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ABSTRACT 

Several rigorous results obtained over the last two decades in lattice field theory indicate 

that the Higgs field vacuum expectation value is zero in theories which are generally 

believed to show spontaneous symmetry breaking. After reviewing the situation, we 

show that all apparent inconsistencies we are aware of can be removed by a classification 

of the possible Faddeev-Popov gauge fixings, used in the path integral formalism. We 

explain how these different kinds of Faddeev-Popov gauge fixing correspond to different 

direct integral representations of the field algebra. As a by-product, we obtain an 

argument that the cluster decomposition property does not hold in the Landau gauge. 

FUrthermore, we show that in a large class of direct integral representations, the vacuum 

expectation value corresponds to an element of the center of the field algebra. The 

possible relevance of this observation for mass-generation through the Higgs mechanism ,r~ea\
is discussed briefly. 
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Any theory of the weak interaction has to incorporate two fundamental features: it 

must give masses to the intermediate vector bosons and it must yield finite radiative 

corrections. The Higgs mechanism (1-6] pl'omises to fulfill both requirements: if a 

massless gauge field is coupled to some scalar matter field tP, then the assumption of a 

non-zero vacuum expectation value (tP) implies that the vector field develops a mass. 

Furthermore, the mechanism leads to renol'malizable theories, thereby implying finite 

radiative corrections. (7) However, the assumption of a non-zero vacuum expectation 

value is highly non-trivial. Indeed, it will be a major part of the present work to point 

out that this assumption only holds true in certain representations of the field algebra. 

To clarify the context of our discussion, it is worth beginning with some textbook 

Jmowledge about the Higgs mechanism: for a non-zero vacuum expectation value, both 

local and global gauge invariance are broken. We say: they are "spontaneously bro­

ken", since the ground state does not exhibit the symmetry of the Lagrangian. How­

ever, there is in general no massless particle for this spontaneously broken symmetry, 

since a necessary condition for Goldstone's theorem to hold in relativistic theories is 

manifest covariance. Relativistic gauge theories, however, are not manifestly covariant 

and positive definite at the same time. (4] Either they are formulated in non-covariant 

gauges (e.g. Coulomb gauge) where commutators do not always vanish outside the 

light cone and hence Goldstone's theorem fails to apply, or they are described in the 

Gupta-Bleuler indefinite metl'ic formalism (e.g. Lorentz gauge) where Goldstone's the­

orem applies but the zero mass particles appear in the unphysical modes of the Hilbert 

sp~e, (4) We say: "the Goldstone bosons are eaten by the,gauge fields". 

As is well known, this Higgs mechanism plays a crucial role in the experimentally 

successful standard electroweak model. [tI,9) allowing to describe massive vector bosons 

in a theory which is free from Goldstone bosons. Despite its striking success, however, 

attempts to reach a deeper understanding of the Higgs mechanism face serious diffi­

culties. As pointed out by Wightman (10), the following apparently inconsistent results 

and assumptions exist in literattu'e: 
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[i] 	 In the conventional formulation of continuum gauge field theories with Faddeev-Popov 

gauge fixing, a non-zero vacuum expectation value is assumed. This assumption 

appears to be necessary for the experimental success of the electroweak theory. 

In latticised versions of gauge theories which are believed to show spontaneous sym­

metry breaking, the vacuum expectation value of the scalar field is generically zero. [11,12] 

This is nothing but a simple consequence of the manifest gauge invariance of the mea­

sure in the usual lattice formulation without Faddeev-Popov gauge fixing (cf. section 

1.1). 

(iii] In lattice gauge theories with Faddeev-Popov gauge fixing, it has been shown that 

the gauge-invariant two-point function of the scalar field decays exponentially in the 

radiation gauge [13,14] and in all Gupta-Bleuler gauges. * [16] This result holds formally 

in the continuum limit. [13] 

(iv] 	 In lattice gauge theories with Faddeev-Popov gauge fixing of the Landau type, the 

gauge-invariant two point function of the scalar field approaches a non-zero value in 

the large distance limit. [16] 

In this work, we present an explanation of these results. Our discussion is organized 

as follows: In section 1.1, we review lattice gauge theories. Introducing the notions of 

Faddeev-Popov gauge fixing of the first and second kind,+ we argue in 1.2 that 

Iv] Lattice gauge theories with Faddeev-Popov gauge fixing of the first kind have a zero 

vacuum expectation value while 

(vi] Lattice gauge theories with Faddeev-Popov gauge fixing of the second kind can have 

a non-zero vacuum e>..'pectation value. 

* Covariant indefinite metric gauges are specified by a gauge fixing term A(8.A)2 in 

the lagrangian. Formulations with finite A are called Gupta-Bleuler gauges while the 

Landau gauge is defined as the limiting A-+ 00 case. 
+ 	 \Ve say: a Faddeev-Popov gauge fixing is of the first kind if the Faddeev-Popov term 


is invariant under global gauge transformations, whel'eas it is of the second kind if both 


local and global gauge invariance are completely broken by the Faddeev-Popov term 


(see Definitions 1 and 2 in 1.2). 

We proceed formally to obtain [v] and [vi], i.e., we assume the existence of the infinite 

volume limit as well as the continuum limit, and we assume that these limits are 

independent of the specification of boundary conditions. Though these assumptions 

are satisfied by many examples in the literature, we regard the results obtained merely 

as a useful guidance but not as final answer to our problem. All we conclude at this 

stage is that if our formal results hold true, then [i]-(iv] are consistent with each other 

but the cluster decomposition property fails in the Landau gauge. 

This guides us in section II to an investigation of the cluster decomposition property 

in definite and indefinite metric spaces. Following Strocchi [3S] , we argue that the 

cluster decomposition property holds true in all Gupta-Bleuler gauges. In the Landau 

gauge however, the cluster decompositio11 property cannot be established by the same 

methods. 

In section III, we adopt an algebraic point of view. Our main result is that the 

vacuum expectation value corresponds to an element of the center of the field algebra 

in a large class of integral representations. There is an obvious connection between 

these integral representations and the usual path integral formulation. Exploiting this 

connection, we are able to confirm the main results of section I under a different set 

of technical assumptions. \Ve conclude with some remarks on the possible relevance of 

our observations for mass-generation in the Higgs mechanism. 

I. EXPECTATION VALUES IN LATTICE GAUGE THEORIES 

1.1. ForlUulations without gauge fixing 


In this section, we discuss euclidean gauge theories, given by the Lagrangian 


£, = tr(F".. F".. ) + 1D,,4> 12 - V(4)), 	 (l.l) 

where F,." denotes the field tensor, D" the covariant derivative of the scalar matter 

field 4> and the potential V a polY11omial in the scalar field. We work on a lattice 

with lattice sites z. Following a method of Osterwalder and Seiler, [18] we introduce 

the matter field 4>(x) by associating with each lattice site x a pair of generalized polar 
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coordinates [R(z),9.11]' Here R(z) takes values in 14 =[0,(0) and 9. is an element of 

the gauge group G. We denote an n-dimensional vector R(z) = (R(z),O,O, ...• ,O) and 

an nxn-matrix 9.11 in an arbitrary representation of the global gauge group G by the 

same symbols. For the matter field, we wl"ite in this representation 

</>(x) =9.11R(z). (1.2) 

The gauge field is introduced in terms of the variables 9.11,.11+1" taking values on the links 

between neighbouring sites z and z +1-'. Formally, we can write these link variables as 

9.11, = exp liel' AdZ1, (1.3) 

where e denotes a coupling constant, the vector potential A (geometrically: the con­

nection) is an element of the Lie algebra L(G), associated with the gauge group G and 

the integral is taken along the path from z to y. Obviously, the 9., are elements of G. 

Now, the latticised theory, corresponding to the Lagrangian (1.1) is given by the 

action SA in a finite volume A: (18,191 

SA =PL (X,(9) - X(I»p 
(1.4)

+P'L (R(z)9;1 9z•.II+P9.11+pR(z + 1-'» - L.V' (R(z»z 

where 

V'(R(z» = V(R(z» +4(z)R2(z), (1.5) 

and 4(Z) is essentially the number of bonds in the finite volume A with one endpoint 

at z. Here I is the identity in G, the P's are constants which we do not need to specify 

for our purpose, Xp (g) is the plaquette character 

xp(g) =Tr (9.11,.11+1,9.11+1',.11+1'+"9.11+1'+",.11+,,9.11+,,,.11), (1.6) 

and XCI) denotes the dimension of the chOO8en representation. The sums are taken 

over lattice sites z and elementary plaquettes P of the finite volume A. 

On this lattice, we introduce the finite volume Gibbs measure(18] 

dJ'A = ZileSAdvA, (1.7) 
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where 

ZA =JeSAdvA (1.8) 

and 

dVA =TI dgz,TI dOzTI R1lr)dR(z). (1.9).II, .II .II 

The positive integer k in the last expression is equal to the dimension of the Lie algebra 

k = dimL(G) (1.10) 

(e.g. k = 1 for G = U(l), k = 3 for G =SU(2». 

This measure is invariant under the joint gauge transformation ""I of gauge field and 

matter field: 

(1.11)9.11 ~ OJ. =""1.119.11, 

'"1 -1 (1.12)0.11, ~ 0.11, = ""1.119.11,""1, . 

Introducing the gauge-invariant link variables 

hz, =9;19.11,9, (1.13) 

allows us to factorize the measure 

dVA = TI dh.,TI Rk(z)dR(x)TI d9z = diiATI d9.11· (1.14)
.11,.11 .II .II 

With this measure, the expectation values (f(x»A of arbitrary functions f(x) in the 

fields 

f(z) = f (R(x),9z,gz,) (1.15) 

are given by 

(f(x}h = Jf(z)dl-'A. (1.16) 

It follows directly from this formula.tion and the gauge invariance of the measure (1.6) 

that the expectation values of all gauge-dependent components fe of f must vanish, 

since 

Ul(·r.»)A = Jfc(R'"1(x),g;,O].,)dpA 
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= JIc(R(x),g:IHgZ,)dl-'f 

= JIc(x)dpA 

= (fC(X»A' (1.17) 

Since the scalar matter field has no gauge-invariant component, we conclude that the 

vacuum expectation value vanishes in lattice gauge theories without gauge fixing: 

(4)(X))A = (4)''Y(x))A = O. (1.18) 

Of course, this approach is somehow formal. One might argue that the specification 

of boundary conditions in (1.17) can upset the argument. That this is not the case 

has been shown at least for some models (e.g. scalar electrodynamics, Abelian Higgs 

model) by de Angelis, de Falco and Guerra l121 , f~llowing an earlier work of Elitzur llll . 

1.2 Formulations with Faddeev-Popov gauge 8xing 


Any lattice gauge fixing F is a modification of the finite volume Gibbs measure (1.6) 


eS
", --+ eS

'" F, (1.19) 

which leaves the expectation value (1.16) for gauge-invariant functions unchanged. This 

condition is equivalent to the Fa.ddeev-Popov gauge condition 

JITzdgzF(R(:t), hz"gz) = 1. (1.20) 

This is sufficient to ensure that the physical content of tbe theory is unaffected by the 

gauge fixing procedure. Of COU1'se, the expectation values of gauge-d~endent functions 

change in general witb the gauge fixing. To get some control over this change, we 

characterize F further. Introducing the set of global gauge transformations 9 (e.g. 

9 = eiCl , where a e [0,211') for G = U(I)). we define 

Definition 1 Fl is c.alled Faddeev-Popov gauge /izing 01 the first kind if 

JITzdgzF) (R(:t), hz"gz)f(R(x),hz"g.c) =Jdbf(R(x), hz,,99z) (1.21) 
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for any function 1 of the fields. Here 9z denotes the set of fixed field variables gz· 

De8nition 2 F2 is called Faddeev-Popov gauge fixing 01 the second kind if 

JfIedgzF2(R(x), hZll' gz)/(R(x), hz"gz) =I(R(z), hz"g~) (1.22) 

for any function 1 of the fields alld some 9'& as. in definition 1. 

All Gupta-Bleuler and Lalldau gauges al'e of the first kind. They leave the global 

gauge invariance unbroken. Tbe following pl'opositions c.larify that such a gauge fixing 

leads to a zero vacuum expectation value for lattice gauge theories in a finite lattice 

volume A. With a gauge fixing of the second kind, one obtains a non-zero vacuum 

expectation value. 

Proposition 1 For a la.ttice gauge theol'y with Faddeev-Popov gauge fixing of the 

first kind, the vacuum expectation value is zero: 

(4)(.:'))fl =O. (1.23) 

Proposition 2 For a lattice gauge theory with Faddeev-Popov gauge fixing of the 

second kind, the vacuum expectation value is non-zero: 

I (4)(z'))f2 1= RA > O. (1.24) 

Proof of Proposition 1 To prove proposition 1, we use the factorization of the 

measure (1.14) and definition 1 to write 

(4)(z'))f1 = Jg~,R(z')FldI-'A 

= J9::,R(z')F1es"'dliAIT dgzz 

= J99:,R(z')es"'dliAdg. (1.25) 

The action SA and the reduced measure dliA are left invariant by the global gauge 

transformation g. However in all nOll-tdvia.l repl'esentations of the gauge group G 

(1.26)Jgdg = O. 
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Hence the vacuum expectation value (4>(z'»r1 in (1.25) is zero.· 0 

Proof of Proposition 2 Using the factorization of the measure (1.14), we write 

(4)(Z')}~2 = Jgz·R(z')F2 dp.A 

= Jg;.R(z')F2eSA diiAIT dgz z 

SA (1.27)= 9:, Z:A1 JII , dhz,IT.dR(z)R'(z)R(z')e • 
z 

Let us recall that dR(z) is a Lebesgue measure on ~ while dhz, is a Haar measure 

on the compact group G. This allows us to write 

(1.28)f II , dh z , exp(SA(hz" R(z))} = KA(R) > 0 
z 

for every arbitrary set of fixed values R( z), since e SA > O. Hence 

(1.29)I (4)(z')}~21 = Z:A 1 Jll.dR(z)I(A(R)R'(z)R(z') = RA 

is greater than zero since ZA is finite for finite volume A and dR(z) is a Lebesgue 

measure on~, i.e. all contributions to the integral are finite and positive. 0 

II.I.S. Consequences for the continuum limit 

The relevance of finite volume lattice gauge theories for the continuum theory relies 

on the assumption that there exists both an infinite volume limit and a scaling limit 

for the infinite volume lattice theory. Within the program of constructive quantum 

field theory, the existence of the infinite volume limit and of the scaling limit has been 

shown so far for an two-dimensional euclidean U(l)-theory only. (20,21) However, the 

existence of a cluster expansion, uniformily converging in the lattice volume, has been 

shown for various models. (18) In this expansion, the expectations of local observables 

have an infinite volume limit. 

• (1.26) really means: JdgU(g) = 0 where U denotes a non-trivial representation of 

G. 

8 

Hence we take the following approach: 'We exhibit the volume dependence of I (4))A I 

for propositions 1 and 2. Then we assume the following: 

A) The finite volume expectation values converge uniformily in A. This assumption is 

motivated by the existence of a cluster expansion with the corresponding property. (18) 

B) 	The scaling limit exists and does not change the results of the infinite volume limit 

essentially (Le. non-zero infinite volume expectations do not converge to zero in the 

scaling limit). This is an assumption about the absence of phase transitions. 

These assumptions are consistent with the rigorous results, obtained so far. (18,20,21) 

They are usual working assumptions and allow a statement about the size of the vacuum 

expectation value in the continuum limit. 

For Proposition 1, this approach is straightforward. According to (1.23), (4»r1 is 

zero for all finite lattice volumes, and hence 

limA-+OO(4)}f1 = o. 	 (1.30) 

This establishes in our approach the vacuum expectation value of the corresponding 

continuum theory. 

For Proposition 2, the question whether the corresponding statement 

limA-+ooRA = Roc > 0 	 (1.31) 

holds true is nontrivial. It should be clear that (1.31) depends on the choice of the 

potential "'(R(x)) in (1.5) and there might be choices oft' such that the set of all RA 

converges to zero ill the infinite vol\l111e limit. Here we argue that there are choices of 

V such that Roo ::j:. O. E.g. for a finite volume lattice theory of the type discussed in 

section 1.1, with V~ = 0 for It - >. $ R $ It + >., VA = 00 elsewhere, 1i large enough 

and>' small enough, it is possible to show that subject to the above assumptions 

limA-+ool (4)(z')):' I= Roo > O. 	 (1.32) 

For more realistic models, technical difficulties might make such arguments hard to 

obtain. Here we conclude that the a.bove arguments justify statement [vi] of the intro­

duction: Lattice gauge theories with Faddeev-Popov gauge fixing of the second kind 

can have a non-zero vacuum expectation value. 

!) 



As already pointed out, the results of this section have been obtained by a formal 

procedure. Neither did we specify boundary conditions for finite volume lattice theories, 

nor do we have rigorous results about the existence of the infinite volume limit and the 

continuum limit. Despite of the technical draw-backs of our derivation, it is intereSting 

to check how far these results allow us to clarify the apparent inconsistencies, mentioned 

in the introduction. Subject to the technical caveats mentioned above, we conclude the 

following: 

1) 	The conventional formulation of continuum gauge field theories in Gupta-Bleuler 

gauges leaves the global gauge symmetry unbroken. It is a gauge fixing of the fi:rst 

kind which leads to a zero vacuum expectation value according to (1.30).* This is 

inconsistent with the usual assumption [i) of a non-zero vacuum expectation value in 

these formulations. To match the experimentally successful assumption of a non-zero 

vacuum expectation value with the path integral formulation, a gauge fixing of the 

second kind is required. Therefore, we have to modify the path integral measure 

analogous to (1.19) with the corrected Faddeev-Popov gauge fixing term 

F2 =F1Fa, 	 (1.33) 

where Fa is the global gauge fixing term, satisfying 

JdgFa(R(:c), hz,,9z)f(R(:c), hz"99z) = f(R(:c),hz,,9z) (1.34) 

{ef. (1.21) and (1.22)]. Replacing Fl by F, affects only the calculation of gauge­

dependent quantities. Since the vacuum expectation of the Higgs field is usually 

the only relevant gauge-dependent quantity, it is clear why one can get away with a 

Faddeev-Popov gauge fixing of the fu'st kind plus the assumption of a non-zero vac­

uum expectation value: all calculations of gauge-invariant quantities do not depend 

on the kind of Faddeev-Popov gauge fixing in the path integral formalism. 

* 	For formulations with gauge fixings which contain global unbroken subgroups of G 

(e.g. Coulomb gauge), the vacuum expectation value is zero too. This is easy to check 

with the method of proof 1, though these gauge fixings are not of the first kind. 
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2) As argued in (1.18). tile vacuum expectation value is zero in formulations without 

gauge fixing. Hence (iiI is correct. This holds true in the infinite volume limit. 

3) 	{iii} is correct but not at all astonishing in the light of our results. As we have argued 

in (1.30), gauge fixings of the first kind lead to zero vacuum expectation values. 

However, due to the possibility of gauge fixings of the second kind and their relation 

to gauge fixings of the first kind (1.33). this does not contradict formulations of *e 

same theory with non-zero vacuum expectation values. 

4) 	The non-zero large distance bebaviour of tile gauge-invariant two-point function in 

the Landau gauge is difficult to embed in this picture. The Landau gauge is Lorentz 

invariant and classifies as a Faddeev-Popov gauge fixing of the first kind. Hence we 

should obtain a zero vacuum expectation value in thls gauge. As we shall argue in 

the next section, a contl'aciiction with our results exists if and only if the cluster de­

composition property holds. However, all existing pl'oofs of the cluster decomposition 

property will be shown to break down in the Landau gauge. 
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II. THE CLUSTER DECOMPOSITION PROPERTY IN THE LANDAU 

GAUGE 

So far, we have seen that lattice gauge tbeories in a Faddeev-Popov formulation of the 

first kind have zero vacuum expectation values and that this does not contradict the 

eleetroweak theory, based on a non-zero vacuum expectation value. On the other hand, 

the large distance behaviour of the (gauge-invariant) two-point functions is known for 

Faddeev-Popov formulations without global gauge fixing: they decay exponentially in 

the temporal gauge but they do not decay in the Landau gauge. Hence, either the 

vacuum expectation value of the scalar Bose field is non-zero in the Landau gauge, 

(tP) #= 0, 	 (2.1) 

or the cluster decomposition property fails, i.e. 

limz-+ool (tP(O)¢;(z» - (tP(O»(4)(z» 1#=0. (2.2) 

Obviously, (2.2) makes it impossible to determine (tP) from the large distance behaviour 

of the two-point function. It is the possibility (2.2) which we investigate in this section. 

Two arguments motivate our approach: 

i) Although our definition of Faddeev-Popov gauge fixings of the first and second kind 

oversimplifies the problem somehow by concentrating on the effect of the global sym­

metry fixing only, all features of the Landau gauge indicate that it can be classified 

as a Faddeev-Popov gauge fixing of the first kind. According to proposition 6 this 

means that (2.1) is wrong and hence (2.2) is correct. 

ii) It is well known that the cluster decomposition property may fail in certain indefinite 

metric gauge field theories. (28) 

This section is organized as follows: In 11.1, we review the cluster decomposition 

property shortly, highlighting the assumptions on which its proof is based as well as 

the additional problems arising in an indefinite metric formalism. In 11.2, the lattice 

two-point functions are introduced on which Frohlich, Morchio and Strocchi [13,14) and 

Kennedy and King(181 based their proofs. It becomes apparent that the assumptions 

of the cluster decompositioll property are not necess8.1·ily fulfilled for these objects. 

11.3 proves that the cluster decomposition property holds in all Gupta-Bleuler gauges. 

Furthermore, some arguments 8.1'e presented which indicate that the cluster theorem 

might fail to apply in the Landau gauge. 

11.1. The Cluster Tbeorem 

The cluster theot:em gives an upper bowld on the correlations between spacelike 

separated local observables in the vacuum sector. It can be stated in the following way, 

covering the positive metric case as \vell as the indefinite metric one: (28,22) 

Cluster Theorem: Let B1, B2 be bounded local operators, localized in space-time 

regions 0 1 , O2 • Denote by r the spacelike distance between 0 1 and O2 and denote the 

vacuum sector by "po. Then the following statement holds true: 

[CT-I] 	If the Wightman functions 1-V(p!. ".,Pn) of the theory have a mass gap 1-', i.e. if their 

truncated form is always zero if p? < 1-'2 for some i, then 

I ("po,B1B2t/Jo) - {t/Jo, Blt/JO)(t/Jo, B2 r/Jo) I~ c:. e-prr 2N
• (2.3) 

[CT-II] 	If the Wightman functions exhibit 110 mass gap·. then 

I {t/Jo, B1B2tPo} - (~o, Bl '¢'o){v.'O, B2v.,o) I ~ c:2 r2N. . (2.4) 

Here, c is a constant independent of T but dependent on the norm of BJ and B2, and 

N is a non-negative integer. In the case of a positive metric quantum field theory, 

N = 0 and we are left with the classical result of Araki, Hepp and Ruelle. (22) In the 

,indefinite metric case, N ~ 1'is possible. [28) This opens the possibility for a violation 

of the cluster decomposition property in indefinite metric quantum field theories. 

Since what follo\vs strongly depends on this result, we feel it is necessary to trace 

back its origin. 

* In an indefinite metric qft, even if the physical spectrum has a mass gap, there might 

be no mass gap of the Wightman f1lnctions due to the presence of unphysical fields. 
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The classical proof of the cluste!' theorem (22,28) starts by considering functions of the 

form 

fl,2(Z) = (t/Jo,B1U(x)B2t/Jo), (2.5) 

where U(z) is the space-time translation operator, translating B2 by a distance z (re­

mark that U(-z)t/Jo = t/Jo). The essential idea is then to write 11.2 in a Jost-Lehmann­

Dyson representation and to use the known large space-like distance behaviour of the 

spectral functions in this representation. (22) This leads directly to (2.3) and (2.4) for 

N = O. It is possible if and only if the Fourier transform j(p) of 

f(x) = 11,2(Z) - h.l(-z) (2.6) 

defines a measure. (22) Loosely speaking, this means that the singularities of j(p) are 

not worse than o-functions. [28,23] In the positive metric case, it is well known that the 

matrix elements of the translation operator U(p) define measures and hence the proof 

goes through. ['loll In the indefinite metric case however, the analogous statement does 

not hold in general and i(P) denotes symbolically a tempered distribution which is not 

necessarily a measure. (28,23) However, one can use the Bros-Epstein-Glaser theorem 

that every tempered distribution with the support and covariance properties of j(p) 

can be written as 

.. N ..
f(p) = 0, g(p), (2.7) 

where 0 denotes the Laplace operator, N is a non-negative integer and g(p) is a con­

tinuous function of at most polynomial increase. [2$] Since U(p) has the same support 

properties as j(p) and defines a measure, the Jost-Lehmann-Dyson representation ex­

ists for the objects gl,2 and 92,1 defined correspondingly. (28) The Fourier transform of 

(2.7) leads then to the extra factor ".2N in (2.3) and (2.4). We conclude that 

Criterion I the cluster decomposition property can only fail if the Fourier transform 

of (2.5) is not a measure aud if the expectation value has no mass gap. 

To close this subsection, we mention a criterion which characterizes those indefinite 

metric formulations for which N = O. 
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Criterion II (Strocchi (281) If '1] = 0, then N = O. 

Here, f1 is the metric opera.tor. To clarify our notation, let us recall that two different 

bilinear forms are introduced in indefinite metl'ic formulations of quantum field theory. 

There is the indefinite product (*, *) on the Hilbert space 1£, generated via a GNS­

construction by the operation of all elements of the field algebra on .po· Secondly, there 

is the positive sesquilinear form (*, *) = (*, fl*). Constructing the maximal subspaces 

1£' = {t/J E 1£; (.p, t/J) ~ O} and 1£" {tP E 1£' j (.p, t/J) = O}, the physical state space is 

obta.i.ned as the quotient space 1£, = 1£'/1£". If [U(x), flJ = 0, then it turns out that 

the Ara.ki-Hepp-Ruelle analysis can be applied, which hnplies criterion II. 

11.2. Lattice two-point fU11ctiollS 

In the light of the above statements about the cluster property, we can investigate 

the behaviour of the two-point functions G(x,y) anew. In this section, we introduce 

these objects in a lattice formulation. There are two of them which we distinguish with 

subscripts: G1 • G2. 

Frohlich, Morchio and Strocchi (13,14] took the lattidsed two-point Green's function 

(2.8)G1(xo,xn ) =q,(xO)g.rO.rlg~lZ2· ..g~"_lz.. 4>(Zn) 

as the starting point of their analysis. They proved the exponential decay for G1 

in the Coulomb ga.uge. G1(xo,xn ) is gauge-invariant under the joint lattice gauge 

transformations, specified in (1.11) and (1.12). Tlus gauge invariance persists in the 

formal continuum limit, obtained by inserting the formal expression. (1.3) into (2.8), 

which leads to 

G( -y,y) = t/J( -y) exp [ieJ~,IA(I)dl]4>(y). (2.9) 

(2.9) is formally gauge-inva.riant under the combined continuum gauge-transformations, 

labeled by the real parameter .H 

Ap(x) ---. A,,(x) ­ JU8"x(x), (2.10) 

q,(x) ---. ¢(.l~) exp[ieJIX(J~)], (2.11) 
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where the field x(x) satisfies 

Ox(x) = O. (2.12) 

A slightly different way to make the scalar two-point function gauge-invariant was 

adopted by Kennedy and King. [16] They discussed the latticized gauge-invariant Green's 

function 

G:z(x,y) =,p(x)exp[-ieL:A"(z)h" (z)J¢(y), (2.13) 

where h" is the electric field generated by charges +1 at x and -1 at y. h" can be 

written as a covariant derivative of the potential at the point Z: 

(2.14)h,,(z) = 8"V(z - x) - 8"V(z - y). 

Under gauge transformations of the type discussed in (2.10) and (2.11), the exponent 

in (2.13) transforms fomlally as 

eL.A,,(z)h"(z) ---4 eL.A,,(z)h"(z) +eMX(x) - eMx(g), (2.16) 

which shows that G:z(x, y) is gauge-invariant. Now one uses the fact that the situation 

simplifies in the Landau gauge, where 

(2.17)8"A" = 0 

implies 

L:A,,(z)h"(z) = o. (2.18) 

Consequently, the exponential in (2.13) becomes 1 and 

G~(x,y) = ,p(x)¢(g). (2.19) 

Kennedy and King take this as the starting point for their proof that under suitable 

conditions the lattice two-point function satisfies 

I (G~(x,y») I= I (,p(x)¢(y») I~ [( > 0, (2.20) 

where I{ is independent of % and y. Furthermore they have a proof that 

lilllr ....x.G; (0, x) =0 (2.21) 

16 

in all Gupta-Bleuler gauges. 

Having presented explicit expressions for the two-point Green's functions G1 , G2 , we 

can now investigate whether the behavioul' of G(x,y) determines (,p). As explained 

above, the large distance behaviour of G(x,y) determines (,p) only if the cluster de­

composition property applies, i.e. if 

limz.... ool (G(O,x}) - (4)(O))(4>(x)) 1=0 (2.22) 

for spacelike x. 

The two-point Green's function G1(x,y) in (2.9) is supported in a region connecting 

x and y. Because of the gauge string exp[ie JA(l)dl} in (2.9), it does not cluster in 

arbitrary gauges. Hence we cannot conclude much about the vacuum expectation value 

(,p) from the large distance behaviour of G1 • 

For the two-point function G'2(X, y) in (2.19), the situation is more advantageous. 

Viewing the fields,p as local operators, the support regions of ,p(x) and ¢(y) decompose 

for large spacelike separations x - y. Hence the preliminaries of the cluster theorem 

apply and we face the choice already mentioned before: either the vacuum expectation 

value is non-zero in the Landau gauge, or there is no clustering in this gauge. 

11.2.3. The cluster theorem in covariant gauges 

Here we argue in the case of free quantum electrodynantics that what is known is 

consistent with the non-validity of the duster decomposition property in the Landau 

gauge, while it proves the cluster decomposition in the other cO\viant gauges. Though 

this proves nothing for tht:' interacting qUAntum field theories which we discussed so 

far, it can be regarded as a useful guidance, hinting at the non-validity of the cluster 

decomposition property in the La.ndau gauge. 

.First of all, it is interesting to note that the gauge-field two-point function in free 

Landau gauge QED, given in equation (2.120) of reference [23), is too singular to define 

a measure. Hence it is not possible to derive the validity of the cluster decomposition 

property from cl'iterion I. 
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Secondly, if the definition of the scalar product is altered in such a way that the two­

point function defines a measure,· the translation operator U(x) does not commute 

with the metric operator t]: 

W(X),11] ~ O. (2.23) 

This is the result of a straightforward calculation from the explicit formulations for 

U(x) and '1, given in the equations (2.135) and (2.136) of reference [23). Hence it is not 

possible to derive the validity of the cluster decomposition property from criterion II. 

From the same section of reference [23], it is apparent that 

[U(x), '1] =0 (2.24) 

in all covariant gauges except of the Landau gauge. According to criterion II and (2.4), 

this proves that arbitrary clusters decompose for large spacelike separations in these 

covariant gauges. Hence we can conclude fl'om (2.21) that the vacuum expectation 

value is zero in all covariant gauges except for the Landau gauge. For the Landau 

gauge, however, (2.2) cannot be excluded. 

• For details of such a construction. see [23] and the Erratum ibid. Vol.17, p.1930. 
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III. THE ALGEBRAIC STRUCTURE OF THE HIGGS MECHANISM 

111.1. The field algebra and its center 

In this section, we assume that the cluster decomposition property is valid at least 

in its weakest form (2.4) with N = O. Froln this we show that in a certain class of 

integral representations, the vacuum expectation value corresponds to an element of the 

center of the field algebra A. With this appl'oach we attempt to discuss the size of the 

vacuum expectation value in a setting which is not burdened with the difficulties of the 

. "lattice approach. From the notation introduced for the proof, we can indeed confirm 

the main results of section I under a different set of assumptions. This improves our 

argument that the cluster decompositioll property does not bold in the Landau gauge. 

Furthermore, this additional characterization of the vacuum expectation value leads us 

to new conceptual questions about the nature of mass-generation through the Higgs 

mecha;wism. 

The methods we employ are essentially algebraic. 'We start from the set of Wightman 

fields 1P(f), defined on a given Hilbel·t space 'H, with a cyclic vacuum vector.p. Here, 

f e S(R'), the set of infinitely often differentiable test functions which together with 

their derivatives approach zero faster than any power of the distance and IP is an 

operator-valued distribution on this test function space. Then we proceed formally 

by assuming that the 'Vightman fields 1P(f) correspond to elements c/>(f) in tbe set of 

bounded operators 8('H,) acting on tbe Hilbert space 'H,. 

c/>(f) e 8('H,). (3.1) 

This assumption leads to a heuristic passage from the set of Wightman fields to a net of 

local field algebras, thereby sidestepping some deep-rooted technical difficulties. 121.27) 

Concretely, for all functions f with compact support in the space-time region 0, we 

consider the c/>(f) to be elements of a local algebra A(O). The algebra A is regarded 

as the set-theoretic union U.,A(O) of all 04(0) together with its norm-closure. For 

the elements of A, isotony, local commutativity and Lorentz covariance are assumed. 

Having obtained this net oflocal field algebras in a defining (vacuum) representation, 
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we might consider it to be an abstract algebra .A which can be represented in other 

representations 71' too. 

In what follows, we consider the complete algebra .Ac.containing the gauge-dependent 

matter fields q,(f) [ef. (1.2)] as well as all the other local bounded fields of the theory 

under consideration. This algebra corresponds in our approach to a local and covariant 

Wightman field theory connected with a nontrivial local gauge transformation. A 

theorem of Strocchi states that tbe metric in the state space of such a Wightman 

field theory cannot be positive definite. (11,23,28,34) For such theories, there exists a 

modification of the notion of state space, known as Strocchi-Wightman field theory 

and amounting to an indefinite metric formalism of the type introduced by Gupta and 

Bleuler. (23] An axiomatic setting of such a local and covariant gauge quantum field 

theory has been given by Strocehi. (11) One considers the fields as defined on a Hilbert 

space 11. with scalar product (*, *). The physical expectation values are computed in 

terms of a bounded, hermitian product <*,*) = (*,'1*) with metric operator '1. This 

product is positive semidefinite on a nontrivial and maximal subspace 11.' C 11.. The 

space of physical states 11., is then defined as the quotient space 11.'/11." where 11." 

contains all elements of 11.' with vanishing <*, *)-norm. There exists then a common 

dense domain D' c 11.', stable under the action of the Poincare group, such that the 

translationally invariant state 1/1 E 'H, is a cyclic vector of the local field algebra and 

'" E D'. We shall adopt these concepts. proceeding formally by assuming that all local 

fields correspond to elements in the set of bounded operators 8(11.) acting on the Hilbert 

space 11.. Having obtained this net of local field algebras in a defining representation, 

we might consider it to be an abstract algebra .Ac whlch can be represented in other 

representations 71' too. 

We are interested in integral representations of the field algebra over arbitrary com­

pact spaces A. Therefore, we consider the direct integral representations (11.,71') of the 

algebra .Ac with (30) 

'H. = f~dl,(A)'H." (3.2) 
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w =f~dl'(A)~', (3.3) 

obtained from the cyclic translationally invariant state 

~,= f~dl'(A)~'(A), (3.4) 

Here A is a compact measure space with Borel measure p., ?b(-') is a cyclic vacuum 

vector of the irreducible space 11.>. for 71'>.(.Ac ) and the scalar product on 11. is defined 

as* 

(?bA,,,pB) = fA dp.(-')(?b.4.(-'), f/.'B(A». (3.5) 

Hence 

("pA, 71'(D)tPB) = fA dp.(-')(~).4(~\)' 71'>.(D)"pB(A». (3.6) 

Furthermore, the metric operator TJ can he written as a direct integral over the YI>. which 

define the <*, *)-norms on 11.'>.. 

T/ JAdp(-,) '1>. (3.7) 

and hence 

(?bA, 71'(D)?bB) = (lo'A, l]r.(Dh!'B) 

= fA d,L(-')(tt'A(-'). 71'>.(D)tPB(-'» 

= fA dp(-')( $A(-').1]>.7I'>.(D)c'B(-'». (3.8) 

Our main result concerns the quasi-local quantity 

A4J(f) = limo-+oo I01 loa'J xa,d<p(!), (3.9) 

where a~ denotes the space-time trunslation automorphism and 10 I is the volume of 

the finite space-time region O. TIllS object will be constructed from 

~ 1 J 3¢v -1' 
, 1/

cl iO:t(¢(f», (3.10) 

* For notational convenience, we drop the direct sum symbol EB in what follows. 
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where Q~ is the space translation automorphism and V is a finite space volume. To see 

that the integral (3.10) is well-defined, we mention that the operator norm II Q~(4)(f)) II 

is independent of f and that this norm is subadditive. (29) Hence the integrand can be 

bounded from above. We only have to .check local integrability which is given in the 

sense of a Bochner integral (the generalization of the Lebesgue integral to integrands 

with values in a Banach space), if Q,t is strongly continuous. Hence (3.10) is well­

defined. 

These are the necessary preliminaries for the following proposition: 


Proposition 3 


Assume the cluster decomposition property in its weakest form (2.4) with N = O. 


Given a direct integral representation ('fl, 1f') of Ac: over a compact space A and a cyclic 

translation invariant vacuum state tP e 'fl. 

3.1. 	~(f) exists as a weak limit in the locally convex topology defined by the (*, *)­

seminorms and is an element itl 8('fl). 

3.2. 	~(f) e Z(1f'(Ac:)") , the center of the bicommutant of 7r(Ac:). 

To prove Proposition 3, we require the following lemmata: 

Lemma 1 Assume the cluster decomposition property in its weakest form (2.4) with 

N = O. Given an irreducible representation ('fl,7r) of Ac: and a. translation invariant' 

cyclic vacuum state tP e 'fl'. 

1.1. 	~(f) = limv-+QO~v(f) exists as a weak limit in the locally convex topology defined 

by the (*, *)- semi norms and is an element in 8('fl). 

1.2. 	~(f) is a c-number. 

Lemma 2 For all irreducible representations (1{" 7r), 

¢(f) = ¢(f). 	 (3.11) 

Let us start by proving the lemmata. 

Proof of Lemma 1 ('fl,7r) is obtained from the cyclic state t/J, i.e. the set 1f'(Ac)tP 

is dense in 1£. Fl'onl this dense subset. we choose arbitrary vectors tPA 7r(A)tP, 
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tPB = 1f'(B)tP, where A, B e Ac are observables with bounded localization in space­

time. Then we consider the sesquilinear form 

(tPA,~\,.tj.IB) = VJVcfX(tj.IA. 7r(Q;t(¢(f»)tPB} 

=VJvcPx(tP,1f'(A*)[7r(Q.t(4>(f))),7r(B)]tP} 

+irJ d3x(tP, 7r(.4· )7r(B)1f'( Q.t( 4>(f» )tP}· (3.12) 
v 	 v 

In the first term of (3.12), the commutator is only non-zero, if Q~(4)(f)) lies in the 

causal shadow of B.* This is only the case for a finite volume V, and hence we write 

1I VIJ v d3 f(t/1, 1f'(A*)[1f'(Ql'(4>(f»), 7r(B)]¢} IS yCIV" (3.13) 

where Cl is a finite real constant. To reformulate the second term in (3.12), we use the 

clustef decomposition property (2.4) for N = 0 in the following form: for A., A2 e A 

and tP the cyclic vacuum, 

I {tP, 7r(Ad7r(Q.t(A2»fJl} - (f/J, 7r(.4d¢){tP, 7r(A2)tP) 1< C(f), (3.14) 

where 

I C(x) I < C2~2 (3.15)
Iz I 

for Iz I> 1 and C2 a finite constaut. This allows us to write 

VJV d3f{fJl, 1f'(A*)7r(B)7r(Ql'(¢(f»)tP) 

= .;,Jv cPx{tP, 1f'(A*)7r(B)¢I){tP, 1f'(Q.t(4>(f»))tP) +C2(V), (3.16) 

where C2(V) is a correction term. Using a set of increasing concentric spheres .with 

radii R for the volumes V, equations (3.14) and (3.15) lead to an upper bound on C2: 

• 1 2 11 JRI C2 (l- ) I :5 C3 R3 + Col R3 1 47rr r2 dr, (3.17) 

* The causal shadoW' of an element B of tile local field algebra A is the unification of 

the forward and backward cones of those points in space-time ill which B is localized. 
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where C3 and C4 are finite constants. Here, the first term comes from integrating in 

(3.16) over I f I < 1, the second term from I f I > 1. FUrthermore, the vacuum is 

homogeneous (translationally invariant), which allows us to write 

3VJvd f("p. "(A* )"(B),pH"p, 1r(a~(t:!>(f»)"p) 

3 
= VJv d f("p,tr(A*)"(B)"pH"p, 1r(t:!>(f»"p) 

= ("p, 1r(A*)"(B)"pH"p, 1r(t:!>(f»"p). (3.18) 

Combining the equations (3.12)-(3.17), we can write 

(tPA, 4>vtPs) = (t/J, 1r(A*)"(B)t/J}{"p, 1r(~(f»"p) + C1(V) +C2(V), (3.19) 

where C1(V) denotes the left hand side of (3.13). From (3.14) and (3.17) it follows that 

limv-+ooC1(V) = 0; (3.20) 

lim\,,-+ooC2(V) =o. (3.21) 

Since the first term in (3.19) has no volume dependence, it follows that 

limv-+oo("pA,~v(f)t/JB) = ("pA,4>(I)"pS) 


= (tb, "(04* )"(B)¢')(t,b.1r(t:!>(f))"p) 


= (tPA, ¢B}{t/J, "(¢(f»"p) , 
 (3.22) 

for all tPA,tPS of a dense subset of rt. Hence, ~f) exists as a weak limit of 4>v(f) and 

J,(f) = (t/J, 4J(f)t/J) . I, (3.23) 

Hence 4>(J) e B(rt) and ~(f) is a c-number in all irreducible representations. 0 

Proof of Lemma 2 \Vith (3.18) and (3.22), it follows from the time translation 

invariance of the vacuum that 

(t/JA. O't (4)(f)) rI'B ) =(V', "(A*)"CB)"p><"p, 4>(f)"p) , (3.24) 
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where at denotes the time tl'Rnslation operator. Hence, defining for finite T 

. 1 JT ~ (3.25)rPT(f) = 2T _/ltCtt(<!>(f)), 

we obtain 

(t/JA.;PT(f)~'B) = (t/JA,~(f)"pB). (3.26) 

Hence, the left hand side is independent of T and it follows 

limT-+oo(~'A'~T(f)t/JB) = (t/JA,~(f)t/JB)' (3.27) 

o 

Remark that the methods, used to prove the first lemma, do not apply to ~(I). The 

causal shadow of a local observable B iutersects with the support of 4>(1) in an infinite 

region of space-time. But it is for (3.13) that ~(f) intersects with the causal shadow of 

B in a finite region. This is the case since ~(f) is supported in a finite time slice only. 

Furthermore, it is interesting to note that there is a second way to prove Lemma 2, based 

on a theorem of Araki. [29] This theorem states that in all representations in which the 

space-time translation group is strongly continuously and unitarily represented, every 

element of the center commutes with all space-time translation operators. Lemma 2 

can be seen as a direct consequence of this theorem. More generally, every quasi-local 

quantity, smeared out over space as in (3.10) and commuting with all local observables, 

is to the same quantity in alll'epr('scnt.ntions equal, smeared out in the time direction, 

too. 

Lemma 1 and 2 provide a pl'~~f of Proposition 3 for hTeducible representations. To 

complete the proof ~f Proposition 3, we extend these lemmata to integral representa­

tions over arbitrary compact spaces A. 

Proof of Propositioll 3 'Vc start from (3.19) to reformulate the right hand side of 

(3.8) 

{tI'.rl. ¢\,(f)~'B) 

=JAdJ.l(,\){tf·(A), j'r,\(.·e )7r,\(B)¢,('\){t,b(A), ",\(¢(f))lt·(,\)) 
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+JA dp(A)(tP(A), tP(A))(C1(V) + C2(V)) (3.28) 

Using (3.20) and (3.21), we conclude that the infinite volume limit exists: 

(tPA,¢(I)I/JB) =limv-+oo(tPA,¢v(f)tPB) 

= JAdp(A){tP(A), 1f.\(A.o )1f).(B)tP(A»)(tP(A), 71".\ (4)(I))tP(A)). (3.29) 

Since all cyclic (vacuum) vectors tP(A) are homogeneous by construction, the general­

ization of Lemma 2to this case is straightforward and we obtain: 

(tPA,4>(I),pB) = (tPA,¢(I)tPB). 	 (3.30) 

This establishes proposition 3.1. To establish ~.2, it is sufficient to decompose the 

integral representation of 4>(1), 

4>(1) = JAdp(A){tP(A}, 1f.\(4)(I))tP (A»l.\, (3.31) 

where 1.\ is the identity 011 the subspace 1-£.\. (3.31) lies in the commutant of all 

decomposable operators. Hence it lies in the center of the bicommutant of 1I'(Ac) by 

the von Neumann bicommutant theorem. 0 

111.2. Integral representations of the field algebra 

We have seen in the last subsection that 4>(1), defined in (3.9), lies in the center of 

the von Neumann algebra 1I"(Ac)" for all integrals of vacuum representations (11.,11') of 

Ac over a compact space A. From (3,23) and (3.30) one can see tbat 4>(f) is closely 

related to the vacuum expectation value of the Bose field. However, before discussing 

the consequences of this observation, we might use the notation introduced to discuss 

the size of the vacuum eXl>ectation value in a setting which is not burdened with the 

technical difficulties of the lattice approximation. Hence, we attempt to confirm the 

main results of section I about the size of the vacuum expectation value by specifying 

special integrall'eprescntations in this subsection. 
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We consider integral representations of the form (3.2) - (3.4) in which the compact 

space A is the global gauge group G. 

(3.32)A=G, 

i.e. 	we have a manifold isomorphic to G of "degenerate vacua" tP(g) for all 9 E G. 

In analogy to the defillitiolls of section I, we define now two different Hilbert spaces 

J (3.33)
tt = Gdp.(g)tt, 

by specifying two different measures: 

Definition S (tPA, tPBh is called a scalar product of the first kind, if P. is a Haar 

measure supported by all 9 E G, (p(g) =dg), i.e. 

(3.34)
(tPA, tPB)1 =JG<lg{,p(g), 7I"g(A.o)7I",(B)t/1(g». 

Definition 4 (tPA, tP B h is called a scalar product of the second kind, if p. is supported 

at one point 9 E G only, i.e. 

(tPA, tPB){ 

= JGdg~D(9)(tP(g), 7I"g(A.-)7I",(B)t/J(g» 

(3.35)=(t/J(g).1fj(A*)7I"D(B)t/J(g». 

While (3.34) is an inner product\ defined on 1-£, (3.35) is an inner product on the 

irreducible Hilbel't space 1-£" Our motivation for defining (3.35) as a scalar product 

of the second kind is to choose OUl' concepts as closely as possible to the path-integral 

formalism. In what follows, this path-integl'al formalism is considered to be a special 

method of calculating the scalar pl'ocluds (tI'A, t.:.~). In section I, we have seen that 

the measure of the path-integl'al can be factorized into separate integrations over the 

local and global parts of the gauge p'oup. Here. we decompose the Hilbert space tt 

into irreducible representations, labeled by the elements of the global gauge group G. 

Hence, (3.34) corresponds to the definition of the Faddeev-PopOV gauge fixing of the 

first kind (1.21), while (3,35) COl'l'csponds to (1.22). 
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Now it is interesting to obtain a relation between the different irreducible Hilbert 

spaces 11.,. Therefore we try to characterize the properties of the set of maps {U(g)}, 

gEG, 

U(g') : 11., -+ 11."" (3.36a) 


U(g') : tt,(g) -+ 1/J(g'g) =U(g')1/J(g), (3.366) 


which establish a one-to-one correspondence between the different irreducible sub­


spaces. One defining property of these maps is the fact that the 1f', are unitarily 

equivalent if restricted to gauge invariant fields, i.e. 

U(g') : 1f';{D) -+ 1f'g,,(D) = U(g')1f',(A)U(g,-l) (3.37) 

for all gauge-invariant fields A E .Ac• From (3.36b) and (3.37) it follows that 

, 1',(1/J,1f'(A)¢,), = (1/J,1f'(A)1/J)2 (3.38) 

for all gauge-invariant fields A. 011 the other hand, (3.38) and (3.36b) imply (3.37). 

Hence, (3.38) does not hold for gauge-dependent fields. 

To further characterize the relation between the vaeuum expectation values on dif­

ferent Hilbert spaces, we consider the set of maps {U(g)}, 9 E G 

U(g'): V -+ V (3.39a) 

U(g')ID(g) = ID(9'9)· (3.396) 

Here, V denotes a subset of the set of functions on G and inherits the vector space 

structure from it. V consists of functions of the type 

ID(g) = (tt" 1f'(D)¢)~, (3.40) 

where DE .Ac• \Ve conclude that the map U(g') in (3.39b) has to be defined by 

U(g')( {1/J, 1f'(D)tb)I> =('Ib, 1f'(D)1/J)f' = r(D,g')(1/J, 1f'(D)1/J)=, (3.41) 

where r(D, G) denotes a representation of G on the vector spa.ce V. From the above 

remarks it follows that 
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i) r(D,g) = 10 for all 9 E G, if D E Ac is gauge-invariant under G. 10 denotes the 

identity on V. 

ii) reD, G) is a faithful representation of a nOll-trivial subgroup of G if D E Ac is gauge 

dependent. 

The physical reason for these criteria is obvious: we require that the vacuum ex­

pectation values of gauge-independent observables of Ac do not depend on the chosen 

degenerate vacuum tt'(g) while the expectation values of gauge-dependent fields do 

depend on this choice. From this the following corollary is easily obtained: 

Corollary Assume that t:/>(f) E Ac is a local field, gauge dependent under the action 

ofG. 

C.l. If.Ac is represented on 11., equipped with the scalar product (3.34), then 

4>(f) = O. (3.42) 

C.2. If .Ac is represented 011 11.g, equipped with the scalar product (3.35), then ~(f) is a 

c-number times 1 and can be non-zero. 


Proof of the Corollary C.l. From (3.34) and (3.41) follows that 


(tt', 4>(/),p) 1 =J0 (tt'(g), 1f',(¢(/))¢(g));dg 

=JGr(4),g)(1,b(go}, 1l'go(q)(f»,p(90»~Odg. (3.43) 

Since 4>(f) E .Ac is gauge-dependent. ,,(D. G) represents a non-trivial subgroup of G 

faithfully and hence Jo"(¢(f),g)dg =O. 0 

C.2. states nothing but the Lemma 1.2, for the special irreducible representation 

of .Ac Dn 11.,. 'Especially, it is consistent with the structure of the field algebra Ac to 

choose a representation such that (~(g), 1f'g(¢(f)}~'(g» :f: O. 0 

In this subsection, we have given a reformulation of the discussion carried out in sec­

tion I. Clearly, there has been a conservation of technical difficulties. Our first attempt 

is based on tbe assumption that neither the notorious problems of the continuum limit, 

nor the effects of boundary ("onditions on the infinite volume limit can upset our argu· 

ment. This second attempt relies on the assumptions that bounded localized objects 
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<II. 

¢U) can be made out of the fields ",,(f). Despite these technical caveats, it is interesting 

that in two conceptually different a.pproaches we obtain essentially the same informa­

tion: the vacuum expectation value is zero, unless the global symmetry is removed 

from the path integral (section I). or V~\Cl\um manifold (section III) respectively. This 

improves our argument about the additional problems in the Landau gauge: in this 

subsection, the Landau gauge is fonnulated with a set of degenerated vacua, isomorphic 

to G, Le. it is an integral representat.ion on a Hilbert space (3.31) with dJ.'(g) = dg. 

This observation leads us to the same conclusion as at the end of section I: If the re­

sult (~.tO) of Kennedy and ](ing, obtained for a lattizised abelian Higgs model, persists 

in the continuum limit, then the cluster decomposition property does not hold in the 

Landau gauge. 
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CONCLUSION 

In this work, we have introduced a simple classification of Faddeev-Popov gauge fix­

ings into gauge fixings of the first and s('co11d kind. The Faddeev-Popov gauge fixings 

used in the literature are of the first kind and do not remove global gauge symme­

tries from the path integral expression. Faddeev-Popo\' gauge fixings of the second 

kind, however I break local and glohal gauge sYlllmetry. In two different approaches, 

based on different ass11l11ptions, we have 8ho\\'n that the vacuum expectation value 

of the Higgs field (as of all gauge-dependent quantities) is zero in all path·integral 

formulations with Faddeev-Popov gauge fixings of the first kind while path integral 

formulations with Faddeev-Popov gauge fixings of the second kind allow for non-zero 

vacuum expectation values. Furthermore, we have pointed out that these different path 

integral formulations correspond to different inequivalent representations of the field 

algebra. Faddeev-Popov gauge fixings of the second kind correspond to irreducible rep­

resentations while Faddeev-Popov gauge fixings of the first kind correspond to direct 

integral ones. 

One non-trivial observation stemmillg from this classification of Faddeev-Popov gauge 

fixings is the exceptional behaviour of the Landau gauge. Our arguments show that 

the generally used assumptions in lattice field theory and in continuum path integral 

formulations are consistent with the l'esults in literature if and only if the cluster de­

composition theorem fails to apply ill the Landau gauge. In section II, we have traced 

back the root of this except,iollnl behaviour: in the Landau gauge, the matrix elements 

of the tran~lation operators are too singular ~o define cOn;lplex measures. This result 

whicb· h~ been established rigorously for free quantwn electrodynamics, upsets the 

proofs of the cluster decomposition theorem. 

Furthermore, we have obtained an algebraic characterization of the vacuum expecta­

tion value: the vacuum expectation value call be understood as the expectation value 

of an element which lies in the center of the weakly closed field algebra in a suitable 

representation. Let us conclude this work b~' pointing out to the possible relevance 

of this observation. On Elll algehraic lew'l, the rime evolution of a physical system is 
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described by a one-parameter automorphism OCt acting on the field algebra. In general 

however, 0, is not defined on the norm-dosed algebra A, but on its weak extension 

",(A)" in a suitable class of representations iT, i.e. the time evolution of the system 

does involve both local quantities. and quantities which are obtained as weak limits 

of such local quantities. [31-33] In the non-relativistic case, this property of the alge­

braic time evolution and its connection with spontaneous symmetry breaking has been 

clarified. [31) If the interactions are sufficiently long range then elements of the center 

of ",(A)" can get involved in the dynamical description. In simple lagrangian model 

theories, it has been shown that these elements of the center of the field algebra appear 

in the lagranian and/or in the equations of motion. (15) If these elements of the center 

are not left invariant under gauge trallsfonnations, then the gauge-invariance of the 

lagrangian and/or the equations of motion is broken by specifying an irreducible repre­

sentation. This process shows all the cllaracteristics of spontaneous symmetry breaking 

but it does neither involve an additional scalar field (as the Higgs mechanism), nor does 

it lead to Goldstone modes. [15,33] Now, we have seen in Proposition 3 that the vacuum 

expectation value of the Higgs field can be interpreted as an element of the center of 

the field algebra, restricted to a c-number in irreducible representation while being zero 

in direct integral ones. This ''acUUlll e>..-pectation value appears in the lagrangian of the 

Glashow-Weinberg standard model to give masses to the fermions and gauge bosons. 

On the other hand, the phenomcnologicall'f"leyance of the dynamical field tP is unclear: 

the Higgs particle ha'J not been obsc1"\"(xl. Hence, Proposition 3 motivates the search for 

other objects in the center of the field algebra iT(A)", which have the same properties 

as ~ but do not involve the dynRmical field tP. In a companion paper, we shall report 

on such attempts. 
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