Suppose on the other hand that At = 0, that is, b tends to 0 as T tends to ~. 

So (ae)' ~ aeo near ~ and ae tends to a finite limit at ~. Hence abc tends to 0 at ~ 

and again the geodesic distance is finite. To obtain a complete metric we mllst have a 

nut or bolt at T = ~, and as in the case of positive 0 this leads to a contradiction. 

Case 2. Let us consider, therefore, trajectories defined on (-00,11). 

Again b, ~b tend to AI, A:iI as T tends to -00. 

(i) If At > 0 then a tends to a finite positive limit. 

Arguing as before we see that if A~ + 0 ~ 0 then e also tends to a fiuite limit. So 

(a,b,e) tends to a critical point which must be (p,p,O) for some p > O. As before 

this implies that a is identically equal to b. 

. It; on the other hand, Af + 0 < 0 then we find that either (a, b, c) tends to a 

critical point (in which case a == b) or else e tends to 00. The latter case implies that 

c becomes infinite at a finite value of T less than 11, giving a contradiction. 

(ii) We can therefore assume that AI =0, so b tends to 0 as T tends to -00. As 

(ae)' ~ aeo and 0 is negative we see that ae tends to 00 as T tends to -00. 

If a2 +b2 - e2 < 0 at To then its derivative is positive at To and so a2 +b2 - e2 < 0 

on (-00, To). It follows that a, b are increasing and e is decreasing on (-00, To). 

Combined with the fact that ae tends to 00 we see that 

a -+ It,b -+ O,e -+ 00 as T -+ -00 

where I' is finite. It ea.<;ily follows that our sollltion cannot be finite on all or (-00, To), 

giving a contradiction. 

b2Similarly, we find lhat if a 2 - - c2 +20 > 0 at any point To, thf'1l the solution 

is not finit.e on all of (-'00, To). 

So the remaining case to consider is if 

e:il ~ a2 +b:il. a:il ~ b2 +c:il - 2cr (·18) 

28 



c/ 

on (-00, TJ). Since b tends to 0 and ac tends to 00 we deduce from these inequalities 

that a and c both tend to 00 as T tends to -00. 

It follows that abc is increasing for T large and negative so tends to a finite limit 

LasT tends to -00. Moreover ~ tends to 00. If L > 0 then (abc)' tends to 00 

as T tends to -00, which gives a contradiction. So we have 

(abc)'
abc -+ 0, abc -+ 00 as T -+ -00. 

It easily follows by considering log(abc) that abc decays exponentially fast as T 

tends to -00. Therefore the geodesic distance to T = -00 is finite, and, since a, c 

become infinite at T = -00, the metric is incomplete. 

We summarise our results in the final theorem. 

Theorem 6.2 

The only scalar-flat I{ahler, non-hyperkahler, diagonal Bianchi IX metrics which 

are complete are the complete examples with a == b (and hence with U(2) symmetry). 

D. 

In fact our discussion shows that all the complete metrics with a == b arise from 

the unstable curves of points ("""O) for ,. > O. It follows from (45-47) that in this 

situation we have 

a ~ I', b ~ Jl, c ~ ke(p'+a)T 

as T tends to -00, for some const,ant k. 

Taking 

k,,2V = ___e(p2+a )T

,,2 + 0' 

as a new coordinate, we find that t.he metric is asymptotically 

dv2 + 1,2( /12 + /1 ) + (1 + _ 0' 
)2112/122 ,,21 2 3 

as v -+ O. 
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This metric can be completed (by adding a bolt) precisely when 1 + ;r equals ~n 


for some positive integer n. 


If we put r = 2Vab then the metric corresponding to a solution of (45-47) with 


a == b becomes 


1 80' 16(Jl4 + 20'Jl
2») -1 d 2 1 2 (2 2 (1 80' 16(Jl4 + 20'Jl2») 2)

( + -;=2 - r 4 r + 4'r 0'1 + 0'2 + + -;=2 r 4 0'3 • 

As explained above, we obtain the complete examples by setting 

a 1 
1+-,.2 =-n2 

and the resulting metrics are 

4,.2(n - 2) 16,.4(71 - 1»)-1 d2 2 (1 41l2(n - 2) 161.4(n - 1»)1 2 (2 .(1 + 2 -.. r +-4 r /11 + 0'2 + +:1 4 /1.• r r r r 

where Jl E R. 

These are the complete U(2)-invariant metrics found by LeBrun [L]. 
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