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1. Introduction

The aim of this note is to study Kahler surfaces satisfying certain natural geometric

conditions, and admitting an isometric action of SU (2). We shall restrict ourselves to
metrics of the form

9 = (abc)’dt® + a0l + b*a3 + Po? (1)
where 0y, 03,04 are invariant one-forms, t is a coordinate orthogonal to the orbits of

SU(2), and a,b, ¢ are functions of ¢ only. It will be helpful to introduce the standard
variables w;, ws, w3 defined by

wy = be, wy = ac,wy = ab (2)

&

The three special kinds of geometry we shall consider on our Kahler surfaces are

() Zero scalar curvature

(b) The Einstein condition

(c) Coustant sc;lu curvature (the Yamabe condition).

The first and second conditions are, of course, special cases of the third.

Pedersen and Poon [PP1) showed that if the equations
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wy = waw;+aw
W, = wiws+ ows 0 1160 DO21735 0
w'z = ww

are satisfied, where a is a constant, then the metric (1) is Kahlerian and of zero scalar

curvature. If w; = w, the resulting metrics are those of LeBrun [L].

One purpose of this paper is to show that the Pedersen-Poon solutions are essen-
tially the only scalar-flat Kahler but non-hyperkahler metrics which can be expressed
in the form (1), that is, in diagonal Bianchi IX form. We remark that SU(2)-invariant

hyperkahler metrics in complex dimension two have already been completely classified
[AH],[GP].

We also derive a set of equations in wy, w,, w3, expressing the condition that the
metric be Kahler-Einstein with nonzero Einstein constant. In the case when two of the
w; are equal we can explicitly write down the metric, which is one found previously by
Gibbons, Pope and Pedersen [GP],[Pd].

Finally, we produce a system of equations in the w; which are essentially equivalent
to the metric being Kihler-Yamabe, that is, Kahler and of constant scalar curvature.

If two of the w; are equal we obtain the metrics of [PP2].

2. Kahler forms

Suppose that we have a diagonal Bianchi IX metric expressed in the form (1)
g = (abc)dt? + a’o? + BP0} + o)

where a,b and ¢ are functions of ¢, and o; are the invariant one-forms satisfying

doy = o2 A oy etc. Explicitly




gy = —costdd—sinvsinddo
g7 = siny df —cosysinbdo -
o3 = ~—~dyp—cosbdd

where 8, @, ¢ are Euler angles on the SU(2) orbits.

The vector fields dual to dt, oy, 04,03 are %,X‘,XQ,X3 where

d sinv 8 ., 0
X, = «cos;bé-g—ma;-i-cowsmvb-a-&;
., 0 cosu @ 7]
X; = sxnww-m%-kcotﬁcosw%
a
X3 = --—a!b.

We have the relations

and

[X1, X2 = =X3 and cyclically.

Let us assume that the metric is Kahlerian but not hyperkahler. Therefore the
space of covariant constant two-forms will have dimension less than three. However
this space is a real representation of the isometry group SU(2) and hence will be acted

on trivially by this group.

Now the Kihlexj form on a surface is always self-dual, so we deduce from the above

remarks that our Kihler form Q is given by

Q= AW + BT + C()F 3)

where A, B, C are functions of ¢ only, and
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egAey+e3Aes

coNer+ezhe

egNe3t+eg Aey.

Here ¢y = abc dt, ey = agy,e; = boy, e3 = cos defines an orthonormal coframe for

Now the condition d) = 0 is equivalent to the equations

(Abe) = Aalbe (4)
(Bac)) = Bab'c (5)
(Cab) = Cabe®. (6)

If we now introduce the standard variables wy = bc, w; = ac,ws = ab and define

functions «, 8,7 by

w, = waw;+ow (M
wy = wws+Puws ®)
wy = wywy+ywy 9

then the equations (4-6) become

A = —aA (10)
B = -8B (11)
C' = —+C. (12)

We see that for each metric g there is a 3-dimensional space of closed, selfdual,

SU(2)-invariant two-forms, which are candidates for Kahler forms.
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3. Integrability

Given such a form Q we can use the metric to define an endomorphism I of the tangent
bundle by

9(IX,Y)=(X,Y)

With Q given by (3) the endomorphism is defined by

a

Iz = AwXi+BunX +CuyX,s (13)
Ad  Cw_, Bus

Xy, = e T + —w-;—}-z - ";DTXJ (14)

1, = B2 _Cuy  Aws, (15)
w0t  wy wa

IX; = __C_E.q. .Bi.u_,‘_xl - i‘ﬂX,. (16)
ws ot w3 wa

Moreover I is an almost complex structure if and only if A’ + B2 +C? = 1.

If the above constraints on A, B, C are satisfied then Q2 is a Kihler form precisely

when [ is integrable. Let us now check when integrability holds.
Assume first that A is not identically £1.

Then we can take

X1 = —a— - iwaX; - 3Bw!x2 - ij;;X:

at
and
iAd iCw, iBwy
= ———t Xy - —— X3 + —X;
X2 ) at 1 wy ] . 3

as independent (1,0) vector fields.
Their Lie bracket is given by

a
IX1,X2]=P5+QX1 +RX: + 85X,

where
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Using the equations (10-12) we can simplify these expressions to

1A wywsy
= -2+ 222
un wy
Wy
wy
iCw, wewy
= “Z(y-B+a+ =2
u ( wy )
Wo Wy
w,
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(1-B-a—- 2223

Now {x1,X2] is a (1,0) vector field if and only if the following equations hold.

uy wy w3
AmP—-ig-SpBug _
2 ws
BunP+ $¥0 —in- 25 _
wy wa
Bu, Auwn

CusP - —2Q+ 2R —is = o.
wy urn

On substituting in our expressions for P,Q, R, S these equations reduce to

ad = —iBC(y-f)
a(1+4%) = (B'-C"1-8)
(C—iAB)(a—B+1) = 0
(B+iAC)y~pf—a) = 0

(17)
(18)
(19)
(20)



From (19) we see that 3 =a ++~ or C =idB.

In the former case equation (20) implies that &« = 0 or B = —iAC. f a =0
then 3 = <. If, on the other hand, a # 0 and B = —iAC, then (17),(18) imply that
a = C*3 ~ ) and hence C? = 1. It follows from (12) that ¥ =0 and a = .

Similar manipulations in the case C = iAB lead to the conclusion that either

a=08=yo f=0,a=1.
In the case A =1 we can take

J . . LW
—a‘? -zw,X. ) ,\; —lw—:X3

as independent (1,0) vector fields. Imposing the integrability condition leads to the

equation

2

wy,, wwi

wy — (=2 = 2123
! (U)g) wi

which implies that 3 = v. We also have @ = 0 because A =1. The case A = —1 is

similar.

We have shown, therefore, that our metric is only Kihlerian in the following three

cases
(i)a=0,8=7
(i 3=0,a=7
(iii) v=0,a = 4.

In fact, it is straightforward to show that in case (i) we must have either B=C =0
orelse @ = f =+ =0 (in which case our metric is hyperkahler). Similar statements

hold, with appropriate permutations, in cases (ii) and (iii).

4. The scalar-flat condition

Let us now require that the scalar curvature R,ciar is zero.

Using the expressions of Pedersen-Poon [PP1] for the connexion forms of the metric
we can calculate the Riemann curvature tensor and hence the scalar curvature. We

find that

-1
Ricotar = -m(2a’ +28+ 27+ + P+ = 2B -287-22a7) (21)

4w1
Comparing with the expressions of (i),(ii),(iii), we find that the scalar-flat condition

forces a, 8,4 to be constant.
We summarise our results as follows.
Theorem 1

The only scalar-flat Kahler metrics given by (1) which are not hyperkahler are (up

to permutations) those given in [PP1]. O

5. Kahler-Einstein metrics

We can also use the techniques of this paper to study Kahler-Einstein metrics of the

form (1). We assume that the Einstein constant A\ is nonzero, so the metric is not

hyperkahler.

The Einstein equations ia terms of a, b, ¢ are

at - (b’ - cz)z

[

2(4““:)' + 2A(abe)’
2(%)’ +2A(abe)? = ¥ (P ~-d)?
2(%)' +2A(abe)? = & ~(b*—a’)?

' 7 I
4(‘:—{ + %— + %) +4A(abe)® = —a*—b' -t + 2% + 2627 + 2c%a?

Let us assume that our metric is Kahler. From the discussion in sections 1-3 we
can without real loss of generality take a = § and 7 = 0. Using (2) and (7-9) the

Einstein equations reduce to the constancy of A and the relation

8
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a=-Auw}
so we obtain the following result.
Theorem 2

The Kahler-Einstein metrics of form (1) which are not hyperkahler are given, up

to permutations, by solutions of the equations

wywy — Awdun

wl =

wy = wwy— Awlw,
'

Wy, = wu,

a
If wy, = w, then the solution to these equations is
wy = wy = f(w})
where

)
wy=wl = =Awd +v

3
and v is a constant.
After making the substitution wy = p?/4 we arrive at the Kihler-Einstein metric

A
6
which was obtained in [GP] and [Pd].
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g=(1 p+p‘) dp +4p(a,+a,)+4p(l 6p+p4)°°

6. Kahler-Yamabe metrics
Finally, we consider K ahler metrics satisfying the Yamabe condition, that is, constancy

of the scalar curvature. Taking a = 8 and ¥ = 0 as before, we see from (21) that the

scalar curvature is given by

¢

a

R ¥ = -
scolar Wy Wt

so the Yamabe condition is equivalent to
o = 2w ww;
for some constant «.
As v = 0 this is equivalent to

o = 2xwiw;

and hence to
ey
a=kw;+ A

where A is a constant.

From Theorems 1 and 2 we see that x = 0 is equivalent to scalar-flatness, while

A = 0 is equivalent to the Einstein condition.
Theorem 3

Kahler-Yamabe metrics of the form (1) which are not hyperkihler are given, up

to permutations, by solutions of the equations

was + wl(xw§ + t\)

7

wy =

wh = wwy+w(xw]+ 1))
’

wy = W Wwe

[w]

As in section 5, we can write down the metric explicitly in the case w; = w; (that

is, when the isometry group is U(2)). It is
1
g=A"tdr? + zr’(a;‘ + ol + Add)

10




where

A=+ % - 8;;1 + _1_’%{‘_ [PP2] H. Pedersen and Y.S. Poon. Hamiltonian construction of Kahler-
Einstein metrics and Kahler metrics of constant scalar
and &, A, ¢ are constants.
curvature. Commun. Math. Phys. 136 (1991) 309-26.
This is the family of Kahler-Yamabe metrics discovered by Pedersen and Poon in

(PP2].
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