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Introduction 

In this work, we consider the Fock space descriptions of and some interesting properties 
of various bosonic oscillator systems. 

All are based on a single creation-annihilation pair. All are represented in a suitable 
Fock space of states In) ofform (at)"IO), n 0,1,2"" with a ground state 1m such that 
alO} = 0 and a number operator N such that Nln) =nln). 

From the quantum harmonic oscillator with its well-known commutation relations 

[a, at) = 1. 

we pass to the study of a generalisation of it that we have elsewhere [IJ called modification. 
This gives rise to the Calogero-Vasiliev oscillator [2J,[3J,[4J governed by 

at1 1 +2vJ(, (1) 

where v E R, and J( = (_)N obeys 

J( = J(t, J(2 = 1, aI( + Ka =0, atJ( + Kat =O. 

Below we review the construction of its Fock space r,,, for which 2v > -1 emerges 
as a condition sufficient to ensure the hermiticity properties implied by use of the dagger 
in at, and also the su{I, 1) and osp(II2) properties of F II , A notable result, believed 
new here, is then explained. It states that for v (p - 1)/2, rv coincides with the 
Fock space of a single paraboson of order p = 1,2·' '. An important consequence of 
this observation is that for Fock space work, one may use the bilinear commutation rule 
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(1), with 211 = p + 1, instead of the more awkward trilinear commutation rules [5] that 
characterises paraboson systems of order p. 

Then we go on to consider the q-deformation of the Calogero-Vasiliev oscillator, Set­
ting out from the Fock space description of this, it is easy to follow the familiar method 
of replacing round brackets suitably by square brackets of the type 

[x;r] (qrr_q-%T)/{{_q-r), [x; 1] [x]. (2) 

This leads to a system involving a pair band bt governed by 
bbt q±(1+2I1K)btb = [1 +2vK]q=F(N+II-IIK) , (3) 

in which q and v E R, and K and N have the meanings indicated above. While (3) might 
seem unduly complicated, it does describe a very natural q-deformation of the Calogeto.. 
Vasiliev oscillator and calculations in the Fock space rqv in which it is represented are 
easy enough to do. 

Our Fock space methods allow us to derive a variety of interesting simple formulas 
that hold true in rqll:these can be used to show clearly its relationship to the various 
simpler systems that can be reached from it as special or limiting cases. We show how 
rqv interpolates between the spaces, defined for v = (p - 1)/2, that describe q-deformed 
parabosons of order p 1,2·· '. We discuss also the relationship of r q" to representations 
of su(I, I)q and osp{II2)q' 

We discuss next some relationship between the content of the present paper and 
previous work. Firstly we mention our recent paper [1] in which a different approach was 
followed to the combination of q-deformation. and v-modification. There, rather than 
effecting a q-deformation of (I) as here, we considered the simplest modification of the 
now familiar commutation relation [6] [7],[8J 

aat _ qata q-N, (4) 
namely 

aat qata = q-N(I +2vK). (5) 
The consequences of (5) - its Fock space, su(I,I)q and osp(II2)q properties, and hid­
den supersymmetry show similarities with features of the present work, but have no 
parabose aspects. 

We uesd the term Calogero-Vasiliev oscillator in relation to (1), because the latter 
author introduced it first explicitly [2] and gave its Fock space representation, and because 
it plays a crucial role in the modern progress in understanding [3],[4],[9] of the integrable 
many body model discovered by the former author [10]. 

Previous treatment of q-analogues of parabose (and also of parafermi) oscillators ap­
pears in [l1J. This paper also discsses their su(I,I)q or sp{2R)q and osp(II2)q properties, 
but not the relationship to v-modification. We remark here that our approach gives rise 
to various interesting formulas not given explicitly in [11]. 

We mention here two works on general deformation schemes, including parabose and 
parafermi oscillators, namely the paper [12], which surveys earlier work, and the paper 
[13]. 

There is also the article [14] useful especially for su(I,I)q questions.The paper [15] 
contains information of q-deformation of parabose and parafermi operators, and mentions 
the relationship of osp(II2)q representations to the Fock space of parabose oscillators. 

Finally we note a matter which attracted debate at the International Workshop at 
which the work described in this paper was presented, The matter concerns the un­
derstanding of systems of the type in focus here within the context of Lie·admissible 
algebras. An assessment may be sought on the basis of [16] and rI71 and from references 
given in the former source. 
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The Calogero-Vasiliev Oscillator. 

We review here work on this system, partly to describe its relation to parabosons of order 
p, and partly to provide background for our discussion of q-deformation of the system 
later. 

In seekin~ Fock space description of a and at subject to (1), we use the obvious facts 
that a and a reduce and increase the quantum number n of the kets In) by 1, i.e. that 

[N,a) = -a, [N,a t ] = at. 

!3ecause K = (_)N features in (1), it is convenient to treat even and odd kets 12n) 
and /2n + 1) separately. Thus we seek to represent (1) by means of 

(2n + llat l2n) = p~/2, (2nlat l2n -1) = q!/2, (6) 

with (nln) = 1 for n = 0,1,2···. By taking diagonal matrix elements of (1) for states 
12n) and 12n + 1), one is led to difference equations which can be seen to possess the 
following solutions 

p" = 2n + 2v + 1, q" = 2n. (7) 

In view of the former we impose the restriction (2v + 1) > 0 or v > -1/2 on the 
modification parameter v of (1). It follows from (6) and (7) that 

aa t l2n) = (2n + 2v + 1)12n), aat l2n - 1) = 2nl2n - 1). (8) 

Hence we deduce the operator identity 

aat = N + 1 + v(1 + K), (9) 

valid on the Fock space F" of the kets In). Similarly 

ata = N + v(1 - K). (10) 

Addition and subtraction of (9) and (10) now gives the expression 

N = {a,atl/2 - (2v+ 1)/2 

for the number operator of F", and the expected verification that (1) holds as an operator 
identity on F". Use of results of the type (9) and (10) is crucial to our methods here 
and elsewhere. The idea of adjoining K to the families of operators with whose algebras 
we work offers valuable simplifications. The same applies to the more general use of 
exchange operators [3], [4], [9] in the study of Calogero systems. 

Turning to su(l, 1) or sp(2R) properties, we note that a2, at2 and {a,atl have com­
mutation rules 

[a,at2 ]= 2at , [a2,at]= 2a = [a, {a,at}l (11) 

that do not involve v orK. Then it is easy to show that 

K+ = a t2 /2, K_ = -Kt = -a2/2, K. = {a,atl/4 
obey an su(l, 1) algebra, and that its Casimir operator 

K2 = K: + {K+,K-l/2, 
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commutes with 1(" K±. One may then use (1) to show that K2 takes the value 

-3/16 + v(v K)/4 

on Fv. The fact that this gives the values -3/16+v(v±l) on its even and odd subspaces 
can also be verified directly. Thus F,,± carry unitary irreducible representations of su(l, 1) 
with distinct eigenvalues of the Casimir operator of sue 1, 1). This generalises the situation 
well-known [18] for the simple harmonic oscillator (with v = 0 ) itself, and one goes 
beyond as follows, recalling the work of [19] which drew attention to the relevance of asp­
algebras to ordinary harmonic oscillator systems. To reach an algebra whose Casimir 
operator commutes with the entire Calogero-Vasiliev algebra of (1), i.e with a and at as 
well as K, we evaluate [K2,a]. When we do this calculation using only (11), i.e. without 
assuming any knowledge of [a, at], we find that 

[K2, a] = -Ha, a~, a]/8, 

so that 
C = K2 + fa,at]/8 (12) 

commutes with a and hence at as well as K. In fact it is well· known [20],[211 that 
a, at, K can serve as a set of generators of osp(112) and that C, given by (12), is its 
Casimir operator. It takes the value 

c = -3/16 + v(v K)/4 + (1 + 2vK)/8 

on F v , with the pieces that depend on K cancelling, so that 

c = -1/16 + v 2/4 (13) 

throughout F". Thus the Fock space of the Calogero-Vasiliev oscillator carries a single 
irreducible unitary representation of osp(112). 

To conclude the section, we describe briefly the connection of the work of this section 
to the Calogero many body system. Let ao and ab be a pair of ordinary harmonic 
oscillator variables and write 

ao = (x + ip)/..j2, ab = (x - ip)/..j2. 

Then v t t + _v,__ K,a = ao- V2xK, a = ao V2x 

obey(I), and define the Hamiltonian 

H = {a,at l/2 = (p2 + x2)/2 + v(v - K)/(2x2). 

This Hamiltonian describes the relative motion of a two-particle Calogero system. It 
follows from (9) and (10) that on Fv we have H = 2N + 1 + 2v. Thus F" provides a 
complete set of eigenstates of H 

Hln) = (2n + 1 +2v)ln). n = 0, 1,2 .. ·. 

4 

http:ip)/..j2


3 The Parabose Oscillator of Order p. 

Parabose oscillators emerge as a serious quantum mechanical possibility from asking the 
question: what are the weakest commutation rules that can be imposed on an a, at pair 
that make 

[B,a] -a, [B,at] = at, 

follow from use of the Hamiltonian 

B = {a,a t }/2. 

The answer is evident: we should impose only 

[{a, at}, a] = -a = [at, a2
] 

and its adjoint. We observe immediately that these results have already been seen to 
hold in the Calogero-Vasiliev system, d. (11). To obtain the Fock space representation 
of (14), see e.g. [5], it is necessary to supplement the specification alO) =0 of the ground 
state by the demand that it satisfy 

aatlO) = p =1,2,3···. (15) 

The definition N = {a,at }/2+const. makes = -a follow from (14). Then the 
explicit form 

N = {a,a t }/2 - p/2, 

is in agreement with NIO) = 0, because of (15). It follows from this point that the 
completion of the description of the Fock space is contained in 

(2n + llat l2n) = .j2n + p, (2nlat l2n - I) = J2n. 

This agrees with the results (6) and (7) for p = 2v + 1. The results given for the 
su(I,I) and osp(112) properties of the Calogero- Vasiliev oscillator also reproduce, for 
v = (p - 1)/2, results already known for the parabose oscillator of order p. We note in 
particular that (13) now reads 

c = (p2 - 2p)/16. (16) 

The fact that 

[a, at) = 1 + (p - 1)1(, 


holds in the Fock space of a parabose oscillator of order seems to be a new result here. 
Of course it does not follow from the algebra (14) alone; it requires also the use of (15) 
and is true only as an operator identity on the Fock space. It follows therefore that we 
should have a natural and direct derivation of it in the context of the Green ansatz [22) 
for the parabose oscillator of order p. We do; it is to be found in a forthcoming paper [23] 
on the algebraic description of parabose and parafermi systems based on a new explicit 
and technically convenient version of the Green ansatz. 
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4 The q-Deformed Calogero-Vasiliev Oscillator. 

This is a system, described in a Fock space F'qv, by a pair b and bt , which have the 
non-vanishing matrix-elements 

(2n + Ilbt l2n) y'[2n + 2v + 1], n =0,1,2'" , 

(2nlbt l2n - 1) = 5nJ, n =1,2,3, , . , 

This specification arises from the equations of section two by the insertion of square 
brackets in the sense of (2). We note that 

[N, b) -b, [N, btl = 

are built into our approach, and that (17) yields also 

bbt = [N + 1 + v(1 + K)], btb = + v(1 1<)]. (18) 

It can be shown that implies 

bbt q±(1+211K)bt b = [1 +2vl(JqT(N+I-"K}. (19) 

Thus, 'although this result specifies the algebra with whose representation we work, we 
did not proceed by postulation of it and by construction thence of the representation: 
rather it simply emerged in the form displayed in (19) from our obvious starting point. 

We now deduce some algebraic consequences. Firstly we have 

,btJ = b(qN+v+vK +q-(N+II+IIK}). (20) 

This notable result follows most easily from (18) via 

b2bt = b(bbt ) = b[N + 1 + v(1 + 1<)J, 
btb2 = (btb)b = b[N -1 +v(1 +1<)]. 

The fact that the trilinear commutation relations have come out so simply may be con­
sidered to point towards an expected parabose interpretation of our analysis. Also, as 
v -I> 0, (19) reduces to (4), and (20) reduces to its useful consequence 

[a2, atJ = a(qN +q-N), 

here written in terms of a rather than b for the q-deformed oscillator. 
If we put v = (p - 1)/2 in our results, it reproduces findings of (11) for the q­

deformation of the parabose oscillator of order p. It can be said, as in the undeformed 
situation, that F'qll interpolates between the Fock spaces of these oscillators. Our work 
however offers easy access to more explicit formulas than were given in [111. One such is 
the version of (20) that arises for v = (p - 1)/2 and is valid for any integer p; it agrees 
with a result for p = 2 quoted in [11). Another arises by evaluating (19) separately in 
the even and odd subspaces of F'qv. For 1< 1 and v (p - 1)/2, this yields 

bbt _ qTPbtb = [P]q±N. 
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When p = 1 this is the usual q-deformed osciIIator formula, but, for p > 1, contains a 
generalisation of it that looks very suitable for a parabose oscillator of higher order. For 
I( = -1, on the other hand, and II = (p -1)/2, we get 

bbt - qT(,-p)bfb = [2 _ p)q:l:(N+P-l). 

For p = 1, this is the familiar q-deformed oscillator result, while for higher integers 
p it reflects the fact that results for the even and odd subspaces often turn out to be 
of different appearance, a feature which can be avoided only by allowing K to appear 
explicitly. 

We can directly discuss the su(l, l)q or sp(2R)q and osp(112)q properties of :Fq",. The 
definitions 

B+ (q +q-lt1bt2 , B_ =-Bt, 4Bz = 2N + 211 +1, 

are the same as those used in the limit II --+ 0 and lead to the same algebra. One proves 

[B+,B_] = [2Bz;2), 

in which the notation of (2) is used, most easily by considering actions of the two sides on 
the even and odd subspaces :Fq",:I: of :Fq", separately. It requires very little more calculation 
to show that 

B2 = B+B_ + [Bz - 2)2, 

takes distinct values 
[(211 ± 2]2, 

independent of n, on the subspaces. Thus B2 commutes with B:I:, Bz , but not with b 
or bt. To find the Casimir operator Gq of osp(112)q which commutes with b, one uses 
information from calculations already done to compute [B2, b1 on :Fq",:I: separately and 
castes the result into the form 
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