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Abstract 

Conditions are formulated under which a representation of an intrinsic C·
algebra of (often quasilocal) observables of an infinite system is appropriate 
to describe measurement-type processes: such a. representation should allow 
for the description of inaccurate experiments, it should be separable, and the 
pointer observable should be in its weak closure. If the pointer values are 
discrete the existence of such a measurement representation can be proved. If 
the pointer can take continuously many values, then the existence can only be 
proved under the additional assumptions of having an asymptotically abeliati 
system or dealing with type I representations. In the constructed measu're
ment representations the pointer observable turns out to be classical. The 
structure of the representation suggests that spontaneous symmetry breaking 
might be a physical explanation of the emergence of the classical pointer. 
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1 Introduction 

The application of the C·-algebraic formalism to the discussion of quantum me

chanical measurement processes was originated by Hepp [ISJ. In this formalism 

superselection rules and classical observables can be described in a natural way. 

The essential feature of Hepp's approach to the measurement problem is the use of 

disjoint final states. 

The virtues of the approach are obvious: due to Hepp's disjointness theorem a 

coherent superposition of different pointer states is always equivalent to an incoher

ent mixture of such states. Therefore, if one is satisfied with a statistical description, 

the projection postulate is not necessary. Furthermore, the central decomposition 

of this mixture into the different disjoint pointer states is unique. This justifies the 

application of the ignorance interpretation of the mixed statistical state in exactly 

the same way as in classical statistical mechanics. 

The vices of the approach are obvious as well: firstly, the emergence of a classical 

pointer observable in a quantum system has to be explained. If this is achieved 

one has to recognise that secondly an automorphic time evolution can only map 

two states of the same folium into disjoint states in infinite time (or, using highly 

singular time-evolutions, instantaneously [IS}). Real measurements, however, take 

finite time. 

Leaving aside these two problems for the moment, the first part of this paper 

examines the relation between the factual inaccuracy of our experiments and the 

classical character of the pointer. In section 2 a notion of finite accuracy for ex

periments is introduced which will be used in the sequel. In section 3 it is shown 

for W·-algebras that, assuming the existence of a pointer observable, an experiment 

can be inaccurate if and only if there exists a classical observable which takes the 

same value as the pointer on all typical final states. Unfortunately this result is not 

satisfactory for the description of continuous pointer observables. 

Section 4 addresses the first major problem, namely the origin of the classical 

character of the pointer. We start from a phenomenological characterisation of mea
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surement situations: one is given a set of typical final states, an interpretative rule 

associating to each of the typical final states a real number (the measurement result), 

and one knows that experiments are inaccurate. The existence of a representation 

which reflects these phenomenological features of measurement situations is proved. 

It turns out that the pointer observable is in the centre of the weak closure of this 

representation. Therefore even if the intrinsic C"-algebra of quasilocal observables 

has trivial centre, there is a classical pointer observable in appropriate reducible rep

resentations. The result of section 4 is, however, not entirely satisfactory because 

the measurement representation constructed there is non-separable if the pointer 

observable has a continuous range of possible values. But it at least implies that the 

typical final states are disjoint. 

In section 5 we suggest a more physical explanation of the origin of the classical 

pointer, namely spontaneous symmetry breaking. In the case of a discrete pointer, 

the pointer observable can be shown to arise from the breaking of an abstract sym

metry relabelling the different folia of the typical final states. The crucial point here 

is that the abstract symmetry of permutation of certain sets of folia is equivalent to a 

physical symmetry, the breaking of which gives rise to the classical observable which 

distinguishes the sets of folia. In the case of a continuous range of pointer values 

the same can be shown only under some additional assumptions, for example having 

an asymptotic abelian system, or dealing only with type I representations. Under 

either of these assumptions, the resulting representation overcomes the difficulties 

with the description of continuous pointers clouding the previous results. In general, 

without either of these assumptions, it is not clear under which circumstances the 

spontaneous breaking of a continuous symmetry (in a representation whose weak 

closure has separable predual) generates a classical observable. The question which 

physical symmetry corresponds to the abstract symmetry can only be answered case 

by case. 

In the outlook attention is drawn to the fact that long-range interactions might 

indicate an answer to both major problems related to the use of a classical pointer. 

Firstly, under a non-automorphic time evolution states of the same folium may evolve 
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in finite time into disjoint ones. This suggestion [17) is fundamentally different from 

attempts to deduce the non-automorphic character of the time evolution from the 

influence of the environment. Secondly, long-range interactions can be a physical 

reason for spontaneous symmetry breaking and thus provide a mechanism for the 

generation of a classical pointer in an apparatus described by quantum theory. 

2 Inaccurate experiments 

In this section we describe two ways in which experiments can be inaccurate, and 

then abstract from the examples a notion of inaccuracy which we think fits most 

realistic experiments. 

First example: consider the case where a digital pointer is used to measure a 

quantity A with continuous spectrum. After the experiment we register one number 

k out of a discrete set K as result, but say that the actual value of A might be in 

the interval [A; - £, k+£1. There is a state "'i in which A really has the dispersionfree 

value k. ("'i is not normal if A is represented on a separable Hilbert space, because 

it is a pure state in which a quantity with continuous spectrum has a dispersionfree 

value.) But all the states in which A has a value in [k - £, k + £} would as well have 

led us to register the result k. So aJIstates '" in UA,~("'i) := {'" : I",(A)- "'i(A)1 < £} 

lead to the pointer reading k. UA,~( "'i) contains the set of states '" with II'" - "'ill := 

sUPB ''''i(B) - ",(B)IIIIBII < £, where the supremum is over all observables B. A 

fortiori all states", with II'" - "'ill < £ lead to the pointer reading A;. 

It may seem that, if we are restricting ourselves to pure final states, this kind of 

inaccuracy is excluded when we are measuring a discrete quantity where the value A; 

is isolated by more than £ from the other possible results. This can for example be the 

case if we measure the spin of a particle in a given direction z. Still-and this is the 

second example-a Stern-Gerlach experiment can be inaccurate in the following way: 

The counter registers particles leaving a magnetic field whose direction might deviate 

by a small angle from z. Therefore these particles give rise to the same pointer 

reading as particles with spin in z. Primas [25J described such a kind of inaccuracy 

by a finite partition of the Hilbert 8pace on which the measured observable operates. 
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(Note also that such an inaccurate Stern-Gerlach experiment can only be described 

by a positive-operator valued measure, but not by a projection valued measure.) 

This example displays an aspect of a more general phenomenon: ignorance about the 

measured observable leads to ignorance about the final state of the observed system 

(the former ignorance may originate in the ambiguities inherent in quantization 

theory: which operator represents the quantization of a given classical observable?). 

It should be emphasised that this kind of inaccuracy can occur even if the pointer 

has a continuous range of possible values. 

These examples lead to the following notion of inaccuracy. There are some 

"typical" final states ""1:, in which the quantity we want to measure really has the 

value k. After an inaccurate experiment, however, all states in a sufficiently small 

~-neighbourhood of one ""I: give rise to the same pointer reading as ""I:. 

Let us try to formulate this notion' of inaccuracy in a more general framework. 

In a statistical description one assumes that the observables of the measured system 

and of the apparatus generate W*-algebras As, AM respectively. Let PI: be the state 

of the joint system after an experiment which leaves the system in the state pl:l,. 

(The states PI: I, are what was called ""I: above.) K is an index set for the typical final 

states; in the example of a Stern-Gerlach experiment on a spin 1/2 particle it would 

be a set with two elements. The typical final states PI: are assumed to be normal and 

factorial. Furthermore,. assume that there is one observable P E As®AM specified 

which associates the measurement results PI:(P) to the typical final states PI:; this 

is the pointer observable. 

Finite measurement accuracy (FMA): There exi818 a 6 > 0 and a non

empty family {Pl:heK of normal factor 8tate8 of the joint 8ydem, 8uch that the 

pointer oburvable P has the 8ame expectation value in all factor 8tate8 P of the 

joint 8ydem 8ati8fying lip - PI:U < 6 for 80me k. 

Note that this notion of inaccurcy is a modification of the one used in [9]. The 

above formulation of (FMA) is appropriate for a statistical descrription. It is also 

possible to give a formulation suitable for an individual description. Then As. AM 

are taken to be C*-algebras and the states PI: should be pure. Such a formulation 
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of (FMA) will be used in section 4. 

3 	 The main result for W·-algebras 

The following proposition starts from a given observable P E As®AM I which is 

interpreted as the pointer observable. It shows that (the W*-algebraic version of) 

FMA can be fulfilled if and only if As®AM has non-trivial centre and a classical 

observable P E Z(As®AM) yields the same pointer reading as P for the typical final 

states. The typical final states cannot distinguish between P and P. Furthermore 

it shows that then the typical final states are disjoint. 

The drawback of the proposition is that as long as the typical final states PI: are 

assumed to be normal there cannot be a continuous observable on which they take 

different dispersionfree values. Therefore, this pure W*-framework is not suitable 

for the description of a continuous pointer observable, except perhaps in Piron's 

approach (24) which always uses a discrete topology but can represent "continu

ous"observables only on non-separable Hilbert spaces. 

Proposition 1 Let As,AM be W* -algebnu and {PI: heK be a 8et of normal 

factor datu on As®AM' Let P E As®AM' 

(A) 	Auuming that for a/l Z E Z(As®AM) there i8 a Pi with Pi(Z) 1:- 0, (FMA) 

can be fulfilled if and only if the pointer ob8ervable P E Z(As®AM)' 

(B) 	(FMA) can be fulfilled if and only if there i8 an ob8ervable P lie8 in Z(As®AM) 

with PI:(P) = Pi(P), Vk E K. In thi8 ca8e the 8tate8 {PiheK are mutually 

di8joint becaU8e for i 1:- k and aPE Z(As®AM), PII(P) 1:- P.(P). 

Proof of (A): Denote by 1rp~ (As®AM) the GNS-representation with respect to 

the state PI: of As®AM on the Hilbert space ?l't. where there is a cyclic vector O,t 

such that Pi(A) =< OPt !1rpt(A)IOpl > for all A E As®AM' 

Step 1: We show that (liEf( ker1r,~ ={o}. 

Take A E (lief( ker 1rpt . First of all we observe that A cannot be in Z(As®AM): 

If A were in Z(As®AM), then there would be a PI: with pl:(A) 1:- 0 and therefore 

A rt. 	 ker 1rpl · 
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Since the states PI: are normal, nl:EK ker 11'Pc is a weakly closed two-sided ideal 

of As®AM. It follows that there is a projection Q e Z(As®AM) such that 

nl:EK ker1l'pl = Q(As®AM)Q (see [8], proposition 2.4.22). So nl:EK ker 1I'Pc ¢ {O} 

would imply that nl:EK ker1l'pc n Z(As®AM) ¢ {OJ. But since there is no central 

element in nl:EK ker1I'Pc' nl:EK ker1l'pc == {OJ. 

Step 2: P fJ. Z(As®AM) implies (V6)(3k e K)(3p factorial) : lip - pl:lI < 6, 

pep) ¢ PI:(P). 

P fJ. Z(As®AM) implies that there exists aBe As0AM such that [P, B] ¢ O. 

From the first step it follows that there is a k with 1I'pc([P,BJ) ¢ O. So 1I'pt(P) fJ. 

Z(1I'Pc(As®AM»' Since 1I'Pc(As®AM) is a factor, 1I'Pl(P) cannot be constant. Take 

any vector state 'I/l e Hpc with < 'I/l11l'Pc(P)I'I/l >¢ < OPt 11I'pt(P)IOpc >= PI:(P). 

Define 'I/la := aOpc + (1 - a)'I/l for 0 < a < 1. Take Pa(A) :=< 'I/laI1l'pc{A)I'I/la > 
for all A e As®AM' Now it can be checked that all Pa are pure ( and therefore 

factorial) states satisfying Pa(P) ¢ PI:(P). If we choose a close enough to one, then 

I/Pa - pl:lI < 6. 

Step 3: P e Z( As®AM ) implies (36)(Vk e K)(VPfactorial) : lip - PI:" < 6 => 
pep) == PI:(P). 

Take 6 < infi#IIp. - pl:lI/2 < 2 and let P be a pure state with lip - pl:lI < 6 < 2 

for some k. From [13] it follows that the representations 1I'p and 1I'Pc are quasi

equivalent. All classical observables have the same value in the states P and PI:. so 

pep) =PI:(P). 

Proof of (B): 

The family {PI:}..EK defines a two-sided ideal Ie As0AM by 

I:= {Alpl:(B'"AC) == O,VB,C e As'®AM,Vk e K} = nl: EK ker1l'pt. There 

exists central projection Q e As,®AM such that I =(As®AM)Q =Q(As®AM)Q. 

As'®AM can be written as As'®AM == (As,®AM)(l-Q)$(As®AM)Q =: A 1$A2. 

Since for every Z' e Z(AJ) there is a PI: with pl:(Z') ¢ 0, we have nl:EK ker 1I'pt(Al $ 

0) = {OJ. Every observable A e As®AM can be written as A = A' $ A" with 

A' e AI, A" e A 2 ; every state Pon As,®AM as P= p' + p". 

As nl:EK ker1l'pc(A l $0) ={OJ. everything now follows from the proof of (A): If 
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there is aPe Z{As'®AM) with (Vk e K) : PI:(P) = plp), then all factor states 

P with lip - pl:lI < 6 satisfy pCP' $ 0) = p'(P') = pill") = PI:(P' $ 0). So FMA is 

satisfied for the pointer observable p'$0 =: P. If there is no P e Z(As®AM) with 

(Vk e K) : PI:(P) =PI:(P), then P' fJ. Z{Ad. From the second step of the proof of 

(A) it follows that (V6){3k e K)(3p' factor state on At) : liP' - pill < 6 but pi(P') ¢ 

p'(PI 
). Taking p:= p' + p~ it follows that lip - pl:lI < 6 but pep) ¢ PI:(P), 

4 The measurement representation 

Proposition 1 uses a pure W'"-framework and is tailored for a statistical description. 

The assumption that the typical final states are normal is sensible in a statistical 

description because otherwise these states would not be D'-additive and therefore 

would not induce probabiblity measures. 

A C'"-algebraic version of Propostition 1 meets two difficulties: Firstly, the as

sumption that the typical final states PI: are normal cannot be justified. In fact 

normality is not a very natural concept for states on general C'".algebras. There

fore, the C'"-framework is not suitable for a statistical description but rather for an 

individual one [25]. In an individual description it is justified to assume the typi

cal final states to be pure. Secondly, the basic C'"-algebra of quasilocal observables 

usually has trivial centre so that we do not have any classical observables. In this 

section we try to weld together these two problems and give a C'".algebraic version 

of Proposition 1. 

As a C'"-analogue of Proposition lone could show the following. 

Let {Pl:hEK he a family of pure IIates on a C" -algebra As ® AM. This family 

defines a two·,ided ideal I hy 

I:= {A e As ®AM : pl:(B'"AC) = 0 forallk e K, for all B,C e As ®AM}. 

Then (FMA) can he satisfied if and only if there exists an observable P e Z(As ® AM/I) 

such that PI:(P) = PI:(P) for all k e K. 

We will not prove this proposition because it is not very useful. The algebra of 
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quasilocal observables usually has trivial centre and is simple. Since it has trivial 

centre we cannot find a classical pointer observable in it. Since it is simple the 

ideal I defined by the {P'}'EK is the nuil-ideal, so Z(As ® AM/I) is again trivial. 

Therefore in most quantum theories the above proposition is empty. 

This brings our attention to a fundamental problem rooted in the use of a classical 

pointer observable: how does a classical observable arise in a quantum system? 

Usually the algebra of quasilocal observables is simple. Classical observables are 

often only in the weak closure of a particular representation appropriate to describe 

the particular situation under consideration. In the same way. the pointer observable 

will usually not be an element of the basic C"-algebra As ® AM. Rather it will 

occur in the weak closure of a representation appropriate to describe measurement 

situations. The main goal is to find such a representation. 

Phenomenology of measurement situations. First of all let us describe the 

typical features of realistic measurement situations. The basic C·-algebra As ® AM 

generated by the local observables of the joint system is given. Furthermore, we have 

a family {P,hEK of typical final states. In an individual description we will require 

them to be pure. There is a pointer value functional p on the states (so p is an 

element of the bidual (As ® AM)*'") which has different values on the typical final 

states. Furthermore, we know that realistic measurements are inaccurate in the way 

described in section 2: there is a 6 > 0 such that for all pure states P on As ® AM 

we have lip - p,1I < 6 for some k ~< p, p, >=< p, P > . 

The existence of a representation describing this situation is guaranteed by the 

following 

Proposition 2 Let As ® AM be the 8imple C" -algebra of ohervablu oj the 

joint 8Y8tem, ® denoting the minimal •·ten80r product. Auume that we have a 

8et {PllhEK oj pure typical final 8iate8 on As ® AM and a pointer functional p E 

(As ® AM)'"'" on the 8tate8 8uch that FMA ;8 fulfilled: 

(36 > O)(Vp pure states) : lip - PIlII < 6 for some k ~< P. p, >=< p, P > 
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Then there i8 a repre8entat;on 'lI'0 oj As ® AM 8uch that the 8tate8 p, can be ex

tended to normal 8tate8 p, ~n 'lI'o(As ® AM )", and that there ;8 an ob8ervable P E 

'lI'(As ® AM)" with ;5i(P) =< p, PI: > Jor all k. Furthermore, P ;8 in the centre of 

'lI'o(As ® AM)" and therefore ciauical. The 8tatu PI: (a8 wella8 the Pt) are mutually 

di8joint, becau8e Pl(P) =< Pl,P >'1 p;(P) =< Pi,P > Jor i 'I k. 

Proof: Embed As ® AM canonically into its enveloping von Neumann algebra 

B, which is the weak closure of its universal representation. As a Banach space 8 

is isomorphic to the bidual (As ® AM)*'"' To this imbedding there corresponds an 

isometric isomorphism of (As ® AM)'" onto the predual of 8, associating to each 

state P on As ® AM a normal state p on 8. Since the states PI: on As ® AM 

are pure, the W'".algebraic version of FMA is satisfied for the pointer functional p 

and the typical final states Pi. From Proposition I, (B), it follows that there is a 

central projection Q E Z(B) such that Z(QB) contains an observable P on which 

the restrictions of the Pi take the same values as the pointer functional P does on 

the Pl. 'lI'0 now is the subrepresentation of the universal representation specified by 

'lI'o(As ® AM)" = QB. Since As ® AM is simple it is isomorphic to 'lI'o(As ® AM)' 

'lI'0 satisfies the conditions we mentioned in the proposition: the states Pl. extend to 

states Pl which are defined by Pl(QA) = Pi(A), A E B, the pointer observable Pis 

in 'lI'o(As ® AM)" and fulfils Pi(P) =< p, p, >. and FMA is satisfied. 

Remarks. (1) Even if As ® AM has a trivial centre, (As ® AM)'"· does not if 

As ® AM has disjoint representations. This is for example the case if As ® AM is 

the C·-algebra of quasilocal observables in a field theory. 

(2) Knowing from experimental experience that measurements are inaccurate, the 

proposition guarantees the existence of a representation which can describe this sit

uation. It turns out that in such a representation the pointer observable is classical. 

Proposition 2 is not satisfactory because from a physical point of view it would 

have been justified to require the representation 'lI' to be separable. Proposition 2 

does not prove the existence of a separable representation fulfilling all the other 

requirements. If the pointer functional has a continuous range of possible values, 
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then the representation 1('0 is surely not separable. Another drawback of Proposition 

2 is that the states p" are normal. This is not what is needed in the case of a 

continuous pointer observable, because normal states cannot take a dispersionfree 

value on an observable with continuous spectrum. The consequence of Proposition 

2 primarily used in the sequel is that the typical final states PI: are disjoint. 

So neither Proposition 1 nor Proposition 2 can offer a satisfactory description 

of a continuous pointer. Proposition 1 had to assume the normality of the typical 

final states, which is a condition that cannot be satisfied for a continuous pointer 

observable. The C·-algebraic version of FMA cannot be satisfied if the C·-algebra of 

quasilocal observables has trivial centre. Trying to satisfy FMA in a particular rep

resentation (in which the typical final states should be normal) led to non-separable 

representations. In the following section we will blend the purely W·-algebraic 

and the purely C·-algebraic formulation of FMA and will arrive-under some ad

ditional assumptions-at a measurement representation satisfying the following re

quirements: (1) FMA is satisfied, (2) the representation is separable, (3) there exists 

a pointer observable in the weak closure of the representation which takes the same 

values as the pointer functional on the typical final states. 

Proposition 2 will imply that the pointer observable is classical and that the 

typical final states are disjoint. The typical final states will not be normal on the 

weak closure of the representation, but their singular character will become apparent 

only on the centre of the representation. 

Symmetry Breaking 

In many physical examples spontaneous symmetry breaking is linked to the emer

gence of a classical observable. For example, the two-dimensional infinitely extended 

Ising model below the critical temperature has degenerate and disjoint ground states, 

which break the original rotation symmetry of the Hamiltonian, This leads to the 

emergence of magnetisation as a classical observable of a ferromagnet. Chirality 

as a classical observable of molecules in optically active substances amounts to a 

breakdown of the space inversion symmetry possessed by the hamiltonian. (A rig
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orous discussion of chirality is still missing, but some features have been sketched, 

see [23, 2, 26}.) 

A group () is said to be a symmetry group of a C·-algebra (or a W·-algebra) 

A if there is a representation of () as a pointwise norm-continuous3 (or a o--weakly 

continuous) automorphism group of the algebra. A symmetry f3 : () -+ Aut(A) is 

said to be broken in a representation ,- if the representation 1(' 0 f3 is not equivalent 

to 1('. Equivalently, a symmetry f3 is broken in a representation 1(' if there is no 

automorphism (j of the generated von Neumann algebra 1('(A)" such that 1('of3 ={jo 

1('." Accordingly, if '-, is a GNS-representation with respect to a factor state p, then 

the symmetry f3 is spontaneously broken iff p is not invariant under f3. (Note that 

there is an alternative definition of symmetry breaking which requires in addition to 

the above also that a classical observable is generated. But since the question when 

the above implies the generation of a classical observable is very interesting in the 

case of a continuous symmetry group, we will stick to our definition.) 

In this section we want to suggest a way in which the pointer observable can be 

considered to be arising from spontaneous symmetry breaking. The starting point 

is the abstract C·-algebra As ® AM and the set {P,heK of pure typical final states. 

From Proposition 2 we know that the p" are mutually disjoint if the described 

experiment is of finite accuracy. Assume also that the Hilbert spaces ?i't of the 

GNS-representations 1('" are all isomorphic to a Hilbert space ?i,. 

Let us first consider the case in which the set {P"heK of typical final states is 

discrete. Consider the direct sum '-4 := EfeK '-'l of disjoint factor representations 

(d stands for discrete) which operates on the Hilbert space ?ill =EfeK ?i,.. The 

3Even though the requirement of pointwise norm-continuity is weaker than norm-continuity, it 
is not fulAlIed for many bosonic sYltems, tee [3). 

"In the traditional (non-algebraic) formulation of quantum field theoriel, Ipontaneoussymmetry 
breaking is said to occur if the "formal" charge Q(zo) .. fR' dxio(z) associated with a conserved 
current j,. does not exist 8.11 an operator and therefore cannot not be the generator of a symmetry, 
i.e or a unitary group or transformation generated by a self· adjoint operator commuting with the 
momentum operator and the S·matrix. The algebraic and the traditional definition are not in a 
straightforward relation, but they are connected by the idea that in the representation speciAed 
by a vacuum or the traditional theory there is no automorphism group although the existence of 
a conserved current suggests a certain symmetry of the hamiltonian, For a review of spontaneous 
and intrinsic symmetry breaking in the traditional formalism see [221, and for a discussion in the 
algebraic framework cf. [29, 10). 
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centre Z(1I'1II(A)") contains exactly the diagonal operators of the form EieK Ai1i. 

This centre can be considered to be arising from the breaking of the following 

"abstract" symmetry. If K is infinite (but still discrete), assume K to be the set of 

integers and take the symmetry group {} ={Gi : k E K} to be the one generated 

by the shifts k' : k 1-+ k - k'. If K is finite, a similar constrcuction works by 

imposing a periodicity condition on K. The direct sum representation 1r4 is stable 

under the permutation or shifts of indices, but each representation 1rPi is not stable. 

The symmetry is broken in each of the states Pi. The centre Z(1rIll (A),,) can be 

considered arising from the breaking of a symmetry associated to a relabelling of the 

folia. Note that 11'4 is a representation satisfying all the conditions for a measurement 

representation mentioned at the end of section 4. In particular 11'4 is separable as 

long as the factor representations 1rPi are separable. Therefore, in the case of a 

discrete'pointer, 1r4 is really a satisfactory measurement representation. This is not 

remarkable since Propositions 1 and 2 already give satisfactory results for the case 

of a discrete pointer. 

Let us hasten to emphasise that these considerations are empty as long as it is 

not dear which physical symmetry corresponds to the relabelling of the folia. The 

crucial point here is that the abstract symmetry of permutation of certain sets of folia 

is equivalent to a physical symmetry the breaking of which gives rise to the classical 

observable which distinguishes the sets of folia. In some special cases it is easy 

to find the corresponding physical symmetry: the two-valued classical observable 

chirality arises from a breaking of space inversion symmetry. This corresponds to a 

permutation of the two sectors containing left- and right-handed states respectively. 

In general, the symmetry group {} acts transitively on the set of folia defined by 

the disjoint final states of a measurement; this set may differ from {} if part of the 

symmetry is unbroken. 

It is perhaps worth relating this situation to spontaneous symmetry breaking in 

quantum field theories. The essential point there is whether the vacuum (or ground) 

state breaks the symmetry. The typical final states correspond not to the different 

ground states, but rather to "cattering "'ate", Scattering states in Hilbert spaces 
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built from different ground states are disjoint. The similarity of scattering states 

and final states is one of the basic ideas in Hepp's paper and from his point of view 

makes the infinite time limit seem natural. 

Note that in quantum field theories the analogue of the physical symmetry bro

ken in a measurement-type situation is a spatial symmetry, not an internal one. 

The disjoint vacua occurring in the spontaneous breaking of an internal symmetry 

would not have a counterpart in measurement-type situations: because of the oc

currence of different vacua in a system with broken internal symmetry we have a 

broken symmetry even if we remove all particles from the system. But if we were 

to remove all particles from the apparatus the symmetry would not be broken any 

more. Similarily, if in a system with a broken spatial symmetry, for example in an 

infinite spin chain, one removes all the particles, then in the ground state at which 

one arrives the symmetry is not broken any more. 

Before proceeding to the case of a continuous pointer observable, let us come back 

to one of the drawbacks of Proposition 2. The extended states Pi constructed there 

were normaL This is fine in the case of a discrete pointer, but not for a continuous 

pointer: the points in the continuous phase space M of a classical system do not 

correspond to normal states on L(lQ(M). So a representation can only be appropriate 

for the description of an experiment with continuous pointer if the states Pi can be 

extended to states which are not normal on the centre of the representation. 

In the discrete case the direct sum representation has the functions on the discrete 

set K as the centre. The representation is isomorphic to the tensor-product of this 

centre with a factor 11'Pl' In the case of a continuous pointer we will expect something 

similar, except that the commutative part of the representation will correspond to 

functions on a continuous configuration space. In this case the states Pi will not 

be extendable to normal states on the representation. The singular character of 

the extensions is, however, of a harmless kind. Only their restrictions to the the 

commutative part are singular, on the factor they are normal. (It would be much 

worse to have a singular state on a type II or III factor, since these states do not 
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fulfil the Jauch-Piron condition [4].) 

We now try to construct a representation appropriate for a continuous pointer 

observable. As in the case of the discrete pointer, the configuration space of the 

pointer observable should determine the choice of the representation: in the end 

the centre of the representation should be isomorphic to a space of functions on the 

configuration space of the pointer. 

For a continuous pointer the index set K of typical final states contains contin

uously many elements, so we may assume it to be the real line R. Taking p. to be a 

probability measure on the real line, for example dp.(k) ='tr- l / 2 exp(-k2)dk, define 

WI := fR dp.(k)p,. Then 

'tr... =f: dp.(k)'trPl 

is the direct integral of the mutually disjoint factor representation 'lfp". 

Define Uf on the space Co(R, 'Hp) of continuous functions from R to 'Hp vanishing 

at infinity by (Uf lJI)(k) := exp(kt - t2/2)lJI(k - t). Since Co(R, 'Hp) is a dense 

subset of 'H... = f:' dp.(k)'HPI Uf can be extended continuously to all of 'Hw. The 

automorphism group Tf on the von Neumann algebra 'tr...(As ® AM)" is defined by 

(TcA)lJI := UfAU:lJI. As in the discrete case, the states p, are not invariant unter 

Uf and so the symmetry cannot be implemented unitarily in 'lfp,,(As ® AM)". The 

symmetry Tf is broken in each of the factor states Pi· 

Under which conditions does this symmetry breaking generate a continuous clas

sical observable? Certainly not in general, because in contradistinction to the dis

crete case the diagonal operators (that is, those of the form f:' dp.(k)f(k)l,) are not 

necessarily in the weak closure of the direct integral representation 'lfw (although 

in the example above they are, for reasons to become clear shortly). There are 

cases known in which the direct integral of disjoint factor representations has trivial 

centre (see [7J). This phenomenon is also exhibited in the relatively transparent 

context of group representation theory [18J. Dixmier [u) even showed that for ev

ery non-type I C*-algebra there is a factor representation which can be decomposed 

into non-factorial representations. So the direct integral of disjoint representations 

15 

with non-trivial centre may have trivial centre. In such cases the breaking of the 

symmetry does not give rise to a classical observable. But under some additional 

assumptions the centre of the direct integral representation 'trw can shown to be 

non-trivial. 

Firstly, this is the case if 'trw(.As ® AM)" is of type I or III (14): If the direct 

integral over irreducible ( or type I II) and mutually di,joint repruentation, of a 

C" -algebra ;, again of type I (re,p. I II), then the centre of the direct integral repre

,entation ;, non-trivial. (Conversely, the components in a direct integral decompo

sition of a von Neumann algebra of type A which contains the diagonal operators, is 

again of type A (A =I, Ill; in fact this converse holds for A = Ilool Ill) as well.) 

In our special case one can give a simple argument to show that Z( 1'..,(As ® AM )") ~ 

LCQ(R) if 'trw(As ®AM }" is oftype I. If 1'..,(As ® AM)" is of type I then it is quasi

equivalent to a multiplicity-free representation ([12}, 5.4.6). As the 1',. in the integral 

'trw are mutually disjoint and irreducible representations, 'tr.., is itself multipicity-free. 

Therefore ([12], 5.4.4) the commutant 'tr..,(As ® AM)' is abelian and the composi

tion of 'trial into irreducible representations is unique (see [8), Theorem 4.2.3). Since 

'trw(As ® AM)' is abelian every primary representation is irreducible, so we have a 

unique decomposition into primary representations as well. Making this decompo

sition in our special case of an integral representation over the real line, one sees 

that 'trw(As ® AM)' ~ LOO(R). Since the commutant is abelian it equals the centre. 

Thus Z('trw(As ® AM)") 5'!! LOO(R). 

If the direct integral representation 'trw(As ® AM)" is not of type I, then it may 

be misbehaved. In case 1r1al(As ® AM)" is of types II or III the above argument that 

the centre is not trivial breaks down. The commutant of such representations cannot 

be abelian since the commutant is always of the same type as the representation 

and abelian von Neumann algebras are of type I. 

Under the assumption that 'tr...(As ® AM)" is of type I, this representation is 

indeed appropriate for the descriptions of measurements with continuous pointer. 

Besides fulfilling the conditions on a measurement representation in section 4, the 
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extensions of the states PI: are singular on the centre LOO(R). Since V!(R, p) is 

separable, ?f"" = I: dp(k)?fpt is separable if the ?fPt are. Furthermore, if the repre

sentations ?rPl are separable, then the direct integral representation ?r"" is separable. 

But the assumption that the direct integral representation is of type I is very strong. 

In many applications to thermodynamics or field theories one deals with factors of 

type III. 

Secondly, one can obtain by integration over disjoint factors a non-trivial centre 

if the system is asymptotically abelian. More precisely, it may be shown [1] that if 

the system is tl.lymptoticaily abelian in the norm topology 

(limlql_ooll[0lql(A), B1I1 = 0, where a : R3 - Aut(As ® AM) is the representation of 

the group R3 of space translations), and if there is a space-translation invariant state 

,p, and if the action of the symmetry group commutes with the space translations, 

then the centre of the direct integral representation obtained from averaging the 

factor ?r; over the symmetry group y/ll is isomorphic to the abelian von Neumann 

algebra LOO(y /?f). (Here 11 is the subgroup of y leaving ,p invariant.) We have 

?r.... (As ® AM)" !:!! LOO(y/11) ® ?r;{As ® AM )". 

The assumption of asymptotic abelianess is essential in the proof of this result. 

This assumption is widely used in quantum statistical mechanics but still lacks a 

good motivation. It is fulfilled for systems of free fermions, but for more realistic 

systems with interactions even weaker forms of asymptotic abelianess have not been 

proved. 

To summarise, the main problem in generating continuous classical observables 

by spontaneous symmetry breaking is the question under which conditions the di

reet integral of disjoint factor representations is not a factor. Two cases in which 

this is guaranteed rely on the assumptions of having a type I representation or an 

asymptotic abelian system. Under either of these assumptions, and if the factor 

representations ?rPt are separable, the direct integral representation ?r,., is indeed 

a representation satisfying all requirements for measurement representation with a 

continuous pointer. A complete answer to the above question would also suggest 
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conditions under which the breaking of a continuous symmetry fails to produce a 

superselection rule. 

6 Conclusions and Outlook 

There are two major problems concerning the use of a classical pointer observable 

in quantum measurements. The emergence of a classical pointer observable in a 

quantum system has to be explained, and a non-automorphic time evolution of the 

joint system has to be derived if the final pointer states should be reached in finite 

time. It seems possible that long-range interactions are one possible key to the 

solution of both problems: they could explain the emergence of classical observables 

and lead to the right time evolution. 

Under a non-automorphic time evolution states of the same folium may evolve 

in finite time into disjoint ones (15, 17J. In the presence of long-range interactions 

observables at infinity are not constant in the course of time. As Morchio and 

Strocchi [19] show, this prevents the definition of an automorphic time evolution on 

the intrinsic C·-algebra of quasilocal observables. An algebraic, automorphic time 

evolution can only be defined in the weak closure of some representation with non

trivial centre. Since the algebra of quasilocal observables is not stable under this 

time evolution, states can evolve from one folium into another in finite time. This 

motivation of the non-automorphic character of the time evolution is fundamentally 

different from attempts to deduce it from the influence of the environment, because 

it even applies to isolated, closed system which include the "environment". It fol

lows from a theorem of Shultz [28] that if the time evolution of the algebra is not 

automorphic, then either (i) the corresponding Schrodinger evolution is not a group 

of bijections of the set of pure states, or (ii) the corresponding Schrodinger-picture 

evolution is a group of bijections, but the bijections are not uniformly continuous. 

In an individual description it would be desirable to have the second alternative. 

Long-range interactions as for example the Coulomb force are omnipresent in 

nature. Not only do they give rise to non-automorphic time evolutions, they also 

are one possible physical reasons for spontaneous symmetry breaking [27, 19]. (Note 
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that this situation is different from what is usually described by the Goldstone the

orem, where spontaneous symmetry breaking is a reason for long-range correlations: 

symmetry breaking in the presence of ,hort-range interactions generates massless 

Goldstone bosons which give rise to long-range correlations in a theory where orig

inaly just short-range ones were present.) 

The desired features are exhibited in the general class of lattice models with 

mean-field interaction described by Hepp and Lieb 116), Rieckers 127]. Bona 15, 6] 

and Unnerstall [30). In [27) the connection of symmetry breaking with the emergence 

of classical observables in the model was pointed out. The terms subtracted from the 

microscopic hamiltonian in order to arrive ata reduced thermodynamic description 

(with temperature, chemical potential and other macroscopic contact variables fixed) 

generate an internal symmetry group acting automorphically on the algebra A of 

quasilocal observables. Classical structures now arise if this symmetry is broken in 

a grand canonical equilibrium state, and these classical structures are the same in 

all the representations of different temperatures where the symmetry is broken. The 

time evolution of the algebra of classical observables was described in [5). There 

it is shown that if a symmetry group Q of the quasilocal algebra is a Lie group, 

then the observables of the corresponding classical system N are global means of 

the generators of the unitary representation of Q. The corresponding phase space is 

the dual space of the Lie algebra of Q and the time evolution of the classical system 

is described by a Poisson flow on this phase space. Conversely, a time evolution 

of A ® N is determined by any norm continuous unitary representation of (i and 

by a differentiable real function (the Hamiltonian function) on phase space. The 

quasilocal algebra A is not invariant under the dynamics; an automorphic time 

evolution can only be defined if the classical observables are added to A, as pointed 

out for long-range interactions in general by 119]. 

Note also that the generalised Goldstone bosons generated by spontaneous symmtery 

breaking in the presence of long-range interactions are quasi-particles with non

vanishing mass (19). For fixed momentum k the energy spectrum consists of a pure 

point spectrum (plus possibly a continuous background). If the system is asymp
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totically abelian, then the algebra at infinity is abelian. The quasi-particles are the 

classical system described by the variables at infinity. In a measurement situation, 

this classical system can serve as an apparatus. Examples for this kind of quasi

particles are the the Cooper pairs emerging in the BCS-model of superconductivity 

[20] or the plasmons occuring in a Coulomb Fermi gas with uniform background 

(21). 
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