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1. Introduction. 

The aim of this paper is to analyse Kahler-Einstein metrics of real dimension four 

admitting an isometric action of SU(2) with generica.lly three-dimensional orbits. In 

the case when the Einstein constant is zero the metrics are hyperkahler and have been 

classified [BGPP], [GP],[AH]. We sha.ll take the Einstein constant to be nonzero. 

We derive a system of ordinary differential equations whose solutions correspond 

precisely to such metrics, and we determine which trajectories of the equations give 

complete metrics. There are two families of complete metrics with negative Einstein 

constant; one of these families is that found in [GP], [Pd]' 

2. Kahler forms. 

" 

Suppose that we have an Einstein metric in four real dimensions with an isometric 
...;,::J 

-':,:J.'ttion of SU(2). We also suppose that the generic orbit is three-dimensional. The 
'\ 

\ Einstein condition implies that the metric can be expressed in the form 
1 
';, 

'-l 

9 =(abc)2dt
2 + a:Jl1~ + b:Jl1~ + C211~ (1 ) 

where t is a coordinate transverse to the SU(2) orbits, a,b and c are functions of t I 

and the l1i are the invariant one-forms satisfying dl1l =11:J 1\ 113 etc. Explicitly 

111 = - cos t/J d9 - sin t/Jsin 9 d¢ 

112 = sin t/J d9 - cos t/J sin 9 d¢ 

113 = -dt/J - cos 9 d¢ 

where 9, ¢, t/J are Euler angles on the SU(2) orbits. 

The vector fields dual to dt,I1],112,113 are 3i,Xl ,X2 ,X3 where 

a sin t/J a . a 
Xl = -cost/Ja9 - sin9a¢ + cot 9sm t/Jat/J 

. a cost/J a a 
X2 = sm t/J a9 - sin 9 a¢ + cot 9 cos t/J at/J 

a 
X3 = -at/J' 

We have the relations 

[:t'Xi] =0 

and 

{X], X2] = -X3 and cyclica.lly. 

Let us assume that the metric is Kahlerian. We further assume that the Einstein 

constant is nonzero so the metric is not hyperkahler. Therefore the space of covariant 

constant two-forms will have dimension less than three. However this space is a real 

representation of the isometry group SU(2) and hence will be acted on trivia.lly by 

this group . 

Now the Kahler form on a surface is always self-dual, so we deduce from the above 

remarks that our K abler form 0 is given by 

0= A(t)Ot + B(t)Ot +C(t)ot (2) 
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where A,B,C are functions of t only, and 

OJ = eo J\ el + e2 J\ e3 

OJ = eo J\ e:l + e3 J\ el 

ot = eo J\ e3 + el J\ e:l. 

Here eo =abc dt, el =aO"l, e:l =bO":I, e3 =C0"3 defines an orthonormal coframe for 

g. 

Now the condition dO =°is equivalent to the equations 

(Abc)' = Aa:lbc (3) 

(Bae)' = Bab2c (4) 

(Cab)' = Cabc2 
• (5) 

If we now introduce the standard variables WI = be, W2 = ae, W3 =ab and define 

functions a,p,,,,( by 

W; = W:lW3 + aWl (6) 

W; = WIW3 + PW:I (7) 

w~ = WIW:I +"'(W3 (8) 

then the equations (3-5) become 

A' = -aA (9) 

B' = -PB (10) 

C' = -"'(C. (11) 

We see that for each metric 9 there is a 3-dimensional space of closed, selfdual, 

SU(2)-invariant two-forms, which are candidates for Kahler forms. 
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3. Integrability. 

Given such a form 0 we can use the metric to define an endomorphism I of the tangent 

bundle by 

g(IX, Y) = O(X, Y). 

With 0 given by (2) the endomorphism is defined by 

I~ = AWIXI + BW2X2 + CW3X3at 
IXI 

A a CW:! BW3 
= --­ + -X:I - -X3

WI at WI WI 

IX:I 
B a CWI AW3 = --­ - --Xl + -X3 
W:! at W2 W:I 

IX3 
C a BWI AW2 

= --­ + -Xl - -X:I'
W3 at W3 W3 

Moreover I is an almost complex structure if and only if A2 + B2 + C:I = 1. 

(12) 

(13) 

(14) 

(15) 

If the above constraints on A, B, C are satisfied then 0 is a Kahler form precisely 

when I is integrable. Let us now check when integrability holds. 

Assume first that A is not identica.lly ±1. 

Then we can take 

and 

Xl = !.. - iAwlXI - iBW:!X2 - iCW3X3at 

iA a iCW:I iBw3 
X2 = -­ +XI ­ --X:I +--X3

WI at WI WI 

as independent (1,0) vector fields. 

Their Lie bracket is given by 

a 
[XI, X:I) = P at + QXI + RX:I + SX3 

where 
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From (18) we see that 13 =a + "Y or C =iAB. 
P = i(.!)' 

WI In the former case equation (19) implies that a =0 or B = -iAC. If a =0 
Q -.!CAwd' - (B2 +C2) 'W2W3= then 13 = "Y. If, on the other hand, a ¥ 0 and B = -iAC, then (16),(17) imply that

WI WI 

R = _i(CW2)' +(AB + iC)W3 - .!(BW2)' a =C2(f3 - "Y) and hence C2 =1. It follows from (11) that "Y =0 and a =13· 
WI WI 

Bw3 Similar manipulations in the case C = iAB lead to the conclusion that either
S = iC )' +CAC - iB)W2 - .!(CW3)'. 

WI WI a =0,13 ="Y or 13 =0, a ="Y. 

Using the equations (6.11) we can simplify these expressions to 
In the case A == 1 we can take 

a . x X .W3 XiA(2 'W2W3) - - 1WI I 2 - 1- 3P = -- a+-- at ' W2 
WI WI 

Q -~ as independent (1,0) vector fields. Imposing the integrability condition leads to the = 
WI 

equationiCUl2 (13 W2W3)R = -- "Y- +a+-­
WI WI 

WI _ (W3), = W)W~iBw3("Y _ 13 _ a _ W2W3).S = 'W2 W~WI WI 

which implies that 13 ="Y. We also have a =0 because A == 1. The case A == -1 isNow [XI, X2] is a (1,0) vector field if and only if the following equations hold. 

similar. 

Theorem 3.1 
-iP-.!Q - .!!..R- £S = 0 

WI W2 W3 
If the metric (1) is Kahlerian and not hyperkahlerian then one of the following . CWI BWI

AwlP - IQ - -R+-S 0= 'W2 W3 three conditions hold. 


B P CW2Q 'R AW2S
W2 +- -I -- = 0 (i) a = 0,13 ="Y 
WI W3 


BW3 AW3 , (ii) 13 =0, a ="Y

CW3P - -Q +-R - IS = 0. 

WI W2 (iii) "Y =0, a =13. 
On substituting in our expressions for P, Q, R, S these equations reduce to Conversely if (i),(ii) or is true then the metric is Kahlerian. D. 

In fact, it is straightforward to show that in case (i) we must have either B == C == 0 

aA = -iBC("'( - 13) (16) or else a =13 ="Y =°(in which case our metric is hyperkahler). Similar statements 

hold, with appropriate permutations, in cases (ii) and
a(l + A2) = (B2 - C2)("Y - 13) (17) 


(C - iAB)(a - 13 +"Y) = ° (18) 


(B+iAC)(",(-f3-a) = 0 (19) 
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4. The Einstein equations. 

We now consider what constraints on a, b, e the Einstein condition imposes. 


The Einstein equations in terms of a, b, e are 


2(~)' +2A(abe)' = a f _ (b' _ e')'
a 

b' 


bf2(-)' +2A(abe)' = - (e' _ a')'
b 
e' f2(-)' + 2A(abe)' = e _ (b' _ a')' 
e 

a'b' b'e' e'a' 
f bf4(- + - +-) + 4A(abe)' = _a - - ef + 2a'b' + 2b'e:l + 2e'a'.ab be ea 

As we are assuming that the metric is Kahlerian, from Theorem 3.1 we can without 

real loss of genera.lity take a = fJ and "Y = o. Using (6-8) the Einstein equations reduce 

to the constancy of A and the relation 

a = -Aw~ 

so we obtain the following result. 

Theorem 4.1 

The Kahler-Einstein metrics of the form (1) which are not hyperkahler are given, 

up to permutations, by solutions of the equations 

W'1 = W,W3 - Aw~wI 
, 

W, = W3WI -Aw~w, 

w'3 = WIW, 

where A is a nonzero constant. 

In terms of the original variables a, b, e, the equations are 
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1
a' = -a(b' + e' - a')

2 
1 

b' = -b(e' +a' - b')
2 
1 

e' = ie(a' + b' - e' - 2Aa'b'). 
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In some cases we can write down the metric explicitly, and recover known metrics. 

(i) If WI = W, (that is, a = b) then the solution to the equations is 

WI =W, =.J(w~) 

where 

, :I 2 3 ~ 
W3 = W3 - - AW3 +(I

3 

and 5 is a constant. 

After making the substitution W3 =p:l/4 we arrive at the Kahler-Einstein metric 

A, 165)_1 :I 1" :I) 1, A, 165),
9 = (1 - -p + - dp + -p «(II + (I, + -p (1 - -p + - (13 (20)

6 pf 4 4 6 pf 

which was obtained in [GP] and [Pd]. This metric has isometry group U(2) rather 

than SU(2) because a =b. 

(ii) We can also obtain the Bianchi IX form of the product metric on {J IP I X IV IP I 

by making the ansatz 

a ={f, b = {fsinF, c={fcosF 

where F is a function of t. After taking F as the new radial coordinate we can write 

the metric as 

.!(dF' + (1:1 + sin' F (I' + cos:l F (I')AI' 3 • 

(iii) Finally, 	the ansatz 
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2 3 3 2 6 
a ='A(1 + cos G), b2 ='A(1 - cos G), c ='A cos2 G 

leads to the metric 


6 Gil 

-A (d( _)2 + -(1 + cos G)u~ + -(1 - cos G)u~ +cos2Gun

2 2 2 

which is the form of the Fubini-Study metric on ~ IP 2 obtained by writing it in an 

SU(2)-invariant form with respect to the maximal embedding of SO(3) in the isometry 

group SU(3) [BG]. 

Note 

A calculation of the Weyl tensor for the metrics of theorem 4.1 shows that the only 

self-dual examples are the Fubini-Study metric on ~ IP 2 and the pseudo-Fubini- Study 

metric on the open ball in ~ 4 

Note 

If A = 0 the equations of Theorem 4.1 give us the hyperkihler metrics with 

triholomorphic SU(2) action. The equations are now solvable in terms of Jacobi 

elliptic functions, and the resulting metrics were analysed in [BGPP]. 

Remark 

We can also derive systems of equations for Kihler-Einstein metrics with other 

Bianchi type A isometry groups preserving the Kihler structure. 

5. The differential equations. 

Our next aim is to see which solutions of our differential equations give rise to complete 

metrics. As remarked above, the equations are completely understood when A =o. 

If we take the Einstein constant A to be positive then we can argue as follows, 

without needing to study the equations directly. 

Any complete Kihler-Einstein manifold M of real dimension four with A > 0 

is compact, by Myers's Theorem. Moreover, considered as a complex manifold M 

has CI > 0, so is isomorphic to either IP 1 X IP 1 or the blowup of IP 2 at n points, 

where 0 $ n $ 8. If the metric is SU(2)-invariant then, as explained earlier, the 

Kihler form is also SU(2)-invariant so the SU(2) action is holomorphic. Hence the 

complex automorphism group of M has a subgroup isomorphic to SL(2,~ ). Using 

the descriptions of the automorphism groups of blowups of IP 2 in Chapter VII of [F] 

we see that n must be less than 3. In fact the blowup of IP 2 at one or two points 

cannot admit any Kihler-Einstein metric [F] as the Lie algebra of the automorphism 

group is not reductive. So M must be isomorphic to IP 2 or IP 1 X IP 1 . 

Now it is a theorem of Matsushima [B],[M] that the Lie algebra of the isometry 

group of a compact Kihler-Einstein space with positive Einstein constant is a compact 

real form of the Lie algebra of the automorphism group. It follows that any such metric 

on IP 2 has isometry group SU(3) (or a finite quotient) so is the symmetric space metric 

(using the classification of compact Einstein four-manifolds with isometry group of 

dimension at least four given in [BB]). Similarly any such metric on IP 1 X IP 1 is the 

standard product metric. 

l.From now on, therefore, we shall just consider the case when the Einstein constant 

is negative. It is clear that by rescaling t, a, b, C we can set A equal to -1, so the 

equations we shall be looking at are 

1 
a' = -a(b2 +c2 

- a2 
) (21)

2 
1

b' = -b(c2 +a2 
- b2 

) (22)
2 
1 

c' = -c(a2 +b2 
- c2 +2a2b2

). (23)
2 

Consider a solution of (21-23), analytic on a maximal interval (~,.,,). It is immediate 

from the equations that if a is zero at any point of (~,.,,) then a is identically zero 

throughout this interval. The corresponding statements also hold for b, c. As we are 

assuming that SU(2) acts with three-dimensional orbits we can exclude this case, so· 
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we can assume that a, b, e are nowhere zero in the interval. The metric will therefore 

be defined on ((, ,,); to check whether it is complete we need to study its behaviour as 

t tends to eand as t tends to ". 

Now our expressions for the metric, as well as the equations, are invariant under 

changes ofsign of a, b or e, 80 we sha.ll take a, b, e to be positive. 

We summarise certain useful properties of the equations below. 

Lemma 5.1 

The critical points of the equations (21-23) are given by 

a =b,e =0 

b = e,a = 0 

a =e,b =o. 

The linearisation about a critical point which is not the origin has one positive, one 

negative and one zero eigenvalue. Hence there is at least one unstable curve for this 

critical point. 

D 

Lemma 5.2 

(ab)' = abe2 

(be)' == bea2(1 + b2) 

(ae)' = aeb2(1 + a2) 
a(.! )' = -(62 _ a2)

b b 
(a2 _ b2)' (a2 _ 62)(e2 _ a2_ 62) 

(a2 _ e2)' (a2 - e2)(62 _ a2 _ e2) _ 2(abe)2. 

D 

It follows that ab, be, ae are increasing on ((,,,). Moreover either a is identica.lly 

equal to b in (e,,,) or else a is never equal to b. In the latter case the symmetry 

11 

between a and b means that we can take a > b. Therefore we can assume from now 

on that a ~ b and hence that b is increasing and t is decreasing. 

We sha.ll now analyse the trajectories of the equations (21-23). Let us first deal 

with the case when the maximal interval is (e,,,) where eis finite. 

Reca.ll that b, ab, be, ae are monotonic increasing, 80 they tend to finite nonnegative 

limits as t tends to e. Now I as eis a singularity of the solu tion we see that a, b, e 

cannot a.ll tend to finite limits at e, so it must be the case that b tends to zero at e. 
a2(i) Assume first that b2 + e2 - is negative at some u. It easily follows from the 

2 2equations that (b2+ e - a2)' is then positive at u. Hence b2+ e - a2 is negative on 

((, u), 80 a is decreasing and e is increasing on (e, u). We deduce that 

a -+ ",b -+ O,e -+ #' as t -+ e. 

Here #' is finite but" may be infinite. 

But eis a singularity of the 8Olution, 80 in fact " =00. Reca.lling that ae tends 

to a finite limit as t tends to e, we see that 

a -+ 00, b -+ 0, e -+ 0 as t -+ e. 

So near ethe equations are approximately 

a' = 
1 3 

-2'a 

b' = !.ba2 
2 

e' = 1
-e(a2+ 2A2)
2 

where A=lim._e ab 

We deduce that 

a ~ (t - e)-~ 

b ~ T1(t - e)1 

e ~ T2(t-e)i 

12 



where Tb T2 are nonzero constants. Substituting into our expression for the metric 

shows that the metric has a singularity at t = e. 
2 2 b2 2a2b2(ii) Now assume instead that e - a - - is positive at some u. It easily 

follows that the derivative of this expression is negative at u, so c2 - a2 - b2 - 2a2b2 

is positive on ({,U). Hence a,b are increasing and c is decreasing on (e,u). Arguing 

as above we find that 

a, b - 0, e - 00 as t -	 e. 
The equations tell us that near t = ewe have 

a ~ TI(t-e)! 

b ~ T2(t - e)! 

e ~ (t-er~ 

for nonzero constants TI, T2. Again this leads to a singular metric. 

(iii) 	The remaining possibility is that 

2 $ b2+ e2 2 $ a2+ b2+ 2a2b2a ,c

on <e,,,). This implies that a, c are increasing so tend to finite limits as t - e. AlsoI 

reca.ll that b - 0 as t - e. So this contradicts the assumption that eis a singularity. 

We summarise the results of this section as follows. 

Proposition 5.3. 

If the maximal interval is (e,,,) where eis finite, then the metric is incomplete. 0 

6. Complete metrics. 

The results above show that we need now only consider solutions to (21-23) defined on 

(-00,,,) We remark that such solutions certainly exist, because the unstable curves of 

critical points of the equations provide examples. 

Consider an arbitrary solution to (21-23) defined on (-00,,,). Now, as b, ab, be, ae 

are increasing on (-00,,,) we see that 

b-AJ,ab-A2,bc-A3,aC-+A4 as t--oo. 

If AJ > 0 then we deduce that a - ~,e - ~ as t - -00. It follows that (a,b,c) 

tends to a critical point as t tends to -00. As we are assuming that the limiting value 

of b is positive, we see from Lemma 5.1 that this point is (q,q,O) for some q > O. 

However Lemma 5.2 shows that i is decreasing and ;:: 1, so this situation only occurs 

if a is identica.lly equal to b. 

Suppose, on the other hand, that AJ = 0, that is, b tends to 0 as t tends to -00. 

Now we can argue as in section 5. We again distinguish three cases. 

Assume b2+e2_a2 is negative at u. Then, as before, we find that a is decreasing 

while b, c are increasing on (-00, u) so 

a -",b - O,e-+,.,. as t -+ -00. 

Here II may be 00 but,.,. is finite. In fact aN is positive so II =00. But ac tends 

to a finite limit, so ,.,. = 0, and 

a - 00, b, c -+ 0 as t -+ -00. 

The equations now show that 


1
a',.., __a3 
- 2 

so in fact a blows up in finite time, giving a contradiction. 

Similar arguments show that if c2 > a2+b2+2a2b2 at some u, then 

a, b - 0, c - 00 as t -+ -00 

and moreover c blows up in finite time. So again we have a contradiction. 

(iii) The remaining possibility is that 
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2 62 + c2 2a ~ ,c ~ a2 + 62 + 2a262, (24) 

These inequalities mean that a, c are monotonic increasing so converge to finite 

limits as t tends to -00. As we know that 6 tends to °it follows that (a, 6, c) 

converges to a critical point of the equations (21)-(23), which must be (9,0,9) for 

some q. If 9 =0, that is, if a, 6, c all converge to °as t tends to -00, then we have 

a,b,c~(-tr\ 

for t large and negative. Hence i tends to 1 as t tends to -00 I and we see that a E 6. 

A direct analysis of the equations with a E 6 shows that we do indeed have a unique 

trajectory with a, c positive and a E b converging to the origin as t tends to -00. 

We have proved the following result. 

Proposition 6.1 

Trajectories of solutions to (21-23) (with a, 6, c ~ °and a ~ 6) defined on (-00,,,) 

are precisely the unstable curves of critical points (9,0,9) or (9,9,0). If the critical 

point is (9,0, q) where q is positive then we have a > 6. Otherwise we have a E b. 0 

Let us now analyse the behaviour as t -+ -00 of the metrics corresponding to such 

trajectories. 

First consider the unstable curve of (9,9,0) where 9 > 0. The metric defined by 

this trajectory will have a E b and hence will be one of the metrics of [GP),[Pd)' 

For t large and negative we have 

a :: 9 

b :: 9 

c :: ke(9'+94 
),. 

The metric is now asymptotically 

q4k2e2('l'+94)'dt2 +92(U~ + u~) + k li e'('l'+'l4)'uf. 

Letting 

1/ = _k_2e(9'+94). 
1 + 9

the metric is asymptotically 

d1/' + 92(U~ + u~) + (1 + 92 
)21/2Uf 

as 1/ tends to zero, and this has a bolt if 1 + 92 is a half-integer (see [GP] for a 

discussion of nuts and bolts). 

It is easy to check that the metric corresponding to a trajectory converging to the 

origin has a nut at t =-00. This is the pseudo-Fubini-Study metric on the open ball 

in Q; 4. 

It can be checked that in the above examples of complete metrics the K a.hler 

structure extends to the manifold obtained by adding in the nut or bolt. 

Moreover, using the form (20) of the metric, it follows that there are no complete­

ness problems for any of the above metrics as t approaches ". We have established 

the following proposition. 

Proposition 6.2 

The complete metrics with a E 6 corespond precisely to the unstable curves of 

critical points (9,9,0) where 1 + q' is a half-integer. 0 

Remark 

This analysis agrees with the discussion of completeness in [Pd). 

Now let us examine the metrics given by unstable curves of (9,0,9) where 9 is 

positive. 

As t tends to -00 we have 

a ~ 9 

b ~ ke9" 

c ~ q 
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for some constant k, so the metric is asymptotically 

q4k2e2t2~dt2 + q2(U~ + un + k2e2t2~u~. 

Putting v =ker~ brings the metric asymptotically into the form 

dv2+ q2(U~ +un + v2u~ 

as 1J -+ 0 I so the metric has a bolt and is nonsingular. 

In fact as we approach the bolt the metric is asymptotic to the Eguchi-Hanson 

metric. Moreover our Kihler form (1 is asymptotic to one of the two-sphere of Kihler 

forms on Eguchi-Hansonj this is not the form corresponding to the complex structure 

on Eguchi-Hanson with respect to which the bolt is a complex submanifold. We deduce 

that our Kahler structure extends over the bolt, but that the bolt is not a complex 

manifold. 

We have seen that as t tends to -00 the metric and Kahler structure are well­

behaved. What happens as t tends to 'I ? 

Recall from Lemma 5.2 that (a2 - c2)' =(a2 - c2)(62 - a2 - c2) - 2(a6c)2, so if 

2 2 2a - c is positive at u, then (a2 - c2)' is negative, so a - c2 is bounded away from 

a2 c2zero on (-00, u). This however, contradicts our earlier result that - tends to 

zero as t tends to -00. So we have shown that a2 ~ c2 • It is clear that we cannot 

have a == c so the metric is tnuil/, that is, no two of a, 6, c are identically equal. 

Recalling that a > 6 we see from the equations that 

6' > !63 

- 2 

so for each, E (-00, 'I) there exists K. such that 

6 ~ (K. - ttl for t ~ 6. 

Hence our solution blows up in finite time and the upper bound 'I of our interval 

is finite. 

Next, reca.ll that Tis decreasing so tends to a finite limit L ~ 1 as t tends to 'I.I 
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We can adapt an argument of [PP] to find the asymptotics of the metric as t -+ 'I. 

If we let r = 2..;;ib the metric becomes 

9 = W-1dr' + !r2(V u~ + V-IU~ + W u~)
4 

where W = ;i and V = i. Remember that ab is strictly increasing so this is an 

allowable change of variables. Moreover r tends to 00 as t tends to 'I. 

Now 

dW dW dt 
= dr dt dr 

= (2 )/(drtl 
ab at2 

= (-=- )/(abt\c-2 
ab 

and after simplifying we arrrive at 

2 b 4dW =-(!+-)+r--W. 
ar r bar 

Now asymptotically i = L and so 


4

dW =~(L+L-l)+r-;W.
dr r 

Therefore the metric is asymptotica.lly 

1
9 = W- 1dr2+ -r2(Vu~ + V-IU~ + WuD 

4 

where 

1 r2 K 
W = -(L+L-1)+- +­

2 6 r" 

for some constant of integration K, and 

V=L. 

Hence the metric is complete. We fina.lly have the theorem. 

18 



~ 

• 

Theorem 6.3 

The trajectories of solutions to (21-23) which give complete metrics with a > b are 

precisely the unstable curves of the critical points (q, 0, q) where q is positive. 0 

We have shown that there are precisely two families of SU(2)-invariant complete 

Kahler-Einstein four-metrics with negative Einstein constant, where the generic SU(2) 

orbit is three-dimensional. One of these families, given by Proposition 6.2, consists of 

the U(2)-invariant metrics of [GP],[Pd]. The other family, given by Theorem 6.3, 

consists of triaxial metrics. 

Jensen (J] has classified the homogeneous four-dimensional Einstein spaces, and 

the only Kahler examples with negative Einstein constant on his list are the pseudo­

Fubini-Study metric on the homogeneous space SU(l,2)/U(2) and the product metric 

on 1f2 x H2. Here H2 denotes hyperbolic 2-space. In the case of pseudo-Fubini-Study 

the only way of embedding SU(2) in the isometry group is via a U(2) embedding, 

so this cannot lead to triaxial metrics. Moreover, the isometry group of W x W 

admits no SU(2) embedding. We deduce that the metrics given in Theorem 6.3 are 

not homogeneous. 

Remark 

We do not know if the equations of Theorem 4.1 describing Kahler-Einstein metrics 

can be solved explicitly. The fact that the metrics will not in general be self-dual. or 

anti-self-dual suggests that this ma.y not be possible. A further indication of this is 

that the equations do not satisfy the strong Painleve property. However neither of 

these points is conclusive, and the solvability or otherwise of the equations remains an 

open question. 
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