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ABSTRACT 


\Ve present a model of electroweak interactions which shows spontaneous symmetry 


breaking without involving an additional scalar field. In this model, the Higgs- and 


Yukawa- sectors of the Glashow-Weinberg standard model are replaced by a non-local 


interaction term, constructed from gauge-invariant strings. This interaction term may 


be understood as an implementation of Gauss' law in a local quantum field theory 


describing charged scattering states. Then the origin of the plethora of parameters 


in the standard model becomes obvious. The starting point of our proposal is the 


assumption that elements which lie in the weak closure of the electroweak field algebra, 


can get involved in the dynamical description of electroweak interactions. To motivate 


this assumption, we recall Haag's analysis of the Bardeen-Cooper-SchriefFer model of 


superconductivity as well as a recent work which relates the vacuum expectation value ) 

of the Higgs field to an element of the weak dosure of the field algebra. *,."': 
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In a companion paper, hereafter referred to as [1], we have shown that the vacuum 

expectation value of a bounded operator 4>(1) which is charged like the Higgs field. may 

be understood as the expectation value of an element of the center of the field algebra. 

More precisely, we considered the quantity 

.. . 14>(1) =hmo-+oo 10 Ifo.r:rOz (4)(1)) , (0.1) 

where Oz denotes the space-time translation automorphism, I 0 I is the volume of 

the bounded space-time region 0, and the set of elements 4>(1) form a local field 

algebra A(O), defined for all functions / E S(R') with compact support in the space­

time region O. Here A is the set-theoretic union UoA(O) of all local algebras A(O) 

together with its norm closure and the complete field algebra Ac contains the gauge­

dependent matter fields ¢(I) as well as all other local bounded fields of the theory 

under consideration. It has been shown in [1] that #/) commutes with all elements 

of the algebra Ac. Furthermore. 4>(1) lies in the bicommutant n-(Ac)" for a class of 

direct integral representations which correspond to the usual path integral formulations. 

Indeed, for the direct integral representations ('H, n-) of the algebra Ac on the Hilbert 

space'H with 

(0.2)11. =J~dp(~)1I." 

w 	 (0.3)J~d,,(~)W', 
and the cyclic translatioually invariant (vacuum) state 

oj. 	 (0.4)=J~dp(~)I/>(~). 
it has been shown that (11 

&<b(l) fEB 	 (0.5)A dp(A}(W(A), n-,,(4)(I))I!,(A))I,,. 

Here A is a compact meRSure space with Borel measure It, I" is the identity and \!'(A) 

is a cyclic vacuum vector of the irreducible representation space 'H" for n-" (Ac). (*,.) 



is the scalar product on 1£ and the indefinite inner product (* I *) = (*, '1*) with metric 

operator '1 is positive definite on a quotient space of physical states obtained by the 

Gupta-Bleuler construction. 

In this work, we discuss the possible relevance of these results for the problem of mass 

generation in models of the electroweak interaction. Therefore we adopt a heuristic use 

of terminology from operator algebra theory and we accept a concordant lack of rigour, 

which is not aimed at in this paper. Especially, we do not distinguish bounded and un­

bounded operators, in particular, we identify the Higgs field with the bounded operator 

4>(f). \Ve start our discussion from the assumption that it is the vacuum expectation 

value of the object ~(f) which gives masses to the fermions and gauge bosons in the 

Glashow-\Veinberg CGW) standard model of electroweak interactions. In other words, 

we consider the possibility that elements of the bicommutant of the corresponding field 

algebra get involved in the dynamical description of electroweak interactions. There 

are many examples in the literature which indicate that this possibility should be taken 

seriously: in non-relativistic theories with long-range interactions, it is known that the 

time evolution automorphism a, is not defined on the norm-closed algebra A, but on 

its weak closure in a suitable representation. (4) In this context, one should mention 

in particular the work of Morchio and Strocchi who emphasized the importance of 

"variables at infinity" in spontaneous symmetry breaking. In the non-local Coulomb 

gauge formulation of two-dimensional electrodynamics and of the Stiickelberg-Kibble 

model, they have demonstrated the occurrence of elements of the center of the weakly 

extended field algebra ("variables at infinity") in the dynamical description. (4) In both 

models, the mass-generation via spontaneous symmetry breaking can be shown to be 

a consequence of "variables at infinity" rather than of the occurrence of an additional 

scalar field. 

In all works we are aware of, elements of the center of the field algebra playa role in 

non-local gauges only, i.e., the fact that the dynamics is not defined on the norm-closed 

algebra is a direct consequence of the non-locality of the interaction term. However, in 

relativistic field theories with Gauss law. local fields cannot create charged scattering 

~ 
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states from the vacuum. (4,5) Hence even in strictly local approaches to such theories, 

we cannot discard a priori the possibility that the dynamics is defined only on the 

weak closure of the field algebra in a suitable representation and that elements of this 

weak closure appear in the Lagrangian and/or the equations of motion. In the case of 

the electroweak interactions, these considerations point to an alternative approach to 

the problem of mass generation: the quasi-local object ~(f) lies in the weak closure 

of the field algebra for suitable representations and it gives masses to the fermions 

and gauge-bosons, Le., it gets involved in the dynamical description of the system. 

However, although we have used <p to construct ~, the phenomenological relevance 

of the dynamical field <P is unclear. The corresponding Higgs particle has not been 

observed. Hence we might look for other objects in the center of the weakly closed field 

algebra 1I'(Acl", which have the same properties as ~ and do not involve the dynamical 

Higgs field 4>. 

Here we propose a model of electroweak interactions which shows all features of 

such an approach. It starts from a gauge-invariant hamiltonian without involving an 

additional scalar field or explicit mass terms. Variables at infinity arise in its dynamical 

description. In arbitrary irreducible represenations the gauge symmetry is broken and 

all fermion and boson mass terms of the electroweak standard model are obtained. This 

proposal is based on some mathematical analogies with the Bardeen-Cooper-SchriefFer 

(BCS) model of superconductivity. (1) Hence this work is organized as follows: 

In section I, we review the mathematical structure of tbe BCS model, following 

the analysis of Haag. (7) The global U(1) gauge symmetry is spontaneously broken in 

irreducible representations of this model without giving rise to massless excitations. 

Following Morchio and Strocchi, we explain in 1.2 why Goldstone's theorem does not 

apply to this case. (4) The emphasis of our discussion, however, is on the dynamical 

equivalence of different hamiltonians: the hamiltonian HIf is a representation-dependent 

object which implements the one-parameter automorphism a, in a given representation 

(1£,11') of the field algebra Ac. such that 

1I'(a,(A)) =eiH"'1I'(A)e- iH .. ,. (0.6) 
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where A e Ac:. The essential point is now that (0.6) determines the hamiltonian only 

up to an element in the commutant of the field algebra. Hence, two hamiltonians B I 

and HI' are said to be dynamically equivalent, if 

(B. - H..',1I'(A)1 =0 (0.7) 

for all A e Ac:. Since the hamiltonians H. and B~ lie in the weak closure of the field 

algebra, it follows from (0.7) that (B., B.') = O. In the BOS-model, Haag observed that 

a gauge-invariant quartic interaction term is replaced by a gauge-dependent quadratic 

one in a dynamically equivalent hamiltonian. That means that the changes which we 

are allowed to make to Hft without changing 1I'(Qf(A», can be non-trivial to such an 

extent that the gauge symmetry might be broken. 

This observation suggests the question: Is it possible to write down a gauge-invariant 

interaction term, containing only the gauge fields and fermion fields of the electroweak 

theory, which in all irreducible (vacuum) representations leads to (gauge-dependent, 

quadratic) mass terms for the gauge-bosonsf In section 11.1, we make the first step 

to answering this question: We argue that a certain type of gauge-invariant strings is 

the unique choice for a gauge-invariant interaction term which satisfies a certain set of 

additional criteria. Then the idea of dynamical equivalence of different hamiltonians is 

used extensively to analyze the interaction term obtained from these criteria. In section 

11.2, we show that in all irreducible represenations this interaction term is dynamically 

equivalent to a gauge-dependent term containing all ma.c;s terms of the electroweak 

standard model. 

Section III is devoted to a discussion of several aspects of this proposal. We present 

a physical interpretation of the interaction term used as an implementation of Gauss' 

law which is difficult to embed in the framework of a local quantum field theory. From 

this discussion, it will become apparent that the concepts of mass and charge do not 

enter our proposal independent of each other. Indeed, the mass of a particle appears 

to be in this formulation a consequence of its charge relative to a gauged symmetry. 

Finally, this proposal for which we coin the notion "algebraic symmetry breaking" , is 

compared with the mechanisms of spontaneous and dynamical symmetry breaking. 
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This work has been carried out in the believe that despite all difficulties, it is nec­

essary to find models which interpolate between the phenomenological descriptions of 

lagrangian quantum field theory and the axiomatic concepts of algebraic quantum field 

theory. The model presented here supports the view that the need for a Higgs field in 

the GW standard model arises as a consequence of certain overidealizations made in 

the framework of a local lagrangian quantum field theory. 

1.1. The solvability of the DeS-model 

The BCS-model starts from the phenomenological hamiltonian I( of an electron gas 

in a solid (1) 

K=Ko+KI. (1.1 ) 

In Haag's formulation, this hamiltonian is the infinite volume limit of the hamiltonians 

[(o(V) and [(leV), defined for the finite volume 1': (1) 

[(0(1') =L J ~xt/':(X)[i-p2 - p}tPo(x) +h.c., (1.2)
0=1.2 V _m 

I(I(V) = ~Jtb;(x)tb;(x +z)v(z, Z')tb2(X' +Z')tbl(X')~X~x'~z~z'. (1.3) 

Here, tbo, tb! denote annihilation and creation operators for electron states with spin 

up (0 = 1) or down (0 = 2), satisfying time zero anticommutation relations. These 

symbolic quantities are the usual short-hand for the elements of an algebra of bounded 

operators· 

tbU) = Jtb(x)f(x)~x, (1.4) 

the weighted averages of ri' and their adjoints with weight functions f which are square 

integrable. They satisfy standard anti-commutation relations at fixed time t: 

(t/,o(x), t/'p(y)j+ =0, (1.~) 

* The t/·U) are bound('d operators since they are Fermi fields. Hence, no additional 

assumption is needed in this case. 
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[¢o(x), ¢~(y)J+ = dopS(3)(X - y). (1.6) 

Pis the three-dimensional momentum operator in the presence of a magnetic field and 

the chemical potential p is a free parameter of the theory, fixing the particle density of 

the ground state to its observed finite value. The function v(z, z') which characterizes 

the attractive interaction, is assumed to decrease rapidly for large z or z' without 

having any z - z'-dependence. 

Here, we do not discuss the question whether this model is a realistic model of super­

conductivity. Clearly, the interaction term (1.3) shows a global U(I) gauge invariance 

while the local gauge invariance is broken explicitly. However, we shall be interested in 

the mathematical properties only. 

The most amazing of these properties is the solvability of this model for arbitrary 

interactions t·(z, z'), satisfying 

JI t,(:,:') 1J3.:d3z' < 00. (1.7) 

As first observed by Haag, (7) this general solvability is due to the fact that in the infinite 

volume limit products of an even number of Fermi fields averaged over the volume V, 

commute with all elements of the field algebra. The simplest example of such an object 

in the center of the field algebra is: 

r,?(z') =limv ....00VJt/.'2(X' + :')t/J.(x')d3x' (1.8) 

From (1.8) it follows that 

.6(:) = limv....oo~ JJv(Z,Z')¢2(X' +Z')¢l(X')cPX'cPz' (1.9) 

lies in the center of the field algebra and is a c-number in all irreducible representations. 

The interaction hamiltonian K/(V) involves two undamped integrations (over z and 

x') and only one factor t. Following Haag (i) , [(/(V) may be simplified by working 

out the commutators of 1\1 with ti'(f) and t/J*(f): 

limv....oo[I(/(V), ti'l (y)J =- J6(z)t/J;(y + z)dz. (1.10) 
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Similarly, the commutators of KI with "p" ¢i and ¢; are always linear in ¢ or ¢*. 

Hence, in all representations KI can be replaced by 

K'I =J[.6(z)¢i(x)wP2'(x + z) + .6*(Z)¢2(X + Z)wPl(X)]cPXcPz. (1.11) 

The Fourier transform of this expression reads 

K'I = J[.6(p)¢i (-p)¢;(p) + .6* (P)¢2 (P)¢l (-p)Jdp. (1.12)2:3 

Solving the model is then a textbook problem. It is sufficient to diagonallze the hamil­

tonian K = Ko +K'I with a Bogoliubov transformation. 

For our purpose however, we are more interested in the mathematical structure of 

the interaction term KI than in the well-known solution of the model. The crucial 

point is that the nature of symmetry breaking in the BeS-model becomes apparent in 

Haag's derivation. The interaction term (1.3) is obviously gauge-invariant under the 

globalLT(l) gauge transformation which changes the phases of the fields t/.' and t·*: 

ti' --+ iCrt/J, (1.13a) 

t/J* --+ e-iCrwP*' (1.13b) 

In (1.11), this gauge symmetry is lost in all irreducible representations where .6(:) 

does not transform under (1.13). The reason is that the formally gauge-dependenr 

quantity .6(:) is an element of the center of the field algebra. Hence, .6(z) is a ( ­

number in all irreducible representations, i.e. the automorphism implemented in these 

representations by the gauge group acts trivially on 6(z). The gauge symmetry is 

broken by the specification of an irreducible representation. 
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1.2. Spontaneous symmetry breaking without Goldstone bosons 

The BCS-model discussed in the last subsection shows a breaking of the global gauge 

invariance without massless excitations appearing in the spectrum. Following Morchio 

and Strocchi we argue here that this does not contradict Goldstone's theorem. (4) We 

start from a symmetry group G of the physical system which is given by a group of 

automorphisms {Q,;g E G} on Ae. We assume that there exists a conserved local 

current j"(r, t) I:orresponding to this symmetry, 80 that 

/ v tf3x[8"j"(:r,t),A] = ~/v tf3:rUO(:r,t),A] + /BvdSiUi(:r,t),A] = 0 (1.14) 

for arbitrary operators A of the physical system. Here, BV denotes the boundary 

of V and the index i goes over all spatial direCtions. The symmetry is broken in a 

representation 1r jf there exists an operator A' E 1r(Ac) such that 

J(t) =lim"-+oo{ft'o, [Qv(t), A']tt,o) 

= limV-+oo(tI'o,[Qv(O),e-m.tA'eiH.,]tP<.) #:. 0, (1.15) 

where the time-translation invariance of the vacuum vector has been used. Here, 

Qv(t) is the generator of the symmetry transformation given as the spatial integral 

over jO(x, f). The main ingredient of Goldstone's theorem is now the observation that 

4~~t) = O. Let us briefly sketch a proof by heuristically inserting a complete set of 

orthonormal states {Ib"}n in (1.15), thereby obtaining 

J(t) =Ln (21r)3 6(3) (Pn)((tt'o .l(O)"n)(""' A'"0)e-iEt 

-(tPo, A'''n)("",jo(O),,o)eiEt
] :F O. (1.16) 

Using 

d~~t) = L"(21r)36(3)(Pn)E,,[(t'o, jO(0)"n)("n, A'"o)e-iE, 

+("o,A'''n)(''n,j°(O)"o)eiE
'] =0, (1.17) 

it follows from (1.16) and (1.17) that there exists a state "n such that (.,t'o, A'''n) 

x(V'n,jO(O)V'o) #:. 0 for which En6(3)(Pn) =O. .,t'n is obviously a massless state, gener­

a.ted by jO from the vacuum. This establishes Goldstone's theorem. 

8 

However it follows from (1.14) that d~~t) =0 if and only if 

limv-+00/ dSi(tI·o. (lex, 0), e-iH• tA'eiH·']v,o) = O. (1.18) 
BV 

If the dynamical evolution of the physical system is defined on the norm-closed algebra 

1r(Ae), then 1r(Qt(A'» is a local operator for all times t and (1.18) holds true. However, 

if Hft contains long range interaction terms, then e-iH·'A'eiH., exists in the weak 

closure 1r(Ac)" but not necessarily in 1r(Ae). Hence (1.18) does not hold true necessarily, 

4~\') #:. 0 and the above argument fails to apply. 

We conclude that it is possible to escape the consequences of Goldstone's theorem if 

the dynamical description of the physical system involves elements which do not lie in 

the norm-closed field algebra. Especially this is the case for instantaneous long range 

interactions as the one specified in (1.3). Hence Goldstone's theorem does not apply. 

11.1. Gauge-independent strings in the standard model 

In the last section we have seen that the gauge-invariant quartic interaction term 

1(1 leads to a gauge-dependent quadratic one in' all irreducible representations. The 

possible relevance of this observation for the theory of electroweak interactions is ob­

vious: the mass-terms of the intermediate vector b080ns in the standard model are 

gauge-dependent quadratic terms too. This suggests the question: Is it possible to 

write down a gauge-invariant interaction term. containing only the gauge fields and 

fermion fields 0/ the electroweak theory. which in all irreducible representations leads 

to mass terms/or the gauge bosons'l The first step in the answer to this question is 

the most difficult one: it is the choice of a ga.uge-invariant interaction term. To make 

this choice unique, we have to invoke further criteria. In what follows, we shall look 

for gauge-invariant interaction terms Tr with the additional features: 

{C1] TI contains no derivatives. 

(C2] TI may be non-local hut it has to be supported in a finite region of space-time only. 

[C3] Tr contains both gauge and fermion fields. 

To motivate these criteria, we remark the following: 
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i) 	The criteria Cl and C2 can only be justified by some arguments of simplicity. We 

are looking for simple expressions and derivatives might be considered to be com­

plications. Furthermore, Cl seems an obvious requirement if we are looking for 

renormalizable theories. However, there is no a pnori reason to discard them as well 

as there is no a priori reason why we shouldn't investigate infinitely extended objects. 

ii) 	Since we are interested in gauge-invariant terms which might lead to mass-te~s 

for the vector bosons, Tl has to contain gauge fields of course. The only gauge­

invariant quantities, containing only gauge fields and satisfying Cl and C2 are the 

dosed Wilson loops \II(C) which can be constructed out of the plaquette characters: 

\II(C) = Pexp [/c ApdxP]. 	 (2.1) 

Here, Ap denotes a gauge field and P is the path-ordering operation defined below. 

We conclude that [C3] discards only these Wilson loop terms from our consideration. 

In the abelian case, these three criteria lead to an almost unique choice. Consider 

the combined gauge transformation of the gauge field Ap and matter field ""(x): 

Ap(x) ---+ Ap(x) - 8pe(x), 	 (2.2) 

""(x) ---+ .p(x)exp[iee(x)], 	 (2.3) 

where the field e(x) satisfies 

O{(x) =O. (2.4) 

These gauge~transformations suggest that an exponential of a gauge field has to be 

combined with a fermion field. This singles out the gauge~inva.riant string of the type: 

- f~ 	 dz(s)P
tl'{x)Pexp lie Ap(z(8»~d8]""(Y). (2.. 5)

r",. 

In what follows, we choose r ZII to be the geodesic between space points x and y. s 

denotes the integration variable along this path. To extend this formulation to the 

non-abelian SU(2) x IT(l) case, let us briefly review the electroweak theory first. The 

standard model starts from the hamiltonian density 

11. = 11.0 + 11.1, (2.6) 

10 
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where 

'11 IGct Gap.. IF. FP" "ll' DPl -' DPn.o = 4 PII +4 plI + tLI'1p L L +eRI'1p ReR 

+(hi'1pD~qL +iiRi'1pD~UR +dRi'1pD~dR (2.7) 

and 11.1 denotes the Higgs and Yukawa sectors of the standard model: 

11.1 = lelLtPeR +l"qL4>ua + /dqLtPdR +h.c. 

+(DPtP)(DptP) + ).(tPttP - tP!)2. 	 (2.8) 

We consider one lepton family only with up and down quarks u and d, electrons e 

and electron neutrinos II. The subscripts L and R denote the left- and right-handed 

parts. The left-handed doublets 

(2.9)h = (=~), 
(2.10)qL = (~~) 

transform under Sl1(2)xF(l), which is reflected in their covariant derivative 

~ . Act 1 ct . ,l'BDLp = Vp +Ig P 2'0' +Ig '2 p. 	 (2.11) 

Here, the Pauli matrices O'ct generate SU(2) transformations, 9 and g' are the gauge 

couplings and Y is the hypercharge. The U(l)-field Bp corresponds to the field tensor 

FplI while the A.:, correspond to the field tensors G:II • The covariant derivative for the 

right-handed singlets. transforming under U(l), is given by 

DRp = 8p +i9'~Bp. 	 (2.12) 

Equation (2.7) contains the Yukawa mass-terms with couplings le,/",/d and the Higgs 

field tP with quartic self-interaction and 

4> = 1(124)•. 	 (2.13) 

For one lepton family. tIus model already has seven independent parameters (g, g', ¢fl. 

,x, Ie, lu, h), the last five of which appear only in HI. 
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Now we are able to formulate various electroweak gauge-independent strings. For the 

right-handed singlets. we again obtain (2.5): 

eR(Z)exp (iglyj B,.(z(I» dz~:)" dl]eR(Y). (2.14) 
r., 

For the left-handed doublets, we have to look for the gauge field combinations (d. 

(2.11)) 

A"I" g' YBC 	 (2.15),,= 	 "'2(7 +92 ". 

This leads to an gauge-independent SU(2) x U(1)-string 

-	 .. j dZ(I)P
tL(z)Pexp (ig C,,(z(s»-rsdl]tt{y), (2.16) 

r .., 

where the hypercharge Y takes the value of the field fRey), idy) respectively. Hence, 

the most minimal expressions of the electroweak theory, satisfying the criteria CI-C3, 

lead to different objects (2.14) and (2.16) for the right-handed singlets and the left­

handed doublets respectively. \Ye might be interested in a more symmetric expression 

in which right-handed singlets and left-handed doublets are on an equal footing. Such 

an expression can be obtained e.g. from the following additional property:* 

[C4] 	The electroweak string should be symmetric with respect to particles and antIparti­

cles, i.e. for a field tb(z) at one end of the string, the field "J(y) at the other end of 

the string should correspond to the antiparticle( s) of tt·. 

This condition is obviously difficult to fulfil in the electroweak theory. The field which 

describes the antiparticle of a left-handed electron e.g., is eR. It does not appear in a 

doublet and transforms non-trivially under U(1) only. An interaction term like 

.. j dz(s)"
eR(z)Pexp [ig C,,(z(s»-rsds]edy) (2.17) 

r .., 

is ill-defined: the exponential is a 2x2 matrix while eR and eL are one-component 

fields. To obtain a string which satisfies the additional criterion (C4] , we obviously 

have to alter the mathematical structure of the theory. Here we propose an alteration 

• A physical motivation of this criterion is deferred to section III. 
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which we consider to be the most minimal one: we alter the structure by substituting 

fR in (2.7) by a right-handed doublet 

eR --+ tR = (VR) 	 (2.18)
fR 	 ' 

which transforms under U(1) only. Remark that this does not affect the physical 

predictions of the standard model, since the right-handed neutrino decouples from all 

other particles. Now 

-	 . J dZ(I)"iR(z)Pexp (ig C,..(z(I»-rsds]tdY) (2.19) 
r .., 

is at least well dt'fined though not gauge-invariant. To obtain a gauge-invariant string, 

we introduce the fermion bilinears 

VLVR) 	 (2.20)4>1 = ( eLeR ' 

ihVR) (2.21)<P2 = ( eLeR·· 

Both these ft'rmion condensates lead to gauge-invariant strings 

-. J dz(s)"Si = 4>i(Z)P exp (ig C,.(z(I»-rsdl]4>i(Z +R), (2.22) 
r ....+R 

where R is a 3-dimensional vector and (i = 1,2). The Sj satisfy criterion C4. \Ve did 

not find other minimal alterations to the standard model satisfying all four criteria. 
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11.2. Mass-generation by gauge-invariant strings 

Now we might introduce the gauge-invariant quantities of the last section into finite 

volume interaction terms HI. Our aim is to analyze these interaction terms with meth­

ods similar to those used in section 1.1. in the analysis of the BCS hamiltonian. More 

precisely, we aim at substituting HI by a simpler, dynamically equivalent expression 

H/. "Here, dynamically equivalent means that HI- H/ lies in the commutant of the 

field algebra. Hence, all commutators with H/ are equal to those with HI, i.e. HI and 

HI' contain the same dynamical information. 

For such an analysis, we propose the finite volume hamiltonian (for fixed time t) 

HI(N) = c-
1 

I:N_ / [Si(X,X +ReA:) +Sit(X,X +ReA:)]cPx. (2.23)
N A:-l v 

Here, c is a coupling constant, the strings Sj given in (2.19), are of a fixed finite length 

R and the unit vectors 

'(Sin9A:Cos'r'A:)
ek(9A:,'r'A:) = sin9A: sin 'r'A: (2.24) 

cos9A: 

are parametrized by pairs of spherical coordinates (9A:' 'r'A:). The interaction term (2.23) 

averages over strings in N different directions eA:. We shall be interested in the N -t 00­

limit of this expression where the infinitely many directions eA: are chosen so that 

HI ~ limN-+ooHI(N) (2.25) 

becomes an isotropic expression. The infinite volume limit'of HI (N) plays no important 

role in what follows. We have chosen (2.23) for our discussion since this expression 

provides a minimal way to obtain an isotropic hermitian hamiltonian from the gauge­

invariant strings (2.22). Clearly, (2.23) has to be seen as a formal expression. For 

a local operator C", the exponential in (2.22) does not necessarily exist. However, 

formally it defines the Taylor expansion of a path-ordered product in orders of g: 

A / dz"(s)Pexp[ig CI'(z(s))-d-dsJ 
r •.• +R' S 

00 . n/I J.,1 /.,n-l dZ"(Sl) dZ"(sn}I: _(,g) dS I ds2... dSnCI'(Z(Sl »-d-,,·CII(Z(Sn))-d-'
n-O 0 0 0 81 Sn 

•, 

where the path r r,I:+Ri, z(s) e r 1:,1:+111, has been parametrized by s e (0,1]. Remark 

that only in the abelian case, this object can be symmetrized such that 

A / dz"(s) 00 (ig/)R (/1 d_,,)R
Pexp [ig' B,,(z(S»-d-ds] = L -,- dsB,,(z(s»-d'" . (2.27) 

r•.•+l1I s n-O n. 0 S 

In what follows, we consider the exponential in S. as formally given by a Taylor expan­

sion in orders of g. Furthermore we assume that 

A J dZ"(s)
Pexp fig 0"(z(s»--;;:;-ds] 

r _+c••_+(A-c).l 

A / dz"(s) (2.28)f-+o~Pexp[ig O,,(z(s»-d-ds]
r_._+Il, S 

converges for E small enough. Roughly speaking this means that the endpoints of the 

string Si are associated to matter fields <Pi but not to gauge fields.· 

\Ve start our analysis of (2.23) by considering in some detail the case where the 

additional constraint VR = 0 is llsed for the string S2, i.e. we consider strings with 

fermion bilinears 

<P2 =eLeR (~) • (2.29) 

We comment on the results ofother cases at the end of this section. To analyse HI(N), 

we have to work out its commutators with all local fields, analogous to the text following 

(1.10). For this purpose, we specify the following equal time commutation relations: 

[fi(X), ej(Y)]+ = I'06ij6(3)(x - y). (2.30) 

Here, 1'0 denotes a Dirac matrix, i,j = L,R and all other anti-commutators between 

two Fermi-fields vanish. 

[A:(x),A~(y)] = -ic5dg".,6(3)(x - y), (2.31a) 

(B,,(x), E.,(y)] = -ig".,6(3)(x - y), (2.31b) 

• This is consistent with the lattice formulation of the gauge-invariant string where 

matter fields are associated with lattice sites while the gauge fields are defined on the 

(2.26) lattice links. 
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where gil." = (1, -1, -1, -1). All other commutators with at least one gauge field 

vanish. 

Let us now investigate the commutator of HI{N) with an arbitrary fermion field 

eL(y) say, de6ned at the point y E V. Using (2.30) and (2.22), we obtain 

[H1(N),eL(Y)} = 

C ~E:..J "YOeR(Y)(O, I)P exp [igl C,,(z)dz ll ] (~) eR(Y +Ret)eL(y +Re,)",+IU. 
+C~E~=l "YOeR(Y)(O, I)Pexp [-igl Cp{z)dz ll ] (~) eR(y - Ret)eL(y - Re,). 

,-Ri"" 
(2.32) 

Consider now an arbitrary field F(y'), defined at a point y' E V, y' ::/= y. It is easy to 

see that 

limN-+oo[[HI(N), eL(y)], F(y'» =0. 	 (2.33) 

The reason is that the two points y, y' determine a direction in V and only strings 

passing through hoth points can contribute to the double commutator (2.33). Their 

contribution, however, is multiplied by Ii and vanishes in the N -+ co-limit. This 

implies that the double commutator behaves like a commutator of F(y') with "YOeR(Y)' 

(The path ordered integral in (2.32) is understood in the sense specified in (2.28), i.e. 

CII. (y) does not belong to the path.) We conclude that in all irreducible representations 

limN-+oo[HI(N),eL(y)} = ce"YOeR(y), (2.34) 

where Ce is a c-number. Similarly, we work out the commutators of HI(N) with eL(y), 

eR(y) and eR(y), In the N -+ co-limit, the same commutators can be obtained from 

H~.e = f tfy{ceedy)eR(Y) +c:eR(y)edY)}· (2.35) 

This calculation can be understood in a simple pictorial way. We denote the sum 

of the strings Si(X,X + Ret) +s1(x,x + Ret) by a straight line between the points 

x and x + Ret. In Fig. I, we depict the N different strings which contribute to the 

commutator [HI(N), et(Y)) in (2.32). Only the string with the dashed line contributes 
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to the double commutator [[HI(N),B,,(y)],F(y')1 and hence, (2.33) holds. A similar 

analysis is possible for the commutators and double commutators of HI(N) with the 

gauge fields. The mathematical details of this calculation are given in appendix A. 

Here, we mention just that a similar pictorial representation of the calculation exists 

(d. 	Fig. II). One concludes that in all irreducible representations, the hamiltonian 

I 1",N 1 J3 ",00 . " (0) (2.36)HIG (N) = N L.tt=l va-y L.tn=/ng"cn(R)(O, I)[Ci(y)e.) 1 

. leads to identical commutators for all gauge fields in the isotropic N -+ oo-limit. Here, 

the cn ( R) are c-numbers corresponding to the elements of the center of the field algebra. 

These cn(R) absorbe n integrations over the string length R and the coupling constant 

c of (2.23). Hence, cm(R) is of order 0(M4-n) in the mass. 

Furthermore, we show in appendix B that the isotropic N -+ co-limit, HtG = 

limN-+oo H;aCN) can be written as 

, Loo 
n 2n . 8'1r2 1t3 )( 2 2 2 »)n (0)HIG = (-1) 9 c2n(R)-?1 a-y(O.I Cdy) +C2(y) +C3(y l' 

n=1 _n + 
(2.37) 

Here, it is worth remarking that we obtain a Lorentz-invariant formulation which re­

duces to (2.37) in the temporal gauge Co(x) =0, by substituting 

C~(y) +Ci(y) +Ci(y) -T Cp(y)Cp(y). (2.38) 

where the Einstein summation convention has been used on the right hand side. 'Vith 

this substitution, let us examine expression (2.37) to 0(g4). We start from 

= _g2C2(R)S8~1v (0, I)Cp (y)Cp(y) (0) tfy +0(g4). (2.39)HIG'(R) 	 1 

Using (2.15), the integrand of this expression can be VtTitten in the following form: 

-lC2(R)(0, I)Cp(Y)Cp(y) (~) 

=-lC2(R)[A!(y)A1p(y) + A!(y).42p (y) + A~(y)A3p(y) 

, 	 ,';] 

-~Y(A~(y)B"(Y) +B p(y)A31'(y» + ~y2Bp(y)Bp(y». (2.40)
9 	 9 
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For Y = 1, the hypercharge of the composita (2.22), this expression denotes nothing 

but the gauge boso~ mass terms in the electroweak theory. Defining 

W + 1 (1 . 2)
Il = v'2 All - IA" ' (2.41a) 

w- - 2.(AI 'A2 ) (2.41b)1l-v'2 ,,+a Ii' 

Zil = A! cos8w - Bil sin8w, (2.41c) 

- :I.
A" = A"slD8w +Bilcos8w, (2.41d) 

with the Weinberg angle 8w 
g'

tan8w =-, (2.42)
9 

we obtain the physical fields with mass terms: 

2 1611'2 2 ( )
Mw= -5-g C2 R (2.43a) 

2 1611'2 )( 2 12)Mz = -S-c2(R 9 +g , (2.43b) 

Ml=o. (2.43c) 

Similarly, (2.35) can be interpreted as a fermion mass term 

m~ =2ce • (2.44) 

Remark however that Ce is an arbitrary complex c-number. while it can be shown that 

the c2n(R) are real- there is a hermitian conjugate for each term contributing to c2n(R), 

while there is not necessarily one for Ce [ef. appendix A]. This seems closely related 

to the classical Higgs mechanism where the Higgs vacuum expectation value (which is 

an arbitrary c-number in all irreducible representations) enters the mass terms of the 

gauge bosons as a bilinear, while the fermion mass terms depend linearly on (tP) [cf. 

(2.8)]. Furthermore, the value of the real number c2(R) is determined by the choice 

of the irreducible representation and does not depend on the length R with which we 

have started our calculation [cf. appendix A]. 

IS 

'\... 

These observations lead us to the question whether we can reproduce the quark mass 


terms too. In analogy with (2.21), we introduce the bilinears 


1&£UB ) (2.45)tP:I = ( d£dB 

into the gauge-invariant string (2.22). Following step by step the analysis of (2.23), we 


indeed obtain mass terms for the quarks. However, the string Sa leads to additional 


contributions to the gauge boson masses. These contributions stem from the equation 


analogous to (2.39) and have the form 


(~:. ~d)CIlC" (~:) . (2.46) 

Including these contributions in the gauge boson masses, we obtain the usual mass 


terms in the following way: we can always find complex numbers a, b such that 


(~:, ~d)CIlC" (~:) + (0, I)CIlC" (~) = (a·.o·)CIlC" (:) , (2.47) 

The right hand side of (2.47) is then subjected to a global SU(2)-transformation 

C" --+ C:; =UC"U- I 
, (2.48a) 

(2.48b)(:)--+U(:), 

such that l' ( : ) is parallel to (~). The physical fields obtained from this calculation 

are a reparametrization in terms of A~ of those given in (2.41). This shows that an 

interaction term (2.23) for every fermion doublet in the electroweak theory leads to the 

correct masses for the ferinion and gauge fields in the standard model. Hence, we have 

obtained an affirmative answer to the question asked at the beginning of this section: 

It is possible to write down gauge-invariant interaction terms which in all irreducible 

vacuum representations 0/ the infinite volume system lead to correct mass terms/or the 

/ermions and gauge bosons in the electroweak theory. Gauge-invariant strings of the 

type S2 which fulfil a certain set of criteria [Cl] - (C4] provide such interaction terms. 
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III. The concept of algebraic mass generation 

In the last section, we have investigated a special non· local gauge-invariant interac­

tion term. We have shown that this interaction tenn is dynamically t"<{uivalent to a 

hamiltonian containing all mass terms of the electroweak interactions as well as higher 

order couplings in the gauge fields. In this section, we concentrate on the conceptual 

questions connected with this proposal. In subsection III.I, we provide a physical in­

terpretation for the interaction term HI, extending recent ideas of how to implement 

Gauss' law in local quantum field theories. 111.2 contains a comparison of the model 

of algebraic mass-generation with other models of mass generation. In what follows, 

the notion "algebraic symmetry breaking" is defined by example: the symmetry of a 

hamiltonian is called" algebraically broken". if there exists a dynamically equivalent 

expression in which the symmetry is restorE'd. 

111.1. The physical interpretation of H, 

The calculation in subsection II.2 has provided the correct mass terms of the elec­

troweak theory for strill~s of the type 52. However, strings of the type 51 satisfying 

the same set of criteria CI-C4 would lead to bilinear fermion tenns, e.g. e,eR, which 

are difficult to interpret as mass terms [for a definition of Sit cr. (2.20) and (2.22)). 

Furthermort", the analysis of interaction terms constructed out of the strings (2.14) or 

(2.16) and satisfying the criteria CI-C3 but not C4leads to strange linear terms in the 

dynamically equivalent hamiltonian. This shows that the choice of the interaction term 

(2.23) on the basis of symmetry arguments is not completely unique. It is obviously 

important to have a physical interpretation which motivates the choice of (2.23). 

To find such a physical interpretation, let us recall that the physical states carrying 

electric charge cannot be constructed by applying a local field operator to the vacuum 

state. This is a direct consequence of Gauss' law which implies that the electric charge 

of a particle can be detected by measuring the total electric flux through an arbitrarily 

large surface surrounding the particle. However. as remarked by Buchholz in his inves­

tigation of the state space of quantum t"lectrodyna.mics (QED), (51 it should be possible 

20 

to construct charged scattering states from the field operators 

"'c(z) = 1,lI(z)exp lie j d'yc"(z - y)A,,(y)], (3.1) 

which are formally related to the Fermi-field tP and the vector-potential A". Here, the 

functions c" have to satisfy the equation 

8"c,,(z) = 6(4)(X) (3.2) 

to make tPc( z) locally gauge-invariant. The set of these functions c" is stable under 

Lorentz transformations, and for any open spacelike cone S containing the origin of 

Minkowski space there exists functions c" having support in S. Buchholz concludes: 

"Therefore one may expect that the appropriately regularized field-operators tPc gen­

erate charged states ... " [51 

The heuristic idea motivating tPc(z) is obvious: while charged states cannot be con­

structed by applying a local field operator to the vacuum state. it should be possible 

to obtain them \'ia a non-local object constructed from local covariant fields ¢ and A" 

where A" takes the total electric flux spacelike to infinity. Equation (3.1) exhibits this 

important property. We might view 

tPcs(z) = tP(z)exP[iej A,,(z)dz"] (3.3) 
r ".00 

as an object closely rela ted to the class of field operators (3.1). Here, r.r ,00 is a path 

in Minkowski space, connecting the point z spacelike to infinity, i.e., ",(x) is a charged 

local operator connected to spacelike infinity by a flux tube of gauge fields. Gauge­

invariant strings like tPcs(z) have been discussed in attempts to obtain a formulation 

of QED in terms of gauge-invariant fields. [61 

Another way to obtain a charged scattering state describing a charged particle should 

be to remove the corresponding antiparticle spacelike out of the region of observation.* 

* \Ve define the "'region of observation" to be the region of support of those local field 

operators WhORt" ("ommutators with the hamiltonian playa role in the prediction of an 

experimental outcome. 
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Roughly speaking, applying 

tP~s(x, 'II) = fj1(x)exp lie f A,.(z)d%"]~(y) (3.4) 
r." 

to the vacuum describes a charged particle at the point x and its corresponding an­

tiparticle at the pointy both connected by a flux tube of gauge strings. If the distance 

I x - 'II I is large and spacelike, then the operators fj1~s(z, 'II) and tPes(x) should lead to 

the same commutation relations for a local algebra, localized in a neighbourhood of x.* 

The interesting feature of operators of the type t/Jhs is that they map the vacuum sec-, 

tor onto itself while tPes maps the superselection sector corresponding to states with n 

electrical charges to the one with n +1 electrical charges. Nevertheless, tPhs applied to 

the vacuum state describes in some sense a charged state without invoking a non-trivial 

superselection structure. In a lagrangian setting, we might consider objects of the type 

tPes to be the most natural choice to describe charged states without violating Gauss' 

law. This leads us to postulate the following principle: 

To describe a charged particle in a local lagrangian quantum field theory with a 

Gauss law, it is necessary to remove the corresponding antiparticle out of the region of 

observation and to connect it with the particle by a flux tube of gauge strings. 

In what follows, we shall argue that the interaction term HI in (2.25) can be un­

derstood as a heuristic implementation of the above idea in a lagrangian formulation 

of the eleC"troweak thffiry. Our starting point is the hamiltonian df'nsity 11.0 in (2.7) 

which contains tbe massless part of the standard model without scalar field. 1lo is the 

"nice" part of the standard model, specifying both the SU(2) x U(l) gauge symmetry 

and the different transformation properties of left-handed doublets and right-handed 

singlets. It contains the two gauge couplings 9 and g' only. These couplings fix the 

* Because of the Reeh-Schlieder theorem, it is very difficult to speak of the space-time 

localization of states, since any local algebra is sufficient to generate the pbysical state 

space. Hence, the heuristic concept that the operators V'es(x,y) and tPes(x) are in 

some sense e(luivalent in a neighbourhood of x, cannot naively be implemented on the 

lC"vel of physical statf.'S. 
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relative strength of the electrodynamic and weak interaction and can therefore be con­


sidered to be much more fundamental than the additional couplings appearing in the 


Higgs and Yukawa sector. Hence it seems consistent to assume that the dynamics of 


the electroweak interaction can be defined for the local fermion and gauge boson fields 


but that for the charged scattering states, these local fields have to appear in non-local 


combinations similar to (3.4). The interaction term HI in (2.25) appears to be the 


most natural heuristic implementation of this idea: 


choosing a negative coupling c in (2.23) turns the gauge-invariant strings Si into 


an energetically favourable field configuration. Roughly speaking, this implies that the 


local fermion and gauge boson fields evolve dynamically in a potential which glues them 


together to gauge invariant strings in the t -+ 00 limit, Le., as the correct operators 


creating charged scattering states. 


Clearly, this interpretation of HI is tentative. It is interesting to point out its concep­

tual advantages. The interaction term HI is considered to be a heuristic implementation 

of the non-locality of charged scattering states which seem difficult to embed in a local 

quantum field theory. This provides a natural explanation of the origin of the plethora 

of parameters in the standard model. All additional free parameters of the Higgs and 

Yukawa sector are obtained as couplings of terms which are dynamically equivalent 

to HI in all irreducible representations. Hence these parameters can be understood 

as part of a heuristic implementation of Gauss' law in a local quantum field theory. 

On the other hand, this interpretation leads to the question: does this method of al­

gebraic mass generation explain why all electrically charged elementary particles are 

massive while electrically neutral elementary particles are massless (except for the Z 

gauge boson)? Here, we shall not pursue these speculations. 

111.2. A comparison between the different mechanisms ofsymmetry break­

ing 

One reason why a vector boson in an apparently massless lagrangian acquires a mass 

was given by Sehwinger. (8) He discovered in two dimensional massless spinor electrody­
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namics, that in the vacuum polarization tensor n""(q) = (g""q2 - q"q")in(q2), 0(q2) 

acquires a pole. O""(q), which denotes the sum over all one-vector-boson irreducible 

graphs, is of course zero in the absence ofinteractions. In general, vector bosons acquire 

masses through suitably chosen interaction terms. 

The Higgs-Kibble-mechanism provides an explicit mechanism which leads to a pole 

in n(q'). [1} The vector bosan couples to a self-interacting scalar field ¢ via the gauge­

invariant term (D"¢)(D,,¢), [ef. (2.8)]. After spontaneous symmetry breaking, 

¢-+ ~+¢', (3.5) 

the vacuum expectation value ~ couples to the vector bosans, giving rise to tadpole 

contributions to 0(q2) which produce a pole. Here, ~ is the minimum in the (quantum 

corrected) Higgs potential and ¢' is the new dynamical field. 

In principle, there are mechanisms which can give rise to a pole in n(q2) without 

involving a scalar field. Let us briefly sketch one of these proposals: Jackiw and Johnson 

demonstrated in a particular field theory that a pole in O(q') can arise whenever a 

massless fermion acquires a mass through spontaneous symmetry breaking. [9) This 

observation is very interesting if one follows the standard belief that the dynamics is 

such that the QeD vacuum breaks the SU(2)'e/' X SU(2)ri,Il' symmetry of the massless 

QCD lagrangian to Sr'(2)i606pin (throughout this paper we are working with one family 

of leptons and quark!'!). Then, the strong interaction gives rise to a non-zero vacuum 

expectation value 

(uu +dd),fEv ::/= 0 (3.6) 

and to three massless Goldstone bosons which are usually referred to as "pions". 

Clearly, one does not want these massless modes to appear as the longitudinal compo­

nents of massive vector bosons (we do observe pions, after all!), though this is possible 

for suitably chosen interaction terms. The technicolour idea proposes a way out, postu­

lating the existence of technifermions which effectively interact like quarks under a new 

strong force. The resulting massless technipions can appear as longitudinal components 

of the vector bosons without contradicting the existence of pions. 
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These and other ideas are well documented in literature [9} and share one common 

feature: unobserved particles have to be postulated to give rise to the experimentally 

observed masses. The mechanism of algebraic symmetry breaking proposed in section 

II is the only phenomenologically relevant one we are aware of which starts from a 

gauge invariant expression and leads to the experimentally observed mass terms with­

out postulating the existence of new particles. More importantly: no new fundamental 

forces are introduced. The fermion bilinea.rs (2.20), (2.21) and (2.45) might ressem­

ble the vacuum expectation values (3.7) in .models of dynamical symmetry breaking, 

conceptually they are on a very different footing: they are a consequence of criterion 

[C4] which in our approach lies at the heart of implementing the consequences of the 

presence of Gaussian charges in a local quantum field theory. 

CONCLUSION 

In this work, we have presented a model of electroweak interactions which shows spon­

taneous symmetry breaking without involving a scalar field. This proposal originates 

from two observations: 

1) Haag's observation that one can add elements of the commutant of the field algebra to 

the hamiltonian without changing the dynamics. In the case of non-local interaction 

terms, the changes which we are allowed to make to the hamiltionian can be highly 

non-trivial to such Rn extent thRt thf:'y break thE" symmetry of thE" hamiltonian. 

2) The observation that because of Gauss' law, charged scattering states cannot be 

described by the operation of local fields on the vacuum state. This motivates the 

assumption that elements of the weak closure of the field algebra play a role in 

the dynamics of a quantum field theory describing charged scattering states, even 

if the primary field operators are local. In particular, this motivates our working 

assumption thRt the vacuum expectation value J> of the Higgs field in the standRrd 

model can be understood as the expectation value of an element of the weak closure 

of the electrowf:'Rk fidd algebra and that it should be possible to find elements in 

this weak closure which show all the properties of ~ without in\'Olving an additional 
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scalar field. 

Starting from these considerations, we made a formal attempt to construct Haag's 

mechanism of algebraic symmetry breaking in the case of a theory of electroweak in­

teractions. This led to the interaction term (2.23) built out of gauge-invariant strings. 

The analysis of this interaction hamiltonian in section 11.2 allowed us to identify the 

elements in the weak closure of the electroweak field algebra which correspond to the 

vacuum expectation value ~ of the standard model Higgs field. The analogy between ~ 

and these elements of the center of the field algebra is remarkable: there is even a cor­

respondence for the fact that the gauge boson mass terms of the GW standard model 

are quadratic in ~ while the fermion mass terms depend only linearly on ~. Hence we 

obtained all mass-terms of the electroweak standard model from a gauge-invariant in­

teraction term which does not involve an additional scalar field. The question whether 

this type of gauge symmetry breaking allows for a theory with finite radiative correc­

tions, shall he pursued in our subsequent work. 

In this work, we have restricted ourselves to giving a physical motivation for the 

interaction term HI. HI 'can be understood as a part or a· heuristic implementation of 

Gauss' law in a local quantum field theory describing charged scattering states. This 

interpretation links the concepts of mass and charge together: in the mechanism of. 

algebraic mass generation, the mass of a particle appears to be a consequence of its 

charge rE'lative to a gaugE'd symmE'try. 
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Appendix A: Commutators and double commutators of H,(N) with gauge 

fields 

We start with an investigation of the commutator [H,(N),E,,(y»). For notational 

convenience, we introduce H,(f/t) and ~R)(X,X +Rei), defined by 

lEN '" BI(N} =N H/(el); 	 (A.l)
1=1 

Si(X,X + Rel) =ER(ig)RS~R)(Z,Z + Rel). (A.2) 

In a first step, we compute [B,(V, el}, E,,(y)] up to O(g') for a special spatial direction 

e. = (1,0,0) say. Specifying ell we are able to simplify the directed path-ordered 

exponential: 

I tPxS(x,x + ReI) 

OQ IR IR' IR..-,= d3 xE _ (ig)n dR. dR2..· dRR 
I n-O 0 0 0 

4)(x )CI(x +RI el )e.",C1(x + Rne. )e.4>(x +ReI) 

= J d3xE:0(ig)"S(n)(x,x+Re.), (A.3) 

where the subscript i on S!R) has been omitted for notational convenience. Using 

A·l 0 glYBC,,= ,,:;;0' +-'i)' " 	 (A.4) 
- 9 ­

and the commutation rE'lations (2.31), this allows us to calculate 

J d3x[S(0)(x, x +Red, E,,(y») = 0, 	 (A.5) 

I tPx(ig)[S(1)(x,x +Ret),EII(y)) 

=(ig) J tPxJRdR I [.~4)2(X)[BI(X'X +Rlfl )el ,E,,(y»)4>2(x + Re.) 
o 9 ­

=gJd3xlRdR. [.~elth,,6(xl +Rei - yl)6(x2 - y')0(x3 
- y3)4)2 (X)4>2(X +Rei) 


o 	 9 ­

gil' IR ­=gOI" -'i)'el dR.4>2(Y - Riel )4>2(y + (R - RI )e.) (A.6) 
9 - 0 
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and 

(ig)2 j d3x[S(2)(Z,x +Rei), B.,(y)] 

=(ig)2 j ~zj:dRI j:l dR2~2(Z)[Cl(Z +R1eJ)eICI{X +R2e.)e.,B.,(Y)]</I2{x+ReJ) 

"y jR jRl
= g29g1 2el 0 dRI 0 dR2{~2{y - R2el)CI{y + {Rl - R,)el)el</l2(y + (R - R2)ed 

+~{y - R1e.)CI(y +(R2 - Rl)edel</l2{y + (R - R.)e.)}. (A.7) 

The commutator [B/{N), B.,{y» is given to 0{g2) as the sum of the terms (A.5-7) 

and the contributions corresponding to the second term in (2.23), summed over the N 

different spatial directions fie. Similarly to (2.35), we obtain for y' :f: y 

limN-+oo[[HI(N),B.,(y»), F(y')] =0. (A.S) 

The reason is that the points y and y' specify one direction e". in space. Hence, the 

double commutator (A.S) has to vanish since it receives contributions from HI{e".) 

only, but includes a damping factor 11. This holds true to all orders, i.e., in all ir­

reducible representations, [HI(N),B.,(y» can be written for any order O(gn) as a 

function of fields at the point y E V times a c-number. Similar results can be obtained 

for the commutator of HI(N) with ...4.:(y). We conclude that in the N -+ oo-limit of 

all irreducible representations, the hamiltonian 

, 1 ~N J 3 ~oo . n (0)HIG (N) = N L."h:1 V d yL."n=lingncn(R)(O, l}[Ci(y)eiJ 1 (A.9) 

is dynamically equivalent to HI(N) with respect to the gauge fields. This is just 

equation (2.39), where the cft(R) are c-numbers corresponding to the elements of the 

center of the field algebra. From the number of line integrals we know that cn(R) is 

of order 0(A/4-n) in the mass. Furthermore, the value of the real numbers cn(R) is 

determined by the choice of the irreducible representation. In particular, the actual 

value of c2(R) depends on the choice of the irreducible representation only, irrespective 

of the length R with which we have started our calculation. 

Appendix B: The isotropic N -+ oo-limit 

Here, we calculate the N -+ oo-limit of HiG(N) where the count ably many directions 

fit are chosen so that 

H~G = limN-+ooH1G{N) (B.1) 

becomes an isotropic expression. Therefore we substitute in 

HIG'(N) = ~L:=ljvdayL~=l iftgftcn{R)(O, l)[C.{y)e~t (~) (B.2) 

the sum over the N directions by an integral over the 2-sphere: 

1 N jfllj'fIl
N L : --+ 0 0 21rsin6d6d<p. (B.3)

Ie t 

This substitution is justified in the sense of an explicit construction of a Riemann 

integral. Clearly, for very singular objects as the 6-distributi~ns used in the analysis 

of the commutators of HI(N), such a replacement is not free from difficulties. In 

the evaluation of the isotropic N -+ oo-limit of (B.2), however, the operator valued 

distributions Ci(Y) just play the role of coefficients of the unit vectors. Hence, it is 

allowed to substitute (B.3) to obtain an explicitly isotropic form for (B.2). On this 

basis, we parametrize the unit vectors fie by spherical coordinates. For (B.2), this leads 

to the substitution 

Ci(y)e~ --+ C(y), (BA) 

where 

C(y) =C1(y) sin 6 sin<p +C2(y)sin6cos<p +Ca(y) cos 6, (B.5) 

and hence 

1 N jfllJ2f1l
N Lk=l[Ci(y)e~]" --+ 0 0 Cn(y)21rsin6d6d<p. (B.6) 

Using the formulae 

Ji Ji (?m - 1)" 1rsin2m zdx = cos2m xdx = - .', (B.7) 
o 0 (2m)!! 2 

Ji Ji (?m)1Isin2m+lxdx = COS2m+ 1zdx = ----_.. (B.8) 
o 0 (2m + I)!!' 
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a lengthy but straightforward calculation shows that 

"J2.-C2D(y)2'11:' sin6d6dcp = L (2k),~~n~;(2 l,8'11:'2C: k(y)Cir(y)c;·(y)
J o 0 	 (k,r,.) . r. s. 

""'. (s) ,(2(k + r + l»!! ) ("",r (r) ,,(2(k + I') - I)!!) 
x ( L.,,=o I (-1) (2(k+r+I)+1)!! L.",=o I' (-1) (2(k+I'»!! ' 

(B.9) 

while the odd powers of C(y) vanish. Here, E(i..... ) goes over triples (k, r,s) such that 

n = k +r +s. To simplify this expression, one proves by induction that 

""," (r)(_1),(2(k+l)-1)!! 
L.,,=o I (2(k + I))!! 

"",. (s) (_)' (2(k + I»!! _
L.,,=o I 1 Ift/l-. 1\ •• \11 ­

Inserting (B.10) in (B.9), one obtains 

..J2.... 	 8'11:'22n o 	 0 C (y)2'11:' sin6d6dt.p = 2n + 1(C:(y) + Ci(y) + C;(y» . (B.ll)
J 

Hence, the isotropic N -+ co-limit Hja of Hta(N) reads 

H;a =L~=1(-1)ng2nC2n(R)2!: 1JJJy(O,l){Cl(y) +ci(y) + C;(y»D (~), 

which is just equation (2.37). 

= 	(2k-1)!I (? 1)" (B.10a)(2(k + r»!! _r .. , 


(2k)!! ? _ )" 

Ift/'_ • _\ • 1\,,(_8 1 ... (B.10b) 

n 

(B.12) 

~ -". 
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Figure Caption 
y+e1R 

Fig.J Depiction of the N strings contributing to the commutator [Hr(N), eL(y)J. Only the 


k-th string denoted by a dashed line may contribute to [[Hr(N), et{y)), F(y'». 
 y+e2 R 

Fig.II Some of the strings contributing to [Hr(N),B.. (y)]. Only strings on the dashed line 

may contribute to [[Hr(N),B.,(y)),F(y')]. 
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