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such that any two of them commute. That, of course, is what we mean by integrability.

The paper begins (section two) by illustrating the above programme for a simple model
whose Hamiltonian is

Hy = }(p? +42? + p} + 23), (11)

for which it is known [1] that solution by separation of variables in parabolic coordinates is
of considerable interest. We discuss this in a way that makes clear that the model is ripe
for a wide range of generalisations, whose integrability may not be a priori at all obvious,
although that of (1.1) itself is. At this point one such generalisation may be cited. It has

the Hamiltonian

H = }(p} + 427 +16f2}) + }(p} + 23 + fz}) + 6fz}z3. (1.2)

Details for it are given below.

The simple example sets the scene for the development of a more substantial study. In
section three, we apply our approach to the Neumann model [2], whose integrability at the
classical level is discussed in [3,4]. For the simple Neumann model describing the motion

of a particle on the sphere SV=1 in the presence of forces corresponding to the potential

U, = %‘ Zlﬁ:x exzl, (1.3)

Uhlenbeck [3] proved integrability at the classical level by exhibiting a set of N — 1 inde-
pendent conserved quantities, which include the Hamiltonian, and such that any two have
zero Poisson bracket. A recent paper [5] discussed the model in detail and demonstrated,
amongst other things, integrability by separation of variables. We extended this recently
[6] to allow for the addition to (1.3) of the potential of Rosochatius [7]. Here we reformu-
late the process of separation of variables for the quantum Neumann model, following the
approach employed in section two. In this way we show that the potential term (1.3) allows
for a wide range of generalisations, some well-known like the Braden potential [8,9], others
: new here, all of which leave the separability propetties of the model intact. In addition, we
show how the process of separation of variables explicitly leads (by a procedure of rather
general applicability) to a set of N — 1 integrals, which includes the Hamiltonian, and such
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that any two of them commute. These integrals are an alternative set to the Uhlenbeck
integrals.

Our work on the Neumann model is divided into seven subsections: introduction, notation,
determinantal identities, separation of variables, generalisation of the model, construction

of integrals, and the proof that any two of them commute.

2. A Two Oscillator System.

It is easy to write the Schrodinger equation corresponding to
Hy = Y(p} + 423 + p} +23) (2.1)

in terms of the parabolic coordinates y; and yz defined by

2z =y -4k, 21=wm (22)
To do this we use
(8*/92}) +(8%/023) = (41 +v3) (8 /0%}) + (8 [0yd)l, (2.3)
and
Vo = jast + o) = $ ) @4)

However we can immediately generalise, in the spirit of chapter 5 of [10], to
H=1@}+p)+V, (2.9)

where V is any potential which can be written in the form

v w0 +ud)

(26)
vi+yi

involving arbitrary functions u an w. Clearly (2.4) is a simple special case of (2.6). For H
of (2.5) we have

H=(y; +13)"' (L1 + L), 27
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€= v R O )
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that corresponds to Vg, eq. (2.14) agrees via change of variables with the result quoted in

[

Go = {z2p1 — z1p2, ;1 } + 7125 (2.16)

for the quantity Go which commutes with Hy .We remark that this result was there [1]
given at the outset in Cartesians z, and z3, etc., rather than emerging from the separation
process. The work of the next section indicates that such emergence of the required

commuting quantities is a general feature of the separation of variables.

We next ask what choices of u and w in (2.6) give rise to interesting generalisations (2.5) of
(2.1), possibly involving interactions between the oscillators, and what then is the operator
G which commutes with H, and thereby confirms that (2.5) remains, as the above analysis
implies, integrable. We have

G = {z:pr —21p2, ;1 } + T, (2.17)
where I is obtained from (2.14) in the form
(41 + 9T = yju(s}) — viw(y)- (2.18)

One way to get results of simple form sets

u(y}) = Mui),  w(¥3) = -M-v3). (2.19)
Then for
A=a+ b +oyt +dy® + e, o (2:20)
we get
V = b+ 2cz; + d(42} + 23) + 2ez, (427 + 223), (2.21)
T = a + cz} + 2dz, 23 + ex3(42? + 23). (2.22)

Also from A = y? we find

V= -z72, I"=2:clz;2,
and from A = —(a + y)™! we find
V=N~!, I=(a+22,)N!, N =a*+2az; +z}.
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The choice
A=3y® + Y, (2.23)

gives rise to a rather interesting model. This has
H = §(p} + 42} +16f2{) + }(p} + 23 + fai) + 6f=lal, (229)

which describes an integrable model of two interacting oscillators, for which the operator

G, such that |G, H] = 0, is given by (2.17) and
T = z;23[1 + f(2z? + 23)]. (2.25)

Other choices, not necessarily of the type (2.14), may be of interest.For example, 4 = w =

2f yields
V= f(ad +23)7Y%, T =-2fzi(a] +23)7/2 (2.26)

The fact that this potential term can be added to (2.1) without disturbing separability in

parabolic coordinates is a non trivial result.
3. The Quantum Neumann Model.
3A. Introduction

The quantum Neumann Model describes the quantum mechanics of a particle confined
the the sphere SV~ in N dimensional Euclidean space, with coordinates zx,1 < k < N,

subject to harmonic forces. These arise from the potential

U = 1Y ez, (34.1)
where the real quantities ¢¢,1 < k < N, obey

€1 .< £2... <EN. (34.2)

The model was shown to be integrable at the classical level by Uhlenbeck [3] who con-
structed conserved quantities Fj such that

Y R=1, ) aF.=2H, (34.3)
k k
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where H is the Hamiltonian. The commutativity of the Fi was proved directly in {5},
where the process of separation of variables was developed elegantly. Here, using as far
as is convenient the notation of 5], we recast the separation procedure in the spirit of
section two, in a way that allows us to realise a wide range of (integrable) generalisations
of the Neumnann model. We emphasise also that the separation procedure yields explicit
expressions for the correct number of commuting quanitities reqxiired for the integrability

of any such generalisation.
3B. Notation.

Neumann coordinates £,,1 < a £ N — 1, are defined as the roots #; < ta... < ty.; of

u(t) =) ab/(t—ex) =0. (3B.1)
k

We use lower case Latin and Greek letters for indices that range from 1 to N and from 1
to N — 1 respectively. Writing

u(t) = Q(t)/A(), (3B.2)
where

Q) =[[¢t-ta), A@®) =T[t-cr),
@ k
we use partial-fractions to identify

zi = H(ek —tq) H(Eg - 6:)_1.

i#k

Also rearranging (3B.1) and (3B.2) gives

| ICEOEDIEA | (BT (3B.3)

k I#k

The O(t¥~!) and O(t¥~2) terms of (3B.3) yield ¥, zf =1, and

Zt, = Ze; - Eegzi. (3B.4)
a k k
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We also define the standard quantities, cf. [10],
6 = Etu
az = z tyty,
ay = Etxtzfsy

dp-3 = tltg...tu-l, (335)

where, for example, the sum in third line is over all products of three distinct t’s. So (3B.4)
involves a;. Looking at coefficients of other powers of t in (3B.3) yields easily

o= aa)-Q a)d azd)+)_dsd,
Tk !

an-1 = ([[e(C (/e (38.6)
{ k

To simplify our later results, without loss of generality, we add to the potential U, of (3A.1)

a constant term ¢ = ¢}, z3, and redefine the ¢ in such a way that

Y ea=o. (3B.7)
k

3C. Determinantal Identities.

We review from {5},[(6] identities related to the Vandermonde determinant and assemble
those generalisations that are needed in our later work on the generalised Neumann models.
Let D = D(%3,...,tN~1) be the Vandermonde determinant. It has the entry t™~1 in the
a-th place of its m-th row, for 1 € a,m < N —1.Then

D=J]ts-ta) (3ca)
A>a
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Let D, be the determinant that arises by deletion of the last row and a-th column of D.
Then

D/Dqg = (=)¥=*=1 I] (ta — ts)- (3C.2)
Bra

Next, let D(8) be the determinant that arises from D by replacing the entries t¥~2 of its
last row by 8, for 1 € @ < N — 1. By expansion on the last row, ‘we get

D(8) =Y (-)¥-2"'Dqb,. (3¢.3)

In particular
D(tN"?) =) (-)¥-2"1Dat)~* = D, (3C4)
D(t™) =Y (=)¥"o"1D,tT =0, (3C.5)

for m = 0,1...N — 3. Below, we shall deal with potentials, cf. eq. (3E.1), of the form
V(A(#)) = D(\(t))/D, (3C.6)

needing explicit expressions in terms of the ¢, in the cases A(t) = t™,m = N-1,N,N+1,...

and m = —1 and —2. The answers can be given in terms of the a;,...ax— of (3B.5). We

have
VN )= th=a, (BC.1)
V(Y)=d} - az, (3C.8)
V(") =a} —2a10; + a3, / (3C.9)
V() = (an-1)7", (3C.10)
V(t™?) = (an-a)(an-1)"% (3c.11)

The last two results are true only to within an unimportant sign. One can prove such
results by methods explained in chapter six of {11}, or else by direct methods.

3D. Separation of Variables.
As in [5]. we write the Schrodinger equation of the Neumann model as
(—%A‘FU] -E)® =0, (3D.1)

where A is the Laplacian on SV~! in Neumann coordinates. For it, we use the result

derived in detail in [5}] in the form

A=—4Y (-)""*"}(Da/D)A(ta)La;

where

i
n%l ®

1
ol D.2
2 ; — €k 6ta (3 )

and D/D, is given by (3C.2). Using (3C.4) for the E term of (3D.1), and us;ing (3B.4),
(3B.7) and (3C.7) for the Uy term, we write these terms as in [5]

L T (=)=} (Da/D)(~t) ! = 2E4]7). (3D3)

Then, we write

& = [] va(ta) (3D.4)

and recall (3C.5).Now we can effect the separation of variables for (3D.1). We find [5] that
each 1,(t,) satisfies an ordinary differential equation of the same form
N-3 '
SA@)LH = (V1 42BN 42 ) piat)p. (3D.5)
=0
Herein an index a,1 < & < N = 1, on each 4 and each t has been supressed. Also (but
with notation that differs slightly from that used in [6]5. the u; are a set of separation
constants, arising, as noted, from our use of (3C.5). We shall return to them in subsection

3F below.
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3E. Generalisation of the Neumann Potential.

Inspection of (3D.5) indicates that the separation of variables works, not only for the
potential Uy, but also for any potential of the form

V=Y (=¥ (Da/D)A(ta), (3E.1)

involving N ~ 1 arbitrary functions A,(f,) of a single variable. We shall consider here
only the simple situation in which all the functions A, are the same function A\. We then
consider various choices of this function and determine which potentials as a function of

the z; arise. Consider the cases

Mt) =tN, N | (3E.2)
At) =71, (3E.3)
At) =173, (3E.4)

for illustrative purposes. Other choices of interest can probably be thought of and linear
superpositions of allowed potentials can be used. The results of subsection 3C allow the
potentials (3E.1) that correspond to (3E.2 to 4) to be computed. Using (3C.10) and (33.6),
we first note that (3E.3) yields a potential term proportional to

- ad/e)™ (3E.5)
k

That such a term can be added to the Neumann model without disturbing its integrability
properties is a well known result due to Braden [8,9]. The other choices give rise to new
potentials. Using (3E.2), (3C.8), (3B.6) and (3B.7), we find that A¥ leads to the potential

(Z exzd)? — Z e}zi. (3E.6)
% *

While the sextic potential that is found in the A = t¥+! case of (3E.2) can readily be
computed, we do not display it here. Finally we turn to (3E.4). This yields a potential
that can be calculated using (3C.11) along with (3B.6,7). We do not present the clumsy

1

expression that can be written for general N as a function of the z;, but quote only results
valid for N = 3,4. In these cases, the potentials are, respectively

ezt
& fer GED

C-3.cirh
3E8
iatfei? (GE2)
where C is a constant. Choices A(t) of the form t=™ for m > 2 are not considered because
they yield terms in (3D.5) such that ¢ = 0 is not a regular singular point of the differential

equation.
3F. Integrability.

We have seen that any potential term of the form (3E.1) can be included in the Neumann
model without causing failure of the separation of variables procedure. Here we show that
no failure of integrability occurs either. This in itself is no surprise. But we do the job of
proving it by constructing explicitly N — 1 operators of which one is the Hamiltonian H,
which commute pairwise for any choice of the A,(t,) in (3E.1). The construction is easy
and generally applicable. We return to (3D.5) with —}¢X~? corresponding to U; replaced
by Aa(ta) corresponding to the general potential (3E.1). Write this now as

: N-3
Ka«’a(‘u) = (Etfzv-z + z I‘H-Xtia)'/’a(ta)! (3F~1)
i=0
where
Ka = Lo + Aa(ta)- 83F.2)

As in section two, we now view (3F.1) roughly as a set of linear equations in N —1 unknowns

B1s B2, --BN=2, BN~1 = E. (3F3)

More precisely, we seek to view M,,1 € a £ N — 1, as a set of operators, with these
eigenvalues uq, linearly related to the K, via the set of equations

Ko=) DgaMp, (3F4)
s ‘
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where Dgq = (tq }#-1 is the fa element of a matrix whose determinant is the Vandermonde

determinant of subsection 3C.It follows that

M, =) (D ")saKp, (3F.5)
I-]

. & result which can be nicely made explicit using Kramer’s rule. Further, the M, clearly
act on ® =[], ¥a(ta) according to

M,® = p, 3, (3F-6)

for @ = 1,...,N — 1, with My_; = H. The procedure followed suggests that the M, are
the required integrals for the generalised Neumann models. To complete the proof, we
must show the the M, commute pairwise. This is done by direct calculation in subsection
3G.

3G. The integrals M, commute.

It is actually easy to establish the result. The proof for the generalised models seems easier
than its counterpart [5] for the Uhlenbeck integrals for the basic Neumann model.

Suppose that a # 8. Set D~! = B*" for convenience.

(Mo, Mp] = [Bay K+, Bps Ki]
= Bay|Ky, Bss|Ks + Bgs[Bavy, Ks] Ky
= Bas|Ks, Bg4| Ky — Bps[Ks, Bay) K.
Here we have used the fact that K, and Kg commute because the former depends only
on t, and the latter only on ¢4. Also elements of B commute with each others as they do
not involve any derivatives. We have omitted obvious summations over repeated indices.

, Next we use
(Ksy Boy] = —Bop|Ks, Drp]| Brs.

Hence
[Mm Mﬁ] = "Ba&Bﬂp[KJ ’ Dcn]vaK-v + BﬂﬁBap[Kh Dw]Bv‘vK'r-

13

This now simplifies because D,,, for each value of o, is some power of t,, and hence

[Ks, Dg,) can receive non zero contributions only if § = p. This is sufficient to complete

the proof.

The proof just given not depend in any way on the choice of Aa(ta) in (3E.1) or (3F.5). So
we have constructed a set of N — 1 pairwise commutative integrals M, for the generalised

Neumann model.This construction appears to be new.

This concludes our use of the Neumann model to illustrate a systematic approach to some
aspects of the theory of integrable quantum mechanical systems. It is available whenever
the Schrodinger equation of the theory can be solved by separation of variables: if one seeks
the operators whose eigenvalues are the separation constants, then one finds a suitable
get of commutative integrals for the theory. For the Neumann model these serve as an

alternative to the Uhlenbeck set of integrals. We shall discuss the relationship between the
two sets elsewhere.
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