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Abstract 
We present a new version of q-Minkowski space. As opposed to earlier attempts, our new q­

Minkowski space has both an 8Lq{2, C)-spinor decomposition and a coaddition law. The additive 
structure forms a braided group rather than a quantum one. In the process, we obtain a new 
q-Lorentz group which coacts coariantly on this q-Minkowski space. 

Keywords: quantum groups, braided groups, non-commutative geometry, q-regularisation. 

Introdllction 

In recent years, there has been some speculation whether it could be possible to regularise singularities 

in quantum field theories by making spacetime slightly non-commutative. As well as the programme 

of A. Connes [3] based on the theory of operator algebras, there is also a more naive approach based 

on the idea of q-deformation. In this approach, which is the one we shall follow, non-commutativity is 

controlled by a parameter q such that one recovers the commutative case for q =1. There are examples 

[7] of integrals over two-dimensional q-deformed planes which are of the form J(...) = q2~1 (finite), 

i.e. are divergent only in the commutative case. Moreover, one hopes in such a q-regularisation scheme 

to preserve all symmetries as q-symmetries, using the standard techniques for q-deforming Lie algebras, 

etc. One would then set q = 1 after intelligent renormalisation, although, to take account of Planck 

scale corrections to the geometry, one might even keep q =f:. 1. 

As an important element of such a q-regularisation scheme, many q-Lorentz groups and q­

Minkowski spaces have been recently proposed [17, 2, 16, 11]. One of the points of view in these works, 

which will be our point of view also, is that q-Minkowski space should have a q-spinor decomposition. 

Mathematically, q-Minkowski space should be a q-deformed version of 2 x 2 Hermitean matrices and the 

q-Lorentz group should act on it by conjugation by two q-deformed SL(2, C) transformations The role 

of such a q-deformed SL(2, C) can be provided by the quantum double [I7J but q-Minkowski space and 

the q-Lorentz group itself are less well understood so far. 
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Naively, one might try to construct q-Minkowski space as quantum 2 x 2 matrices, but this algebra 

is not covariant under the coaction of the q-deformed SL(2, C) [15]. The solution to this problem is 

to consider braided rather than quantum Hermitean matrices as q-Minkowski space [10, 11]. Braided 

matrices are an example of so-called braided bialgebras introduced by S. Majid [9] as a generalisation of 

bialgebras, for which the ordinary tensor product in the bialgebra axioms is replaced by a braided tensor 

product. Braided tensor products are like the super tensor products encountered in the the theory 

of superspaces, but with ±1 replaced by braid statistics. There is a general construction [13], called 

transmutation by means of which one can convert a suitable bialgebra, such as a usual quantum matrix 

algebra, into a braided bialgebra with better covariance properties. The algebra and coalgebra structure 

of such a braided bialgebra are covariant under the coaction of the quantum group. Thus the braided 

2 x 2 matrices as the transmutation of the well-known 2 x 2 quantum matrices are a natural candidate 

for the algebra of q-Minkowski space. It is covariantly coacted upon by the q-deformed 8L(2, C). 

Braided 2 x 2 matrices have the same matrix coalgebra structure as quantum matrices, but a 

different multiplication [10]. Similar as for 2 x 2 quantum matrices, one can find a braided determinant 

which central and grouplike with respect to the braided coproduct [10], to play the role of a q-Minkowski 

metric. Furthermore, these braided matrices allow for a q-spinor decomposition [15] and can also be 

equipped with a *-structure appropriate for Hermitean matrices [11]. 

Considering braided Hermitean matrices seems to lead in the right direction, but a fundamental 

structure is still missing: so far there is no q-deformed analogue of the additive group structure of 

Minkowski space. In this paper we solve this problem and generalize the group structure on Minkowski 

space as a 'braided coaddition' in the form of a new (braided) coalgebra structure on the algebra of 

braided matrices. The required braiding for the coaddition is a new one. We also give a new q-Lorentz 

group which acts covariantly on this new version of q-Minkowski space. In fact, one can construct many 

different q-Lorentz groups, all of which have the algebra of braided Hermitean matrices as a 'fundamental 

representation', but only the q-Lorentz group presented in this paper appears to be consistent with the 

braided coaddition law on them. 

An outline of the paper is as follows. In section 2, we reformulate some classical considerations 

about the Lorentz group and Minkowski space suitable for later q-deformation. The q-Lorentz group (of 

function algebra type) is presented in section 3. In section 4 we present our braided coaddition law on q­

Minkowski space and we also give a q-spinor decomposition. Our q-Lorentz group coacts on q-Minkowski 

space in a way which respects the braided coaddition law. These facts suggest that our proposal for 

q-Lorentz group may be a definitive one. Section 5 is devoted to the discussion of the q-deformation of 

the universal enveloping algebra of the Lorentz group, which is dual to the q-Lorentz group of function 

algebra type from section 3. 
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Preliminaries. 

When working with matrices, we use lower-case letters for indices which run from 1 to 2 or n, 

and upper-case letters for multi-indices, e.g. A = (aoad = (11), (12), (21), (22). 

For Hopf algebras, we use the notation and results from the standard textbooks [1,20]. Recall that 

a (complex) coalgebra is a C-vector space A equipped with an C-linear coassociative comultiplication 

~ : A -+ A ® A and a C-linear counit e : A -+ C satisfying certain axioms. Elements 9 in A obeying 

~g = 9 ® 9 are called grouplike. We use the notation ~a = a( 1) ® a(2) and omit summation signs 

for brevity. A complex bialgebra is an algebra and a coalgebra in a compatible way, such that both 

comultiplication and counit are algebra maps. If a bialgebra H also allows for a C-linear antipode 

S : H -+ H obeying (S ® e) 0 ~ = id = (e ® S) o~, then H is called a Hopf algebra. We also use M. 

Sweedler's shorthand notation [20], where a suffix indicates the position in a matrix tensor product, e.g. 

A12B23 means Ai~IBI;;;, etc. 

A *-Hopf algebra [21] is a Hopf algebra equipped with an antilinear involution * such that (So*)2 = 
id, ~O* = (*®*)o~, and eo* =-Of, where the bar denotes complex conjugation in the field, C. Two 

*-Hopf algebras H and H' are called dually paired if there exists a bilinear pairing < , >: H ® H' -+ C 

such that < a/3,x >=< a®/3,~x >, < a,xy >=< ~a,x®y >, < 1,x >= e(x), < a,l >= e(a), < 

Sa,x >=< a,Sx >, < a., x >= < a, (Sx)* > Va,/3 E H;x,y E H'. 

We shall also need the notion of a right comodule, which is dual to the definition of a left module: 

a right comodule of a. coalgebra A is a pair (C, /3), where C is a vector space and /3 a linear map 

/3 : C -+ C ® A obeying (id ® ~) 0 /3 = (/3 ® id) 0 /3 and id = (id ® e) 0 /3. 

Of particular interest to us are non-commutative bialgebras, for which the non-commutativity is 

controlled by a so-called dual quasi triangular structure [12], which is defined as a convolution invertible 

map ~: A®A -+ k such that b(1)a(l)~(a(2)®b(2» = ~(a(1)®b(1»a(2)b(2)' ~(ab®c) = ~(a®c(1»~(b® 

C(2», and ~(a®bc) = ~(a(1)®c)~(a(2)®b) for all a,b,c E A. In other words, ~ is a bialgebra bicharacter. 

This notion is dual to the maybe more familiar term of quasitriangularity due to Drinfel'd [4]. 

One of the most important properties of dual quasi triangular bialgebras is that the comodules of 

such a bialgebra A form a. quasi-tensor or braided category denoted MA. This means that the category 

MA can be equipped with a bifunctor ® : MA x MA - MA, which was called 'braided tensor product' 

in the introduction. This ® is required to satisfy some associativity conditions. Furthermore, for any two 

objects X, Y of M A (i.e. for any two comodules) there is a natural isomorphism'll X,1' : X ® Y == Y®X, 

called the braiding. For MA, this braiding is given in terms of the dual quasi triangular structure ~ and 

the coactions of the respective comodules. If we are now given two A comodule algebras C1 and C2 we 

can use 'It to define their braided tensor product as C1®C2 equipped with the new multiplication 

(a ® b)(c ® d) := aq,(b ® c)d. 
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Due to the properties of 0 and W, the braided tensor product of two comodule algebras tUrns out 

to be a comodule algebra again. The braided tensor product provides a covariant way of combining 

two covariant systems.A braided bialgebra is an algebra B living in a braided category equipped with 

a braided coproduct A : B - B0B obeying axioms similar to the bialgebra axioms, but with A a 

homomorphism to the braided tensor product B0B. All maps are morphisms, i.e. covariant under the 

coaction of the background quantum group A. The braided matrices mentioned in the introduction and 

which form our q-Minkowski space are of this type. 

The Hopf algebras of polynolnial functions on the Lorentz 
group and on Minkowski space 

In this section, we reformulate some classical considerations about the Lorentz group and Minkowski 

space in an algebraic language suitable for later generalization. As familiar from other applications, we 

present Minkowski space as Hermitean 2 x 2 matrices. One usually chooses this description to give a 

simple exposition of the covering map SL(2, C) - L~ of the subgroup of proper orthochronous Lorentz 

transformations. This map enables one to construct the well-known spinor decomposition of Lorentz 

tensors. If Minkowski space is given as Hermitean 2 x 2 matrices, the Lorentz metric can be expressed 

in terms of the S£(2, C) spinor metric ,a' = (~1 ~) as CAB := <ao' o,.,." and the (full) Lorentz 

Group is given by 

Cwhere L(4, R) denotes real n x n matrices. We use the convention (ac(ab =cb for the definition of the 

inverse spinor metric. 

In order to q-deform these structures, we are in principle interested in C(X), the algebras of 

continuous C-valued functions on subsets X of R n , such as the Lorentz group L or Minkowski Space 

M. However, to avoid the discussion of convergence problems and other complications due to the non­

compact nature of these spaces, we consider only P(X), the algebra of polynomial functions, which is 

almost the same as C(X), since on arbitrarily large compact subsets X' eX, P(X') is dense in C(X'). 

For the application to the Lorentz group, we are particularly interested in the case where X is a 

subset of L(n, k), k =R or C. For clarity, we recall some simple results of this special case: It is easy 

to see that P(L(n, C» is a commutative and associative C-algebra generated by 1 and tab' the linear 

coordinate functionals on L(2, C), and their complex conjugates tab' It has the structure of a bialgebra 

with with pointwise multiplication, and comultiplication and counit 

A coalgebra struct.ure of this form is called matrix coalgebra structure. If we are given a matrix-group G C 


L(n, C), then peG) is a Hopf algebra and has the form ofP(L(n, C» divided by some further relation. 
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abFor the special case of SL(2, C) one finds that P(SL(2, C» = P(L(2, C»/(t~tbdecd = e , jbdjacecd = 
eab ) is a *-Hopf algebra with pointwise multiplication, matrix coalgebra structure, antipode defined by 

Stab ={iatij{jb and *-structure (tab)· =jba. One obtains P(SU(2» as a real form of P(SL(2, C»: 

ab abP(SU(2» 	 = P(L(2, C»/(T~T~ecd = e , T~T~ecd = e , Tb = ST~) 
= P(SL(2, C»/(Th = ST~) 

I It is also a *-Hopf algebra with matrix coalgebra structure and with: STh = (iaT~ejb, (Th)· = ST~. 

Moreover, there is a *-Hopf algebra isomorphism (complexification) 

P(SL(2, C» ® P(SU(2»~ P(SU(2» 

where we equip the tensor product P(SU(2»®P(SU(2» with the non-standard *-structure (l®Tbt := 

S1'~ ® 1 instead of the tensor product one. 

Using these results we find for the algebra of polynomial functions on the Lorentz group: 

Proposition 2.1 Let A~ denote the linear coordinate functionals on L(4, R). The polynomial functions 

on the Lorentz group peL) =p(L(4,R»/(A1-A~GCD =GAB) form a commutative *-Hopf algebra with 

pointwise multiplication, matrix coalgebra structure and 

A is shorthand for the twisted multi-index A = (alao). 

We retrieve the covering map of the subgroup of proper orthochronous Lorentz transformations 

on the level of polynomial function algebras as an injective *-Hopf algebra homomorphism 

peL) ~ p(SU(2» ® p(SU(2» ~ p(SL(2, C» 
AAB ...... S(1')ho ® Tal.ao hl 

This map is not surjective. Its image is the fixed-point set of the Z2-action u given by u(l®T) := -(l®T) 

and u(1' ® 1) := -(1' ® 1): 

Composition with the map t..p defines a push forward of comodules, i.e. a covariant monoidal 

functor 4> : M'P(L) _ M'P(SL(2,C», where M'P(SL(2,C» and M'P(L) denote the monoidal categories of 

right p(SL(2, C»- and peL)-comodules, respectively. ~ is the spinor decomposition of Lorentz tensors 

on the level of polynomial function algebras. 

Next, we come to Minkowski space M in this algebraic form. Minkowski space has an additive 

group structure and not a multiplicative one as the matrix groups discussed so far. But as for the poly­

nomial function algebras on matrix groups, this group structure is recovered in the coalgebra structure 

ofp(M): 
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Proposition 2.2 (i) P(M) is a commutative associative C-algebra generated by 1 and the linear coor­

dinate functionals XA, A =(11) ... (22). P(M) is a *-Hopf algebra with 

The comultiplication encodes the additive group structure of Al on the level of P(M): 

~ +( = Ax(~ ®() y~,( EM. 

We call a coalgebra structure of this form coaddition . 

(ii) There is an algebra homomorphism (spinor decomposition) 

where I denotes the dual space. 

(iii) P(M) is a right P(L) and P(SL(2, C» comodule *-algebra with coactions 

fh: P(M) ~ P(L) ® P(Af) 
XI 1-+ XJ ®),.~ 

and /3sL(2,C) := (id ® ip) o/3L, using the functor ~ defined above. 

(iv) XAXBCAB =2detx. 

q-Lorentz group of function algebra type 

In this section, we shall give a non-commutative version ofP(M) and P(L), making use of the standard 

technique of deforming the commutative bialgebra of polynomial functions on a matrix group as a non­

commutative dual quasitriangular bialgebra [8]. The resulting algebraic objects are called quantum 

matrix groups. The basic idea is to make the linear coordinate functionals tij commutative only up 

to conjugation by an invertible matrix solution R = 1; R(l) ® R(2) E GL(Cn ® Cn) of the quantum 

Yang-Baxter equation (QYBE): R12R13R23 = R23R13R12. Explicitly, we define A(R) to be the free 

associative C-algebra with n2 generators tij' i, j =1 ... n divided by the ideal generated by the relations 

R12tlt2 = t2tlR12 (i.e. g':ntjti = tkntimRjr). It is known that A(R) is a dual quasitriangular 

bialgebra with matrix coproduct and dual-quasitriangular structure ~ : A(R) ® A(R) - C given by 

~(t ® 1) = id = ~(1 ® t) and ~(tl ® t2) = R12 extended as bialgebra bicharacter [8]. A(R) is a non-

commutative version of the bia.lgebra of polynomial functions on the algebra of n x n matrices. One 

can obtain a non-commutative version of the Hopf algebra of polynomial functions on a matrix group 

by dividing A(R) by some further 'quantum determinant'-like relations. The dual quasitriangularity of • 

A( R) follows from the fact that the so-called fundamental matrix representations 

P± : A(R) - L(4, C) 
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defined by p+(tij)~ = Rij, and p_(tij)~ = R-lktj (and two similar anti-representations) respect the 

relations in A(R) and indeed extend to algebra homomorphisms [8]. This means that if we divide A(R) 

by some further relations, it is sufficient to show that they are respected by the fundamental matrix 

relations in order to establish dual quasitriangularity of the quotient. Note that, by rescaling of R, we 

actually obtain a e\{O}-indexed family of dual quasitriangular structures on A(R), whereas a quotient 

might have less freedom if the additional relation fixes the normalisation of R. Corresponding to the 

family of dual quasitriangular structures on A(R), we obtain a family of braidings in MA(R). 

The aim of this section is to give a non-commutative version ofP(L) =P(L(4, R»/('\1:'\~CCD = 
CAB) as a dual quasitriangular *-Hopf algebra of the form 

Lq =A(RL)/( q-deformed metric relation), 

where RL is an invertible solution of the four-dimensional QYBE which we introduce. Lq should gen­

eralize all features of P(L) presented in proposition 2.1. In order to obtain such an RL-matrix and 

q-deformed metric, we make use of the important role P(SL(2, e» plays as a building block of pel). 

One can construct a non-commutative version of P(SL(2, e» from the q-deformation of P(SU(2» [18]: 

Let 
10 
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R=Vi 0 qo q-1 0 ,q E R. 
( o 0 o 1 

be the well-know invertible solution of the two-dimensional QYBE with the property Ra:d =Rdbca. SUq(2) 

is defined [18] to be A(R) divided by the ideal generated by the relation T~T~(cd = (ab equipped with 

the *-structure (Tt)", := ST~, where 

ab _ ( 0 1/.;q )( - -fo. 0 

is the q-deformed spinor metric. SUq(2) is a dual quasitriangular *-Hopf algebra with matrix coalgebra 

structure, antipode Stab = (ibT~(ja, and standard dual quasitriangular structure defined by R. 

We q-deform P(SL(2, e» ~ P(SU(2»®P(SU(2» as SUq(2) ~ SUq(2), the double cross product 

Hopf algebra, as defined in [6], of two copies of SUq(2) acting on each other in a compatible way. 

SUq(2) ~ SUq(2) coincides with SUq(2) 0 SUq(2) as a coalgebra, but has a different algebra structure, 

given by the compatible actions. Explicitly, one obtains Rab 
d(10 T~)(T~ (1) = (T~ (1)(1 0 T~)Rc:J'c 

This double cross product is a Hopf algebra with the tensor product coalgebra structure 

~I)<I = (id 0 T 0 id)(~ 0~) £1)<1 = .0 (£ 0 e), SI)<I(a 0 b) = (10 Sb)(Sa (1) 

Corresponding to the non-standard *-structure defined on P(SL(2, e» ~ P(SU(2» 0 P(SU(2», we 

define a *-structure on SLq(2, e) =SUq(2) ~ SUq(2) by (ft (1)* =10 ST~, and obtain SUq(2) as a 

real form of SLq(2, e). The general algebraic construction underlying this is given in [14, Sec. 4]. 

After these preliminaries, we now present our new q-Lorentz group: 
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Definition 3.1 The q-Lorentz group Lq is defined as 

The preserved metric and the R-matrix are given by 

'/ 

where il := «Rt2)-1 )t2, and t2 denotes transposition in the second tensor component. Explicitly, we find 

o 0 
o -q 

-l/q 0 T)·o 0 


Lq is in fact a deformation of 1'(L). It obeys a non-commutative version of proposition 2.1: 


Proposition 3.2 (i) RL is an invertible solution of the QYBE. 

(ii) Lq is a dual quasitriangular *-Hopf algebra with matrix coalgebra structure, 

and dual quasitriangular structure induced by RL. 

(iii) There exist a *-Hopf algebra injection rp 

where T and T denote two independent copies of generators of SUq(2). As in the commuting case, Im(rp) 

is the fixed-point set of a Z2-action: 

The Hopf algebra map rp induces a push forward of comodules, the q-spinor decomposition of 

q-Lorentz tensors. 

Proof. (i) By explicit calculation. (ii) There are two non-trivial statements in this part of the 

proposition: firstly that the operation '*' does indeed determine a *-structure on a Hopf algebra, and, 

secondly, that 3? defines a dual quasitriangular structure, i.e. that it is compatible with the metric 

relation. The rest amounts to a simple check of the Hopf algebra axioms. In order to show that '*' 

respects the algebra relations in Lq , note that, by virtue of the fact that R obeys Rac~ =Rdb~' and using 

lab =-lba, one can show the following two relations: 

R BA Rdoa R a l/3 Rbl'Y il6co 
L DC = /3ao 'Ybo 6Cl dla 

Rao/3 Rbo'Y R Cl 6 ilad1= ~L /3al 'Yb l co6 	 ,
R AB= 	 '\.LCD' 

il- 1G1a l/3 bl= 	 l Goa /3bo 
laao il- 1bo /3 lb /3= __ aGl 1 

= C BA . 
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Therefore, 
(R AB AC AD)* R AB \D\C= L CD A- A­LCD E F __ .E. ~ 

R B A \D \C= :L D....QAE.:B 
\A \B R DC= A:c.AlI LF'E 
\A \B R CD 
A-A- LEF 
AC BD CD

(A CA DRL EF)*' 

A~A:[CDC= D !2_ 
CBA= 

(CAB )* . 
Thus '*' can be extended as an anti-algebra map. The *-Hopf algebra axioms are easy to check. 

In order to show that ~ is dual quasitriangular, we only have to prove that the fundamental 

representations defined above respect the metric relations, i.e. that the can be extended to matrix 

representations of L q • Thus it only remains to show that 

p+(CABA1:A~)~ = CABP+(A'h )~P+(A'h )AJ 
R CE R DM= CCD LAM LBF 

= CAB6~ 
= p+(CCD)~' 

These relations can be verified by explicit calculation. Similar for the anti-representations. Note, how­

ever, that these conditions fix the normalization of RL. We call this normalisation the quantum group 

normalisation. The normalisation of RL shall be of importance in the next section, when we discuss 

q-Minkowski space. 

(iii) We have to prove that <p as defined above can be extended as a *-Hopf algebra map: Using 

the the algebra structure on SUq (2) IX! SUq(2), which can also be written as: 

or 

one can show: 

<p(A~A~RLBD~) 
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Since cp respects the 'q-metric relation', we also have cp(l) =1, completing the proof that cp is an algebra 

map, and cp(S'\) =SI>4(cp('\)). 

b) cp is a coalgebra map: 

al>4(cp('\-h)) = a(Sf~oo ® T~~)
= S:;-co to. Tal to. S:;-bo to. T Cl 

ao '<Y Cl '<Y '<YCo b1 = cp('\1;) ® cp('\~) 
= (cp ® cp)(a'\-h) 

c) cp is a *-homomorphism: 
cp(( ,\ ~ )* ) = 

= 

= 
This completes the proof that cp can be extended as a *-Hopf algebra map. Q.E.D. 

Because cp is not surjective, i.e. not a Hopf algebra isomorphism, it is possible to construct many 

different R-matrices which all give rise t.o different q-Lorentz groups with properties as described in the 

last proposition. We list a few examples of possible R-matrices: 

our choice of R-matrix, 

the braided matrices R-matrix as described in [10], 

the quantum double R-matrix from [14], 

the R-matrix from [2]. 

Only the discussion of q-Minkowski space in the next section shall enable us to identify RL as 

the natural choice of R-matrix, since it is the only R-matrix which gives rise to a satisfactory non­

commutative version of P(M). 

4 q-Millkowski space 

To construct a q- Minkowski space with coaddition, we follow the general approach of [14]: Let R be an 

invertible solution of the n-dimensional QYBE and let R' be another matrix such that they satisfy the 

mixed QYBEs RbR13R23 = R23R13Rb and R 12 R 13 R23 = R23R13R12. Then the algebra of quantum 

covectors V'(R') is defined as the free associative C-algebra generated by 1 and n generators Xi with 

relations xixi =xlcx/R"t. Similarly, one defines quantum vectors V(R') as generated by 1 and elements 

vi with relations vivi =R,it,v'vk. The mixed QYBEs ensure that both algebras are right A(R)-comodule c 

algebras. In the case of V'(R'), the coaction and braiding between two copies are given by Xi 1-+ Xj ® ti i 

and W(XI ® X2) = X2 ® xIRL12. For V'(R') to be a braided Hopf algebra in MA(R) with braided 
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coaddition 

the two matrices have to satisfy 

0= (PR + 1)(PR' - 1) 

and some other relations stated in [14]. P denotes the permutation matrix. Given any R, we can 

construct an R' satisfying these relations out of the minimal polynomial 

0= II 
AiESpec PR 

of PR as 

R' =P(l + II 
AiESpec PR; i;tl 

provided we have the freedom of rescaling P R such that one of its eigenvalues, say AI, is -1. 

Applying this construction to the q-Lorentz group R-matrix RL shows why we consider the q­

Lorentz group presented in this paper as more promising than its rivals and maybe even th definitive 

one: by direct computation, we find 

Proposition 4.1 qRL has the eigenvalue -1. From the minimal polynomial of qPRLI we obtain R' = 

RMI where 

is the braided matrices R-matrix from {10). Thus using the general technique to construct an algebra 

of quantum covectors with braided coaddition law yields the algebra relations of the braided Hermitean 

matrices: V'(R') =BM(2) as algebras. 

The q-Lorentz group proposed in this paper equips the algebra BM(2) with a braided coaddition 

law. One can certainly apply this general construction to the other proposed q-Lorentz group R-matrices, 

but the resulting algebras of quantum vectors with braided coaddition law do not coincide with BM(2) 

as algebras. 

We thus propose to take the braided matrices BM(2) as q-Minkowski space, but we give it a new 

name, Mq , to avoid confusion: BAf(2) was constructed as the transmutation of A(R); i.e. the braided 

group associated to a quantum group. As such, it has the structure of a braided bialgebra in MA(Rt}, 

the category of right A(RI}-comodules with a braided matrix coalgebra structure. Mq on the other hand 

is a braided Hopf algebra in MA(Rd with a braided coaddition. It shares with BM(2) only the algebra 

structure, which is sufficient [15] to ensures the existence of a q-spinor decomposition, i.e. an algebra 

map Mq - V(R)0V'(R). 

The explicit algebra relation in Mq are given by [10]: 

2ba = q2 ab ac = q ca da = ad 
db = bd + (1 - q-2)ab cd = de + (1 - q-2)ea be = eb + (1 - q-2)a(d - a) , 
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with., = (: !). The elements qd+q-1a ('braided trace') and del =ad-q2cb ('braided determinant') 

are central in this algebra. Reflecting the fact that ordinary determinants are multiplicative, but not 

additive, the braided determinant is grouplike only in BM(2), but not in A/q. 

The appropriate *-structure on BM(2) was discussed in [11]. Its axioms are slightly different from 

the ones recalled in the preliminaries. The main difference is that one requires ~ o!. = T 0 (!. ® !.) 0 ~. 

In [11] it was shown that BM(2) is a braided *-Hopf algebra (with the slightly modified axioms) in 

MA(Rd, where the *-structure !. is defined by 

It is easy to see that this also defines a *-structure on Mq as a braided group with braided coaddition 

in MA(Rd. Note that the braided determinant is real with respect to this *-structure: (det)!. =det. 

Similar to the commuting case, where the norm on Minkowski space is given by the determinant 

of the corresponding Hermitean matrix, we find: 

Proposition 4.2 The q-nonn on Mq given by the q-deformed metric CAB is given In terms of the 

braided determinant as: XAXBCAB =q-3(1 + q2)det. It is therefore real and central. 

Mq is a right Lq-comodule algebra, due to the fact that RL and RM obey the mixed QYBEs. But 

the normalisation of RL we have to choose in order to provide for a braided coaddition law on Mq is not 

the quantum group normalisation from section 3. This means that. Mq is a braided group in MA(RL) but 

not in ML". This problem already occurred in [14] and is discussed in detail there: We have to consider 

the slightly extended Hopf algebra i q := Lq ® CZ with dual quasitriangular structure ~(ga ® l) := qab, 

where 9 denotes the generator of the group algebra CZ. Mq is a braided bialgebra in M i " and both 

the algebra structure and the coaddition of q-Minkowski space are covariant under the coaction of i q : 

Proposition 4.3 q- Minkowski space Mq is an Lq comodule *-algebra with coaction PL : XA 1-+ xB®A~. 
" 

Using the push forward defined by the *-Hopf algebra injection <p, Mq is also an 8Uq(2) IX! 8Uq(2) and 

an 8Lq(2, C) comodule *-algebra with coaction 

Moreover, Mq is a braided Hopf algebra in the braided category M L". 

In the beginning of this section, we introduced algebras of quantum vectors and quantum cov­

ectors, a notation which was motivated in [15] by their respective transformation properties. For our 

q-Minkowski space, we can show even more: not only do q-Minkowski vectors and covectors transform 

in the appropriate way, but these algebras are also related by raising and lowering of indices with the 

q-deformed Minkowski metric CAB: 

12 
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Proposition 4.4 
V'(RM) ~ V(RM) 

XA 1--+ V
A := XBCBA 

I· . I R KL - C C R QP CAKCBL . I·Proo.£ 0 ne can show exp IClt y: M EF - PF QE M AB , Imp ymg: XAXB = 
xcxDRJ>;'B ¢} XACAKXBCBL = XCCCEXDCDFCPECQFRA7~BCAKCBL ¢} vKvL = RAfiFvFvE. 

Q.E.D. 

For completeness, we list the explicit form of the braiding on the generators of M q , which is 

quite different from the braiding on BM(2) with its multiplicative coalgebra structure [10]. Recall 

from the beginning of this section, that the braiding is given in terms of the q-Lorentz R-matrix as 

W(XI ® X2) = X2 ® xlRL 12. With a := 1 - q-2, we obtain: 

W(a®a)=a®a 	 \lI(a®b) =q- 2 b®a 
W(a ® e) = e ® a + aa ® e 	 \lI(a®d) =q-2d®a+a(b®e+aa®a) 
W(b®a) =a®b+ab®a 	 \lI(b®b)=b®b 
w(b ® e) =q-2e ® b + aq-2(d ® a + a ® d + ab ® e+ (2 - q-2)a ® a) 
W(b ® d) =q-2d ® b + a(b ® (d - q- 2 a) + aa ® b) 

2	 2\lI(e® a) = q- a ® e 	 \lI(e ® b) = q- 2 b ® e + aq- a ® a 
\lI(e®e)=e®e W(e ® d) =d ® e + ae ® a 


2
\lI(d ® a) = q- a ® d + a(b ® e + aa ® a) \lI (d ® b) = b ® d + aa ® b 
2\lI(d ® e) =q-2e ® d + a«d - q-2a) ® e - ae ® a) \lI(d ® d) =d ® d + a(e ® b - q- 2 b ® e - q- aa ® a) 

From the q-Minkowski space Mq and the q-Lorentz group iq, one can construct a q-Poincare 

group as a semidirect product Mq ><Jiq [14]. Details of the q-Poincare group resulting from our new 

q-Lorentz group will be given in a forthcoming paper. 

q-Lorelltz group of enveloping algebra type 

Apart from the deformation as a function algebra, there exists another standard way' of deforming a 

simple Lie group, namely the deformation of its universal enveloping algebra. The Lorentz group is not 

simple, but its enveloping algebra is given by U(so(3, 1» ~ U(su(2» ® U(su(2». We shall use this 

relation and the standard q-deformation of the enveloping algebra of the simple Lie group SU(2) to 

construct a q-deformation of U(so(3, 1». We also investigate how this algebra is related to the q-Lorentz 

group of function algebra type. 

For clarity, we first have to recall some standard constructions: For A(R) introduced above 

there is a well-known dual bialgebra U(R) [18, 8] generated by 1 and 2n2 symbols I~ ± with relations 

If I~ R12 = R12/~ It and flit R12 = R121t 1'1. The dual pairing with A(R) is given by < tl, I~ >= Rf2! 

where R+ = Rand R12 = R;/. For the SU(2) R-matrix from above, U(R) is known to be related to a 

deformation of the universal enveloping algebra of su(2): Uq(su(2» is defined as U(R) with the further 

relations implied by the ansatz 

J!..
1+ 	_ q <I 


- -1/2( -1)X
( 	 q q -q + 
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We use M. Jimbo's convention [5] and the usual *-structure for Uq(su(2»: 

H -H 
!LX _!L :l: 1X [X X] q - q H* H X* Xq 2 :l:q = q :1:, +, - = l' =,:1: = 

T 
~.2 	 q_ q-

This is a quasitriangular *-Hopf algebra with coalgebra structure of matrix form and a well-known 


quasitriangular structure 1l and it is dual to SUq(2) as *-Hopf algebras (Le. not only as bialgebras). 


The FRT generators are given by 1+ = 1l(1) < T, n,(2) > and 1- =< T, 'R- 1(1) > 'R- 1(2), and we also 


have < Tl ® T2, 'R >= R12 . T denotes the generators of SUq(2). " 


A natural generalization of U(so(3, 1» 9! U(su(2» ® U(su(2» is Uq(su(2» ®x Uq(su(2», the 

twisted product of two copies of Uq(su(2» as introduced in [19]. It is defined as the tensor product as 

algebras of two copies of Uq(su(2» equipped with a doubly twisted coproduct and antipode, and also 

has a *-structure 

There is a known *-Hopf algebra pairing 

< , >: SUq(2) E><l SUq(2) ® Uq (so(3, 1» -+ C. 

In [19], the twisted product is presented with a quasitriangular structure related to the quantum double. 

But since our q-Lorel1tz group R-matrix does not coincide with the quantum double R-matrix either 

this it is not the quasitriangular structure we are interested in. We give a new quasitriangular structure 

on Uq(su(2» ®x Uq(su(2» which is more suitable for our purposes: 

Proposition 5.1 Uq (so(3,1»:= Uq(su(2» ®x Uq(su(2» is a quasitriangular *-Hopf algebra with 

Proof. 

We have to show that 'RL = 1l'411'R24'R13'R23 obeys TO~ = 'RL~'RL1, (id®~)('RL) = 1lL 13'RL 12 

and (~® id)('RL) = 'RL 13'RL 23. Using the fact that 'R obeys these axioms and that such an 'R 

automatically satisfies the QYBE 'R12'R13'R23 = 'R23'R 13'R12 , we obtain: 

= 'R'4l'R24'R13'R23('R231 ~13~24'R23)'R2i'Rll'R2i'R41 
= 'R'4l('R24~24'R241)('R13~13'R131)'R41 
= 'R'411~42~31'R41 
= TO~x 

(id ® ~X)('RL) 	 = 'R'4l(id12 ® ~35~46)'R'4l'R24'R13'R23'R45 
= 'R'451(id ® ~46)('R4il'R24)(id ® ~35)('R13'R23)'R45 
= 'R'4l'R'6l'R'4/'R26'R24'R15'R13'R25'R23'R45

1= ('R6l'R26'RlS'R2S)('R'41 'R24'R13'R23) 
= 'RL 13'RL 12 

The proof of (~ ® id)('RL) = 'RL 13'RL 23 is similar. Thus 'RL is a qua.'3itria.ngular structure for 

Uq (sl(2, C». Q.E.D. 
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Using the general construction described above, we could construct a bialgebra U(RL ) dual to 

A(RL). After dividing both algebras by suitable further relations, we would expect a dual pairing 

between Lq and its 'canonical' dual Hopf algebra. After the experience with SU(2) and SL(2, C), one 

would expect this dual Hopf algebra to have some kind of relation with Uq(so(3, 1», the q-deformation 

of the universal enveloping algebra. This is indeed the case, but Uq(so(3, 1» does not coincide with Lq's 

canonical dual. 

Proposition 5.2 It is possible to divide U(RL) by some further relations obtaining a *-Hopf algebra 

U(RL)' We denote its generators by L±. Using the general construction (8], one can define a *-Hopf 

algebra injection 

This map is not surjective. 

The restriction of the pairing < , > to the subalgebras I m(¢) and I m( t/J) recovers the standard 

pairing. between Lq and its canonical dual U(RL): 

Furthermore, due to the fact that t.p andt/J are *-Hopf algebra injections, Lq and U(RL) are also dually 

paired with Uq(so(3, 1») and SLq(2, C), respectively. 

using the property R"J~a =ciaR"jticico of the SU(2) R-matrix. Now it is easy to check that t/J : U(RL) ~ 

Uq(so(3, 1» defined according to the general construction [8] by 

is a bialgebra map. If we define U(RL):= U(RL)//(er(t/J), then the induced map, which we also call t/J 

is a *-Hopf algebra injection: define SO(Rd := t/J-l 0 S'R, 0 t/J and * := t/J-l 0 * 0 t/J. The other assertions 

are easy to verify. Q.E.D. 
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