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Abstract 

A dressed boundary arises from a rigid one by placing on the physical region side of it a 
suitably parametrised narrow deep potential well. Some examples of quantum mechanics in 
one dimension in the presence of dressed boundaries are followed by an exact treatment of 
scattering by a dressed sphere. Results for s- and p-wave amplitudes are used to illustrate 
a variety of issues regarding the occurrence of and role of bound state and resonance poles 
of scattering amplitudes in scattering. A careful derivation of a Breit-Wigner resonance 
formula is described. 

1. Introduction 

The phenomenon of resonance is a topic in the quantum mechanics of scattering by 
a potential that is often found hard to expound effectively and yet at the same time is 
of considerable importance. The scarcity of examples that can be treated explicitly in 
sufficient detail accounts for much of the difficulty. Thus it is hoped that the provision of 
a new example in which resonance features explicitly and simply is helpful. 

The purpose of the present paper is to examine an example, here called the dre.s.sed 
.sphere, in which we not only can determine conditions under which a resonance occurs but 
also give a good description of it when these conditions are satisfied. 

We begin with an explanation of what we mean by the term dressed sphere. We set 
out from the central potential 

V(r) = 00, 0 < r < a, 

= _n,'lp.'l/(2m), a < r < b, (1) 

=0, b < r. 

For fixed a, we specify the quantities p.(> 0) and b by writing 

1r 1r 
b - a = -a'1E, p.(b - a) = 2' + 1]E, (2)
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where 1] is allowed only to take either the value +1 or -1, and '1 is a real positive dre.s.sing 
parameter. The dressed sphere is realis~d now by passing to the limit e --i' O. Since (2) 
now implies 

1 1 21] 
p.= -(-+-) (3)

a'1 e 1r' 

we see that the dressed sphere consists of a. hard sphere of radius a, with a suitably 
parametrised narrow deep well just outside it. It involves the dressing pa.rameter '1, to
gether with the parameter 1], which enters because our ana.lysis of scattering brings in the 
expression tanp.b and hence depends critically, via (2), on the sign of 1]. Our work be
low determines, amongst other things the conditions on 1] and '1 under which a resonance 
appears in p-wave scattering by a dressed sphere. 

Motivation for the present study came originally from the use [1] of a similar dressing 
procedure at the boundary of an interval of the real axis to which are confined quantum 
mechanical particles moving in one dimension. The context of this use is in the theory 
of an integrable many body system made famous in [2]; this is soluble by Bethe ansatz 
methods, and the aim was to see whether or not changing boundary conditions destroyed 
integrability properties. In [1} it is indicated that, whereas a plane wave is "reflected at 
a rigid boundary with only a change of phase, a more general reflection coefficient, given 
explicitly, is possible if the rigid boundary is preceded by a suita.bly parametrised narrow, J~ 
deep well. In fact, an equivalent but more abstract characterisation of a dressed boundary 
is available. This states that the wave function ¢(x) at a dressed boundary x =0 is subject . 
to a boundary condition of the form ~ 

¢(O) = II¢' (0), (4) 

in which II is a real parameter. Of course, if a dressing procedure is specified in detail, 
then II is determined in terms of its parameters. 

It is of interest to note that the boundary condition (4) has recently occurred in a 
totally different context of current theoretical interest, the theory of systems of anyons [3}. 
There the relative motion of two anyons moving in one dimension is seen to be governed 
by a Schrodinger equation on the half line x > 0 with a boundary condition like (4), except 
that now II is a parameter that depends on the anyon statistics 

The contents of the paper are as follows. Section two describes the dressing procedure 
by reference to simple examples in one dimension. In section three we introduce the 
dressed sphere and calculate exactly the s- and p-wave pha.se-shifts for scattering by it. In 
section four, there is discussion of the poles of the corresponding s- and p-wave scattering 
amplitudes, and their implications for bound states and resonances, correlation of model 
parameters with their occurrence being described in detail. Section five turns to the 
careful derivation of a Breit-Wigner form of the p-wave scattering cross-section when this 
is dominated by a single low energy resonance. 

Standard textbook background to this paper is available in many excellent books, for 
example [4] or [5]. We refer to [6} for additional discussion of several aspects of potential 
scattering related to the pole properties of scattering amplitudes in the complex plane Ck 
of the wave-number k of the scattering process. 
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2. Examples in One Dimension 

We consider first a quantum mechanical particle strictly confined to the interval -a ~ 
x ~ b, where 0, b ~ 0, and subject there to the potential 

Vex) = 0, -a ~ x ~ 0, 

Vex) = _n,2",2/(2m), 0 ~ x ~ b, 

where", is real and positive. We now take a limit like that specified above in which", - 00 

and b - O. More precisely we set 

1f 1f 
b = '20if, ",b = '2 +fie, (5) 

so that also 
1 1 2f1"'= -(-+ -). (6)
ai f 1f 

Herein fI and i are as defined in section one, and we take the limit in which f - 0 through 
. positive values. The reasons why we have defined our dressing procedure in the way just 
)described soon emerge clearly when we solve our quantum mechanical problem for its 
I bound state solutions. Looking first for solutions of finite positive energy E = n,2 k2/(2m),r e define P = ",2 + k2 , and chose wave functions of the form 

tPI =Asink(x + a), -0 ~ x < 0, 
(7)

tPII = Bsinf(x - b), 0 < x ~ b. 

The continuity of tP and tP' at x =0 then yields 

tanka tanfb 
-k-=--f-' (8) 

As we seek solutions that are of finite k, and hence E, in the limit e - 0, we may directly 
replace f by '" in (8). Hence, using also (5), we find 

tanfb:::::::: tan",b =-cotfle =--1 +O(e). (9)
fie 

From (9) and (6), we see that the right side of (8) reduces effectively to 

(:e) /(a~e)' 
which is finite in the limit as e - 0, as required. Thus the equation which detennines 
the discretely distributed allowed values of k and hence the positive energy part of the 
spectrum of E is 

tanka 
~=fli. (10) 

"~ 

One seeks information about the solutions of (10) by well-known graphical procedures 
involving intersections of the functions y = tanx, y = fliX, where x = ka. For fI = ±1, 
it is thereby seen that (10) has roots which approach (2r ± I)I as r goes to 00 through 
positive integral values. Further, there is a root in 0 < ka < yif fI = 1 and i > 1, and no 
solution in the interval in question otherwise. 

Turning to negative energy solutions of our problem, we use 

tPI Asinha(x + a), 
(11)

tPII = Bsinhp(x - b), 

2where E = -n,2a 2 /(2m), and p2 = ",2 - a • By following routine steps and taking the 
limit f - 0 in the same way as above, we are led to the condition 

tanhaa = fli, 
aa 

for discrete solutions. This time the nature of the tanh function tells us there is one 
solution if fI = 1 and i ~ 1 and no solutions otherwise . 

We can now give a more abstract specification of our problem. We see that (7) and 
(10) imply 

tP' (0_) = Ak coska = k cotka tP(O_) = (aifl )-ltP(O_), 

where 0_ indicates a value reached by approaching 0 through negative values. In other 
words a boundary condition of the fonn (4) is satisfied. Similar considerations apply to 
a solution of the type (11) whenever one such exists. Thus our model can also be viewed 
as a physical realisation of the quantum mechanical problem of a particle confined to the 
interval -a ~ x ~ 0, in which a boundary condition (4) applies at x = 0_. 

- An interesting view of the orthogonality of the solutions of the problem follows by 
doing two integrations by parts on the quantity 

112 = lOa sinkl(x +a)sink2(x +a)dx, 

where kl and k2 are distinct roots of (11). One finds 

(k~ - knl12 = k2sink1acosk2a - kl cosk1asink2a. 

Then Il2 = 0 follows from 
tankI a tank2a 
~=-r,;-' 

A similar proof applies to other cases. One can also normalise the solutions found explicitly 
and consider the classical limit of large r, where r indexes the roots kr of (11). It is no 
surprise to find that the dressing procedure goes unnoticed in the classical limit. 

There are of course many other problems of (class-room 1) interest that arise by 
replacing a rigid boundary by a. dressed one. For example [1], a wa.ve eih incident form 
x < 0 upon x =0 will, when we describe the dressed boundary by the boundary condition 
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t,b(0) = 1It,b' (0), no longer be accompanied by the simple reflected wave _e-ih . Rather the 
solution in x $ 0 will be 

t,b = eih +Re- ih , 

where 
R = _1- illk. 

1 + illk 

The reflection coefficient R has a pole at k = i/II which lies on the positive half of the 
imaginary axis of the complex k-plane if and only if II is positive. It should therefore 
follow that our problem admits a bound state of energy E -1i2/(2mIl2) under exactly 
these conditions. We leave it to the reader to verify that it does so follow. For valuable 
background information on scattering and bound state problems with special emphasis on 
one dimension, see the section entitled Scattering theory for Pedestrians in [7]. 

3. The Dressed Sphere 

The dressed sphere has been described in detail in section one. Here we study the 
scattering of a particle of energy E = 1i2 k2 /(2m) by a dressed sphere, intending to evaluate 
3- and p-waves amplitudes explicitly and investigate bound state and resonance properties 
of these in detail. The radial SchrOdinger equation of the potential (1) is well-known [4,5] 
to admit solutions of the type 

Ru = c,{i,(Kr)cos4>, n,(Kr)sin(p,} , a $ r :5 b, 
(12)

R'2 =dt{i,(kr)cos6, - n,(kr)sin6,}, b:5 r, 

where the 6, are the phase shifts, as usually [4,51 defined, cr, d, and 4>, are constants and 
K2 = k2+ IJ2. We use also the boundary condition 

Rl1(a) = 0, (13) 

and, from continuity at r = b, the equation 

Ql1(b) Q12(b), (14) 

where, for i 1,2, we write 

Qli(r) = ~1_ oRu(r) (15)
Rli(r) --a;:-' 

To proceed further it is perhaps most convenient to treat s- and p-waves separately in turn. 
The explicit forms of the spherical Bessel functions that we need are given, for example, 
on p197 of [4]. 

For s-waves, I = 0, (12) and (13) give 

Rol(a) = Co sin(Ka + 4>o)/(Ka) = 0, (16) 

and (16) is satisfied by 
4>0 = -Ka. (17) 
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Then, using (12) to evaluate QOl(b), and (17) to eliminate 4>0 from the answer,one finds 

QOl(b) = K cotK(b a) - b'
1 

(18) 

As we wish to deal with solutions that are of finite k in the dressing limit, we may replace 
K by IJ in evaluating QOl(b). Thus, we note first, using (2) and (3) 

IJb = IJ(b - a) + IJa = -
1 +0(1). (19)

"(f 

Next we obtain 

IJb 1 -1 -1 
-(b) = {- + 0(1)}/{- + O(f)} = - + O(f), (20)

tanIJ - a "(f 11f "(11 

by using (19) on the numerator, and using (2) to treat the denominator in the manner 
shown in (9). Eqs. (18) and (20) thereby show us that QOl(b) approaches the finite limiting 
value ' 

-(1 + 111)/(a"(11) 

in the d.ressing limit. Turning to the right side of (14), we see that we may let b approach 
a in it directly. Then (14) in the dressing limit reads 

-(1 +1/(11,,(» = kacot(ka +60 ) - 1, 

or 
tan(ka + 60 ) = - ka11,,(. (21) 

Our analysis thus shows that, in the dressing limit, the interval a :5 r :5 b can be 
disregarded, provided that for the physical region r > b ~ a we use the boundary condition 

Q02(a) -(1 + ,,(11)/(a,,(11)' (22) 

This shows that here, as in the one dimensional examples, we have an alternative, equiva
lent formulation of the problem just solved. It consists in discussing the (s-wave) scattering 
by a sphere of radius a that differs only from a hard sphere of radius a in that the boundary 
condition imposed on the radial function is not Ro2(a) = 0 but instead is obtained from 
(15) and (22). 

We come at last to the topic of greatest interest, p-wave scattering. It is of course 
harder to treat than was the s-wave case. 

For p-waves, I = 1, (12) becomes 

Rn(a) = Cl {sin(Ka + 4>1) _ cos(Ka +4>I)
K 2a2 Ka}' 

so that (13) yields 
tan(Ka + 4>d = Ka. (23) 
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Next, we calculate 

Q (b) = 2Kb +T(K2 b2 
- 2) (24)

11 b(T Kb) , 

where an abbreviation T = tan(Kb + 4>1) has been used. To eliminate 4>11 we write 

T . tan{K(b a) + (Ka +4>1)} = tanK(b - a) + Ka 
.. .,.". TrEJ " 

when obvious use of (23) is made. To pass towards the dressing limit, we replace K by I-' 
as before, and use (2) and (3) to obtain 

-1 1 1 2
T {- + - +O(1)}/{-2 +O(l/E)} ('7 -1')E +O(E ).

'7E 1'E '71'E 

Hence, from (24), we obtain 

2 1 -a
Qu(b) = {- + ('7 1')E2'2 +O(l)}/{- +O(l)},

1'E l' E 1'E 

so that finally the limiting value of Ql1 is 

Qu = -(1 +1''7)/(a1''7). (25) 

Thus to write (14) for I = 1 in the dressing limit, we may let b approach a on the right 
side. This leads to 

2-(1 +1''7) _ 2ka + t(k2a - 2) 
(26)

a1''7 - a(t-ka) 

where the abbreviation t = tan(ka + 01) has been used. We remark that the same steps 
that were used in the evaluation of (24) above have been used here to produce a right-side 
for (26) of very similar appearance. Rearrangement of (26) now produces the final result 

ka {1- b'7)-I}
tan(ka + ot} = ~ ( )-1 k2 (27)

-1''7 - a 
ft. 

We note that the right sides of (22) and (25) are equal. This is no coincidence. One 
can actually show, by a fairly delicate calculation, involving the small x behaviours of j,(x) 
and n,(x), that all Q,(a) have the same value in the dressing limit. 

Discussion of (21) and (27) is given in section four. 

4. Scattering Amplitudes and Poles 

The scattering amplitude 5, for the l-th partial wave of scattering by a given potential 
is defined by 

5, = e2i61 = 1 +i tano, (28)
1- itano,' 
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Also useful is the equivalent result 

2ihS 1 +i tan(ka +0,)e , = , (29)
1 - i tan(ka + 01) 

because of the form in which the actual results of calculations, such as (21) and (27), 
emerge. Poles of 5, occur whenever tanol = -i. When this is satisfied we have also 
tan(ka + 0,) = -i, in agreement with (29). It is well-known, [6], p62 and p79, that 5, is 
a meromorphic function in the complex plane Ck of k, with simple poles of two distinct 
types. One type of pole lies on the imaginary axis of Ck. This corresponds to a bound 
state in the l-th partial wave of the given potential only, [6], p78 and p204, if it lies on the 
positive half of the axis. The other type of pole is a complex pole in the lower half of Ck. 
A complex pole with Imk < 0 and Rek > 0 corresponds, [6], p156, to a resonance in 5,. If 
one such exists it is accompanied by a pole obtained from it by reflection in the imaginary 
axis of Ck. 

Our results from section three for the dressed sphere give rise to a good number of 
illustrations of the general facts just summarised.. We turn first to So. It follows from 
(27) and (21) that the equation for the poles of So for the dressed sphere are given by the 
simple condition 

ka1''7 i, (30) 

So there is one pole of the type mentioned first above, and it corresponds to an s-wave 
bound state for the dressed sphere only if '7 = 1. We leave it to the reader to follow 
standard methods to solve explicitly the Schrodinger equation in question for its 8-wave 
bound states. The required treatm~nt of the dressing limit is essentially the same for this 
case as we have already described for the positive energy or scattering case. One finds 
that if '7 = 1 then there is exactly one bound state whose energy follow by substituting 
the value of k given by (30) in E = 1;,2k2/(2m), and no bound state if '7 = -1. 

We note that e2ihSo is completely determined by its pole. It can be written in 
Blaschke form, or canonical ptoduct form, [6J, p94, using (29) and (24), as 

2ihS _ 1 + k/(iK.p) 
(31)e 0 - 1- k/(iK.p)' 

where we have rewritten (30) as k = iK.p, K.p = l/(a1''7). 
Next we tum to the p-wave amplitude 51' From (29) and (27), we see that the poles 

of 51 are obtained by solution of the equation 

x 2 + 2i8x - 28 0, (32) 

Here we have made the definitions 2s = 1 - l/b'7), and x = ka. We will also deal 
sometimes with C%, the complex plane of x, instead of with Ck. Eq. (32) has roots 

2x.:l:: = -is ± (2s - 8 );. (33) 

Two cases, which correspond to the two types of pole mentioned in the general discussion 
above, arise. 
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Case I: X:i: pure imaginary. 
This case arises when 8(2 - 8) SO and gives two sub-cases 
Case 1(80): 8 SO, or 17 = 1 and'Y S 1. 
Case I(b): s 2:: 2, or 17 = -1 and'Y S i. 
If we write X:i: = ialCP:i:, then the poles in Case I correspond to bound states only if 

ItP:i: is positive. In fact 'this can be seen to obtain only in the case of x: P+ in Case 1(80). 
For both subcases of Case I, we can use (27) to evaluate (29) obtaining 

2ih5 = 28 - x2 + 2ixs = (1 + k/{iItP+») (1 + kl(ix:p_) ) (34)
e 1 28 _ x2 _ 2ix8 1- kl(iltp+) 1- k/{ix:p_)' 

in Blaschke form. 
Case II: X:i: complex. 
In Case II the word complex implicitly excludes pure imaginary, which is covered by 

Case I, for it inconvenient to have to keep mentioning this. 
This case arises when 0 S 8 S 2, that is, when the square root in (33) yields the real 

part of X:i:. Thus (33) implies that Imx:i: is negative throughout case II. This illustrates 
an important point from the general discussion: that any complex poles that are not on 
the imaginary axis of Cz must be in the lower half of Cr. Moreover, we may expect to 
interpret X+ as the resonance pole, [61, p156, in the fourth quadrant of Cz , with x_ its 
partner in the third. In terms of 17 and 'Y, case II yields two sub-cases. 

Case I1{a): 17 = 1 and 'Y > 1. 
Case II{b): 17 = -1 and 'Y > i· 
In Case II we can describe the poles X:i: geometrically in Cz • They lie on the parts of 

a certain circle that lie in the fourth and third quadrants of Cz • If we write X:i: = P:i: +iq:i:, 
then (33) leads easily to 

P~ + (q:i: + 1)2 = 1. (35) 

Thus, as 8 varies over its range for Case II, the resonance pole X+ traverses that half of the 
circle (35) of unit radius, centred at x = -i, which lies in the fourth quadrant of the Cz • 

This picture will help in section five in the discussion of when a resonance pole causes its 
typically marked effect on the p-wave contribution to the cross-section for scattering by a 
dressed sphere. 

To conclude, we write 51 in Blaschke form, [6], p94. Set X+ = koa, so that ko gives 
the position of the resonance pole in Ck. Then x_ = -x+, and hence we obtain 

2ih5 = (1- klko) (1 + klko) (36)ell _ k1ko 1 + k1ko . 

So again, apart from the phase factor that we have chosen to place on the left of such 
equations as (31), (34) and (36), the amplitude is completely determined in terms of its 
pole structure. For higher partial waves, a similar pattern is expected on general grounds. 
While we can calculate amplitudes of higher I explicitly, we cannot solve analytically the 
polynomial equations, of degree I, that determine their poles. But we expect to find one 
quotient of the type shown in (31) for each pole of the first type and a contribution like 
the entire right side of (36) for each pole ko of the second type. 
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5. Breit-Wigner Resonance Formula 

'Ve shall be content to examine one physical context in which the p-wave amplitude 51 
for scattering by a dressed sphere is dominated by a single resonance. In this context, we 
shall discuss the representation of the p-wave contribution 0'1 to the total scattering cross
section in Breit-Wigner form. One expects, [6J, p156, a resonance pole of 51 in Ck, which 
is both sufficiently close to the real axis of Ck and well isolated from any other resonance 
pole, to give rise to a Breit-Wigner formula for 0'1 over a suitable interval of k-values. In 
the dressed sphere example, there can at most be one resonance pole. Chosing a model, 
within case II of section four, for which there is one such pole, it is therefore necessary 
only to ensure that it does indeed lie close to the real axis of k. 

From (33), it can be seen that 51 has a pole at ko, where 

koa = Xo = -is + 6., I:::. = (28 - 82)!. (37) 

This pole is a resonance pole, in the fourth quadrant of Ck, if 0 < 8 S 2. It wi1llie close 
to the real axis of C k if we chose 8 so that 

0< s « 1, (38) 

in which case we deal with a model belonging to Case I1(a) of section four. In this model, 
17 = 1 and 28 = 1- 'Y- l

, i.e. 

17 = I, 'Y ~ 1 + 28 > 1. (39) 

For a dressed sphere subject to (39), we shall calculate 0'1 for incident wave-numbers k 
lying in the interval J in which 

-e 8 + 6. < x = ka < es + 6., (40) 

where eis a constant of 0(1). Of course, we make these choices because we know, [6], 
p157, that the resonance pole (37) will produce a Breit-Wigner shape for 0'11 peaked at 
x = 6. and of half width r = 8. 

It turns out that 6. rather than s is the natural quantity to use in the description of 
the approximations involved in our calculations. Therefore, we invert the definition of I:::. 
in (37) to obtain 

8 = 1 - (1 - 1:::.2)!, (41) 

chosing a sign so that (38) is satisfied for 6. sufficiently small. It is good enough for our 
purposes to use the lowest order approximation 

1 
8 = _1:::.2 (42)

2 

to (41). We shall show that a Breit-Wigner type formula for 0'1 follows if we work to lowest 
non-trivial order in powers of 6.. But more can done quite easily; we give here also details 
of the calculation for 0'1 accurate in next-to-Ieading order. 
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Using (42), we write x E J in the form 

x = L\ + Is = L\(1 +211L\), (43) 

where, from (40), we see that the variable I obeys -~ < I <~. Also, I is independent of 
L\j it is to be regarded Mbeing of O(L\0). 

To calculate 0'1, we employ 

121!'a2 . 2 
O't = --2- sm 01. (44) 

x 

Thus we must compute sinot from (36), written as 

e2ika e2i61 = e2i<pl e2i<pz, 

where 
e2j'h _ kG - k e2i<pz _ ko + k (45)

- ko - k' - ko + k' 

or, more simply, as 
01 = 4»1 + 4»2 - X. (46). 

We look first at the factor e2i<pl associated with the resonance pole because we expect it 
to produce for us a peaked Breit-Wigner factor in (44). 

Since (45) shows that e-i<Pl is proportional to 

(ko - k)a = Xo - x = -is - (x - L\) 

1. 2 1 2 
=: - -zL\ - -IL\
22' 

we obtain 
. 1 -I 

sm4»1 = (1 +J2)!' cOS4»1 = (1 + J2)f' 

If we can show that (4)>2 - x) produces O(L\) corrections to the O(1) evaluation of 01 that 
comes from using the version 01 ;::::: 4»1 of (46), we get the leading order value of 0'1 by using 
this and x ;::::: L\. It is 

121!'a2 1 121!'a2 8 2 
0'1 = (47)--;.v- (1 + j2)f - L\2 (X-L\)2+S2' 

where we use (43) to obtain the second form of (47). This is of Breit-Wigner form, reso
nance shaped with a peak at x = L\, and half-width r = s at half-height. 

Now we must return to (46) to complete the justification of our lowest order result (47) 
and to see how to improve upon it. For the factor e2i<pz belonging to the third quadrant 
partner of the resonance pole ko, we note that ei<Pz is proportional to 

(ko + k)a = Xo + x = 2L\ - ~iL\2 + ~/L\2. 
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Hence, to sufficient accuracy, we have 

_L\2 1 1 
tan4»2 = L\ I 2 = --L\(1- - IL\)4+L\ 4 4' 

and tan4»2 ;::::: 4»2 ;::::: sin4»2, cos4»2;::::: 1. Then, using (43) again for x, we find 

sin(4)>2 - x) = -~L\(1- ~ IL\) 1 - 1 (L\ + ~L\2) = -~L\ +O(L\2)4 4' . 2 4 ' 

and similarly cos( 4»2 - x) = 1 +O(L\2). Hence, keeping here the O(L\) corrections to the 
lowest order result, we reach 

sinOI = sin4»1 cos(4»2 - x) + coS4»1 sine4»2 - x), 
1 5 


(1 +J2)t {(1.1 +(-1)(-4L\)}· 


This shows that a careful treatment of ( 4»2 - x) justifies our previous lowest order approach, 
and also furnishes the correction to it in O(L\). Again using (43), but this time to higher 
accuracy than was required in passing to (47), we achieve our final result 

2
121!'a 1 ( 3 ) (48)

0'1 =: L5:2 (1 +J2)! 1 + 21L\ . 

The correction factor in (48) clearly does not mask the resonant nature of the leading 
order result (47). It just gives a modification in O(L\) of its shape. 
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