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ABSTRACT 

In two-dimensional, scalar field theories at zero temperature, the effective potential V is only one-fold 
differentiable at points of pure quantum corrected ground states. This non-differentiability can be established 
in the framework of a rigorous theory of phase transitions, baaed on the notion ofGibbs potentials. It justifies 
the approximation of the ground states by minima in a naive loop expansion. After reviewing this approach 
briefly, we discuss its validity for gauge field theories and at finite temperature. 

1. 	Introduction 
For quantum field theories with spontaneously broken symmetries, the perturbative loop 

expansion leads to a non-convex expression for the effective potential, despite a formal con
vexity argument, a fact which has caused great confusion in the past. I - 3 At the root of this 
failure lies the use of an iIl·defined Legendre transform in the perturbative calculation:3

-
11 

In perturbative calculations, starting from a scalar field theory with generating functional 
Z[J], the effective action r[41c} is taken to be the Legendre transform of W[J] = InZ[J], 

r[41c(z)] =W[J] - JJ(z)41c(z)dz; 	 (J) 

6 (2)tPc(z) =6J(z) W[J]. 

Usually, the effective potential V(Jc) is then defined by setting tPc in the finite volume effective 
action rn to be a constant Jc and dividing the total space-time volume 0: 

. 1 • • 
(3)hmn.... ooOrn[tPc]••=i. =-V(41c). 

Clearly, V is only well-defined for all field values ~c if the functional derivative of W[J} in 
Eq. (2) exists for all J and if the infinite volume limit in Eq. (3) exists. In the case of 
spontaneously broken symmetries however, the derivative in Eq. (2) does not exist, because 
the left and right derivatives differ: they define the degenerate vacuum expectation values. 

For scalar, Z,-symmetric scalar two-dimensional field theories, the situation is completely 
under control:4-T there, the infinite volume density of W[J] for constant source term, w(J), is 
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known to exist and is stricly convex.S Furthermore, Glimm, Jaffe and Spencer have shown 
that for appropriate interaction terms, this class of models shows symmetry breaking,T 

a-t 
dJ w(O) =41-4: :F 0, 	 (4) 

where 41+, 41- =-41+ denote the degenerate vacua. Then, a well-defined effective potential is 
provided by the Fenchel transform of w(J), 

V(~c) =sUPJ[JJc - w(J)], 	 (5) 

lo 

and the following holds:4.a•• 


i) V(~c) is defined for all ~e, V(Jc) is defined for IJe I > 41+ only. By construction, V(Jc) = 

V(Je) in the domain of definition of V. 


ii) From (4) and (5), V(Jc) can be seen to be strictly convex for IJc I > 41+, containing a 
straight line between 41- and 41+. 

iii) V(Je) is exactly one-fold differentiable for ~c = 41:, but infinitely often differentiable 
elsewhere. 

iv) 	V(Je) has an interpretation as a free Helmholtz energy density, if w(J) is considered to 
be the (negative) energy density in the presence of an external field, i.e. the (negative) 
Gibbs potential. 

v) The 100p expansion of V(~c:) in powers of Ii is asymptotic to V for IJe I > 41+, but not for 
I ~c 1<41+· 
The crucial point is that according to (iii), V(Jc) is not an analytic function, but consists 

of three analytic branches for ~c < 41-, I ~c I < 41+ and ~c > 41+, connected at points of non

differentiability. Hence, a perturbative polynomial expansion of V(~c) does not necessarily 

approximate all analytic branches at once. According to (v), only the two strictly convex 

branches are approximated. Furthermore, since V(~,,) is one-fold differentiable everywhere, 

it can be shown that 

vi) 41+ and 41- are asymptotically approximated by the minima of the loop expansion. 


This situation may be compared to the Landau-Ginzburg approach to phase transitions, 
where a polynomial (non-convex) ansatz for the non-analytic (convex) free energy density 
proves phenomenologically successful, apparently for very similar reasons. 

2. 	The effective potential for gauge theories 
As first observed by Jackiw,9 the perturbative loop expansion of the effective potential 

i"(~c) in gauge field theories leads to gauge-dependent expressions. In the framework of 
perturbation theory, several heuristic arguments have been put forward of how to obtain 

13physical information from V despite its gauge-dependence. 1o - Here, we aim at extending 
the non-perturbative discussion of the last section to gauge theories. In principle, the obvious 
strategy would be to prove 
a) the existence of a strictly convex w(J) for the gauge theory under consideration and 
b) to establish analogously to Eq. (4) that different values are ohtailwd for different direc

tional derivatives of w(J) at some J. 

Then, the equivalent of Eq. (5) would be well-defined and the corresponding analysis 
would go through automatically. However, in practice it is very difficult to follow this 
strategy. 
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Problem a) amounts to a construction of gauge field theories which for realistic models 

is far from being achieved. Still, there seems no harm in adopting the working assumption 
that a strictly convex w(J) exists. 

Problem b) on the other hand cannot be by-passed by a similar assumption. As pointed 
out by Wightman,14 the vacuum expectation value is generically found to be zero in latticised 
versions of gauge theories without Faddeev-Popov (FP) gauge fixing. I11 - 17 Furthermore, in 
path integral formulations with FP gauge fixing, the exponential decay of gauge-invariant 
two-point functions has been established in the radiation gauge and in all Gupta-Bleuler 
gauges. 18•1S*This failure of the path integral formalism to lead to the spontaneous symmetry 
breakdown of gauge theories has its roots in the insufficient gauge fixing of the usual FP 
procedure: III 

Let us sketch this argument for the lattice theory of a scalar matter field ;(z), defined 
by associating with each lattice point coordinates (R(z),g.]. Here, R(z) E (0,00) and gl E G, 
the gauge group. By a slight abuse of notation, we write for an n-dimensional irreducible 
representation ;(z) = gzR(z) where R(z) = (R(z),O, ... ,O) is a n-dimensional vector and g. a 
n x n-matrix. The gauge field is given by link variables gl.•+/I between neighbouring sites 
z and z +p, gZ.1I E G. Then, the path integral (for finite volume A) is given by the Gibbs 
measure 

dp,. = Z'A1eS"'rr dhzlIII ~(z)dR(z)rr dgl , 	 (6)
III I Z 

where k denotes the dimension of the Lie algebra of G, z,. the partition function and S,. the 
finite volume action. hZII =g;lglllgl1 is the new link variable, gauge invariant under the joint 
gauge transformation "'I of gauge field and matter field, 

gl --+ g~ = "'Idl, 	 (7a) 

gZIl --+ g;1I ="(zgzlI"'I;I. 	 (7b) 

The path integral for the ga.uge-invariant measure dJlA then assigns an expectation value 
(f(z»,. =f J(z)dp,. to any function J(z) = J(R(z),gz,gzlI) of the fields. Any gauge fixing F is a 
modification of Eq. (6), 

dp,. --+ dp,.F, 	 (8) 

which leaves the corresponding expectation value (f(z»f unchanged for gauge-invariant J{z). 
. This requirement is equivalent to 

j ItdgrF(R(z),hlll.gl ) = 1. 	 (9) 

At this point, it is useful to distinguish two different gauge fixings, FI and F2 , defined by 

jII",dg",FI(R(z),hlll.gz)f(R(z),hzll,gz) = j dgJ(R(z),hzll,gU",), (lOa) 

j 	 II",dgzF2(R(z), hzll·gl)J(R(z), hlll,gz) = J(R(z), h",",u",) (lOb) 

* The abelian Higgs model in the Landau gauge is a remarkable exception.l~ There, an 
asymptotically non-vanishing two-point function can be shown to be a consequence of the 
failure of the cluster decomposition property in this gauge rather than a consequence of a 
non-zero vacuum expectation value. 111 

for any function J of the fields and a set of fixed gauge field variables UI' Then, the following 
can be shown: lll 

i) 	 FI is the usual FP gauge fixing term which removes the local, but not the global gauge 
invariance from the path integral measure. (f(Z»fl corresponds to the scalar product on 
a Hilbert space 'H. = f odg'H., associated with an integral representation of the field algebra, 
where 'H., is an irreducible space obtained via the GNS-construction from a cyclic vacuum 
10), in which ,(0 1;1 0), = gR. Represented on 11., all gauge-dependent elements of the field 
algebra have zero vacuum expectation value, particularly, (;(z»f' = o. 

ii) 	F2 fixes both local and global gauge invariance of the path integral. (f(z»fa corresponds 
to the scalar product on the irreducible space 11.,. Especially, there exist representations 
of the field algebra on 11." such that (;(z»fa = u.R(z) 1: 0. 

iii) Subject to some technical caveats, i) and ii) hold in the infinite volume limit and the 
continuum limit, too. 
We expect that these results have the following consequences for defining an effective po

tential for gauge theories: Depending on the gauge fixing chosen, one obtains gauge theories 
defined by WI(J), w,,(J) respectively. Formally, the (f(z»f' then result from the functional 
derivatives of Wi(J), i = 1,2. Eq. (5) defines the effective potential for the scalar field of the 
theory. V depends on the representation of the field algebra, i.e., on the measure in the path 
integral, and the following holds: 
iv) No spORtaneous symmetry breaking occurs in integral representations of the gauge field 

algebra. Hence, V is stricly convex for theories defined by wICJ). 
v) In irreducible representations of the field algebra, spontaneous symmetry breaking can 

occur. However, since the gauge has been fixed completely in W2(J), V(~e) does not 
take values for all ~e = gR, but for ~e =gR only, where U EGis fixed, i.e., V is a 
function of R E [0,00) only. Again, the symmetry is broken if V(uR) contains points of 
non-differentiability. Remark however that unlike the scalar case discussed in section 
1, spontaneous symmetry breaking is not a completely dynamical problem any more. 
Whether symmetry breaking is possible is decided by the path integral W2(J), i.e. by the 
dynamics, which determines the form of V(uR), whether it takes place, however, depends 
on the choice of a particular representation of the field algebra. 
The effective potential of a field theory with global continuous symmetries can be treated 

according to iv) and v), too . 
These remarks seem to indicate why it is very difficult to extract physical information 

about spontaneous symmetry breaking from effective potentials calculated perturbatively in 
the path integral formalism with the usual FP gauge fixing. 

3. 	The effective potential at finite temperature 
The perturbative loop expansion of scalar field theories at finite temperature leads to 

non-convex expressions which may even become complex.20•21 In principle, the discussion of 
section 1 can be applied: if w(J) satisfies the equivalent ofEq. (4) at finite temperature, then 
V defined by Eq. (5) contains points of non-differentiability, i.e., the symmetry is broken. 
The form of V is stricly convex in the two outer branches which are connected by a straight 
line at their minima. This straight line has a free energy density interpretation. 

To see this, one starts from the Helmholtz free energy functional4•8 

F(p) = Tr(p1i(;) - TS(p») , 	 (11) 
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where p is an arbitrary state with entropy S(p) = -kplnp and iI denotes the hamiltonian. 
The field tP is a linear functional of the state, tP(p) and the Helmholtz free energy density i(p) 
of F gives rise to the constraint Helmholtz free energy density 

Ie(~c,T) = inf,{i(p) I tP(p) = ~c}, 	 (12) 

and the Gibbs potential 
g(J, T) = inf,{i(p) - JtP(p)}, (13) 

where the intensive variable J is the conjugate of;. In this thermodynamic setting, it can 
be shown that for values of ~e varying between the directional derivatives of g(J.T) at a point 
of non-differentiability (i.e., in the case of phase transition),4 

le(~c, T) =lupAJ~e +g(J, T)J. 	 (14) 

In comparison with Eq. (5), one concludes that the straight line of V has a free energy density 
interpretation if w(J) can be understood as a (negative) Gibbs potential. This however is 
the usual working assumption of every thermodynamic interpretation of the path integral 
formalism. 
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