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Abstract 

Gi_ a simpl. qU8Dlum mechanical model",hooe integrability is achieved 

by oepamjoo of >viables, il is shown how 10 creale a wide range of 


generalisations of its potential terms without loss of integrability, and then 


how 10 CObalrucl explicilly a auilable sel of <ommuling inlesrals, whose 


existence proves the integrability in question. This is illustrated for a 


simple model of a 1- oscillator syalem, with results of 80me inle"'l, and 


applied 10 the Neumann model, givin& a >ariely of oew potenlial term. 

lOr ii, &I1d exhibiting a oew set oi intesrals, allemati... 10 the Uhl""bedc 


set aYlUlable lOr lhe basic models. The new set are gi_ explicilly and 

shown to be COlDmutative in the generalised situation. 


I 
1. Introduction 

Sup""",, we are g;.." a quanlum mechanical problem with 0 desr- of freedom lOr which 


we can ..!ablish inlesrabilily by leparatioo of >viabl.. in ila Schrodioger equatioo. Then 
 I 
I 

the PIlrJ>OR of Ihia paper can be stated as IbUowa. II is 10 describe. 8)'01emalic procedure 


lOr seneraliaiog the ioIeroctioo or potential term. of lhe model in • ID&ooer that l_ 


ila integrability »rOperij.. unalter.d. Indeed the Ph>ceoa of 8ep&<a1l00 of variables lesdo 

y 

din.ctl , 001 only for Ih. origioal simple -00 of Ih. model, bUI also lOr Ih. generali. co 
..lions we haw" in mind, 10 a set of 0 inlesraJs, including the Hamillonian of Ihe model, « ~ 

.-J r ­
1 ..,.,.. N 

~ 
rr I~ 

such that any two of them commute. That, of course, is what we mean by integrability. 

The paper begins (section two) by illustrating the above programme for a simple model 

whose Hamiltonian is 

Ho = l(~ +4x~ +~ +xU, (1.1) 

for which it is known [1) that solution by separation of variables in parabolic coordinates is 

of considerable interest. We discuss this in a way that makes clear that the model is ripe 

for a wide range of generalisations, whose integrability may not be a priori at aU obvious, 

although that of (1.1) itself is. At this point one such generalisation may be cited. It has 

the Hamiltonian 

H = i(pi +4xi +16/xt) + Hpi +xi + /x~) +6/x~xi· (1.2) 

Details for it are given below. 

The simple example sets the scene for the development of a more substantial study. In 

section three, we apply our approach to the Neumann model [2}, whose integrability at the 

classical level is discussed in [3,41. For the simple Neumann model describing the motion 

of a patticle on the sphere SN-l in the presence of forces corresponding to the potential 

1,,1'1 2U (1.3)= 2' .l..Jk=l ekxk, 

&: 


Uhlenbeek (3) proved integrability at the classical level by exhibiting a set of N -1 inde­


pendent conserved quantities, which include the Hamiltonian, and such that any two have 


zero Poisson bracket. A recent paper [51 discussed the model in detail and demonstrated, 


amongst other things, integrability by separation of variables. We extended this recently 


(6) to allow for the addition to (1.3) of the potential of Rosochatius [71. Here we reformu­


late the process of separation of variables for the quantum Neumann model, following the 


approach employed in section two. In this way we show that the potential term (1.3) allows 


for a wide range of generalisations, some well-known like the Braden potential [8,9], others 


new here, all of which leave the separability properties of the model intact. In addition, we 


show how the process of separation of variables explicitly leads (by a procedure of rather 


general applicability) to a set of N -1 integrals, which includes the Hamiltonian, and such 
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that any two of them commute. These integrals are an alternative set to the Uhlenbeck 


integrals. 


Our work on the Neumann model is divided into seven subsections: introduction, notation, 


determinantal identities, separation of variables, generalisation of the model, construction 


of integrals, and the proof that any two of them commute. 


2. A Two Oscillator System. 


It is easy to write the Schrodinger equation corresponding to 


Ho = ~(p~ + 4x1 +Pi + xD (2.1) 

in terms of the parabolic coordinates til and tl2 defined by I. 
(2.2)2Xl = tI~ - y~, X2= tllY'l· 

To do this we use 

(IP/8xn + (82/8xn =(y~ + tI~)-I[(82/8y~) + (& /ayn] , (2.3) 

and 

v; - 1(4x2 + x2) - ! ('t+'i~ (2.4)o - 2 1 2 - 2 ('l+" . 

However we can immediately generalise, in the spirit of chapter 5 of [10], to 

H= i(pj+pD+V, (2.5) 

where V is any potential which can be written in the form 

v = u(tll~ +w!yl) , (2.6) 
til + tl2 

involving arbitrary functions u an w. Clearly (2.4) is a simple special case of (2.6). For H 

of (2.5) we have 

H = (tI~ + tli)-I(LI + L-z), (2.7) 

3 

., 

(2.8)
where 

,Ll == -l(8/OyI)2 +U(tll), 
(2.9) 

L2 == -i(8/8tI2)2 +W(tl2), 

and the Schrodinger equation for H is 
(2.10) 

(Ll +L2)<) :::: E(tI~ +V~)<)· 

Writing. ~ Y(!It)Y(1/2), we solve (2.10) by sep_ion of variables, IInding, for g a sepa­

ration constant, that Yl and Y2 obey 
(2.11) 

LlYl - EtI~Yl == +gY" 
(2.12) 

L2Y2 - EtI~Y2 == -gY2. 


In the special case Vo of V there i. a great deal of interesting material in [lIon the solution 


of (2.11) and (2.12) for Y, and Y •• To demonStrate the integrability of tbe system described 


by (2.7), which is well \mOW1l in the case of Vo, and then trivially seen in (2.1), we must 


exhibit a quantity G which commutes witb H. In facl, tbe process of separation of variables 


automaticallY provides one. While L, and L. are a pair of commuting operators, they do 


not commute with H .. given by (2.7). Rather, we fuid G by eliminating E from (2.11) 


and (2.12), and writing the result in the form 
(2.13) 

G<) :::: g<). 

This yields (2.14) 
~ L vI L 

G =- (2 2) 1 - ( 2 2) 2'VI +V2 VI +V2 

One cbecka direetly that [H, Gl .. 0, using the obviOUll result [L" Lo1 = 0, but without the 

need to evaluate explicitly the commutator of L, or Lo with M+vJ)-'· Tbua[H, Gl =0 

holds independently of the formS of the functi®a u and w which cIeterIDine V via (2.6). 

(2.15)
In the special case 

u = tvt, 10 = ivl 
4 
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that corresponds to Yo, eq. (2.14) agrees via change of variables with the result quoted in 

[1] 

Go = {Z'2Pl - Z'lP2,Pt} + Z'1Z'1 (2.16) 

for the quantity Go which commutes with Ho .We remark that this result was there 

given at the outset in Cartesians Z'1 and Z'2, etc., rather than emerging from the separation 

process. The work of the next section indicates that such emergence of the required 

commuting quantities is a general feature of the separation of variables. 

We next ask what choices of u and w in (2.6) give rise to interesting generalisations (2.5) of 

(2.1), possibly involving interactions between the oscillators, and what then is the operator 

G which commutes with H, and thereby confirms that (2.5) remains, as the above analysis 

implies, integrable. We have 

G ={Z'2P1 - Z'1P2,Pt} +r, (2.17) 

where r is obtained from (2.14) in the form 

(y: + y~)r = y~u(y~) - Y~tD(Yn. (2.18) 

One way to get results of simple form sets 

u(Yn =..\(yD, tD(y~) = -..\(-y~). (2.19) 

Then for 

..\ = a + by2 +cy. +dy" + ey8, (2.20).,;,.--....,.." 
we get 

v = II + 2CZl + d(4Z'~ + Z'~) + 2eZ'I(4Z'~ + 22:'~), (2.21) 

r =a +czl +2tklZ'l + eZ'I(4z~ + zl). (2.22) 

Also from ..\ = y2 we find 

v = _z;2, r = 22:'1Z';2, 

IUld from ..\ = -(a + y)-1 we find 

V=N- 1
, r=(a+22:'l)N-l , N=a2+2azl+Z'~. 
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The choice 

A = ly6 + lylO, (2.23) 

gives rise to a rather interesting model. This has 

H = i(p~ +4Z'~ +161x1) + i(p~ +x~ +Ix~) +6Ix~x~, (2.24) 

which describes an integrable model of two interacting oscillators, for which the operator 

G, such that [G,H] = 0, is given by (2.11) and 

r = Z'lx~[1 +1(2x~ +x~)]. (2.25) 

Other choices, not necessarily of the type (2.14), may be of interest.For example, U = to = 
21 yields 

v = I(x~ +x~rl/2, r = -2/Z'1(x~ + x~)-l/2. (2.26) 

The fact that this potential term can be added to (2.1) without disturbing separability in 

parabolic coordinates is a non trivial result. 

3. The Quantum Neumann Model. 

3A. Introduction 

The quantum Neumann Model describes the quantum mechanics of a particle con:.6ned 

the the sphere SN-l in N dimensional Euclidean space, with coordinates Xl, 1 S k S N, 

subject to harmonic forces. These arise from the potential 

U1 = l L:l Elxl, (3A.l) 

where the real quantities El.1 S k S N, obey 

El < E2 ... < EN· (3A.2) 

The model was shown to be integrable at the classical level by Uhlenbeck [3] who con­

structed conserved quantities Fl such that 

LFl = 1, LE1Fl = 2H, (3A.3) 
1 k 
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where H is the Hamiltonian. The commutativity of the Fie was proved directly in [5], 

where the process of separation of variables was developed elegantly. Here, using as far 

as is convenient the notation of we recast the separation procedure in the spirit of 

section two, in a way that allows us to realise a wide range of (integrable) generalisations 

of the Neumann model. We emphasise also that the separation procedure yields explicit 

expressions for the correct number of commuting quanitities required for the integrability 

of any such generalisation. 

3B. Notation. 

Neumann coordinates teu 1 ~ Q ~ N - 1, are defined as the roots tl < t2'" < tN-l of 

u(t) == L zl/(t - ele) =O. (3B.1) 
Ie 

We use lower case Latin and Greek letters for indices that range from 1 to N and from 1 

to N -1 respectively. Writing 

u(t) =Q(t)/A(t), (3B.2) 

where 

Q(t) =II(t -ta), A(t) =II(t-ele), 
or Ie 

we use partial- fractions to identify 

zi = II(ell - ta) II (ell - el)-l. 
a I~Ie 

Also rearranging (3B.1) and (3B.2) gives 

II(t-ta ) = LzlII(t-ell)' (3B.3) 
a A: I~Ie 

The O(tN-l) and O(tN-2} terms of (3B.3) yield EA:zl = 1, and 

Lta =Lele - Lelezl. (3B.4) 
a A: A: 

7 

We also define the standard quantities, d. [10}, 

al =Ltl , 

a2 =L t• t2, 

a3 = Ltlt2th 

a,,_. = t.t2 ...tN-h (3B.5) 

where, for example, the sum in third line is over all products of three distinct t's. So (3B.4) 

involves al. Looking at coefficients of other powers of t in (3B.3) yields easily 

a2 =(L ele2) - (Le,)(LeA:zl) + Lelzl, 
I Ie Ie 

aN-l = (II el)(L(zl/eA:». (3B.6) 
I Ie 

To simplify our later results, without 1088 of generality, we add to the potential Ul of (3A.1) 

a con.stant term c =c EA: zl, and redefine the et in such a way that 

LeA: =0. (3B.7) 

" 
3C. DeterminantaJ Identities. 

We review from [5},[6) identities related to the Vandermonde determinant and assemble 

those generalisation.s that are needed in our later work on the generalised Neumann models. 

Let D:; D(t., ...,tN-l) be the Vandermonde determinant. It has the entry t:,-I in the 

a-th place ofits m-th row, for I ~ a,m 5 N -1.Then 

D = II (til - ta). (3e.I) 
11>0; 
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Let DOl be the determinant that arises by deletion of the last row and a-th column of D. 

Then 

DIDOI =(- )N-OI-l II (ta - til)' (3C.2) 

11"'01 

Next, let D(8) be the determinant that arises from D by replacing the entries t~-2 of its 

last row by 801 for 1 ~ a ~ N -1. By expansion on the last row, we get 

D(8) = L(_)N-0I-lD0I801• (3C.3) 
a 

In particular 

D(tN- 2) = L(- )N-OI-lDOIt~-2 =D, (3C.4) 
a 

D(tm) = L(_)N-a-lDOIt:, = 0, (30.5) 
a 

for f!& =0, I ... N - 3. Below, we shall deal with potentials, d. eq. (3E.I), of the form 

V(A(t» = D(A(t»1D, (3C.6) 

needing explicit expressions in terms of the ta in the cases A(t) =tm , m =N -l,N,N+1, ... 

and m = -1 and -2. The answers can be given in terms of the 01, ...ON-l of (3B.5). We 

have 

V(tN-I) = Ltl =ai, (3C.7) 

V(tN) =of - a2, (30.S) 

V(tN+1) = of - 2al02 +a3, (30.9) 

V(t-1) = (aN-I)-I, (30.10) 

V(t-') = (aN_2)(aN_l)-2. (30.11) 

The last two retrults are true only to within an unimportant sign. One can prove such 

retrults by methods explained in chapter six of [U), or else by direct methods. 
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3D. Separation of Variables. 

As in {5]. we write the Schrodinger equa.tion of the Neumann model as 

(3D.I)(-iA +U1 ~ E)~ =0, 

where A. is the Laplacian on SN-l in Neumann coordinates. For it, we use the result 

derived in detail in [5] in the form 

A. = -4 L(_)N-0I-1(DOI ID)A.(tOl )COI , 
a 

where 

fP 1 _I_~ (3D.2)
Ca = at2 

a 
+ 2L

Ie 
ta - Ele ata ' 

and DIDOI is given by (3C.2). Using (3CA) for the E term of (3D.I), and using (3B.4), 

(3B.7) and (3C.7) for the UI term, we write these terms as in [5} 

! Ea(-)N-OI-I(DOIID)(-t~-1 - 2Et~-2). (3D.3) 

Then, we write 

~ =II .pa(tOl ), (3DA) 
a 

and recall (3C.5).Now we can effect the separation of variables for (30.1). We find [51 that 

each .pa(tOl ) satisfies an ordinary differential equation of the same form 

N-3 

4A.(t)Cyp == (tN- 1 +2EtN- 2 + 2 2: P.H1ti).p. (3D.5) 
;=0 

Herein an index a, 1 ~ a ~ N - 1, on each yp and each t has been supressed. Also (but 

with notation that differs slightly from that used in l6D, the P.i are a set of separation 

constants, arising, as noted, from our use of (3C.5). We shall return to them in subsection 

3F below. 
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3E. Generalisation of the Neumann Potential. 

Inspection of (30.5) indicates that the separation of variables works, not only for the 

potential UI , but also for any potential of the form 

v =L(-)N-a-l(Da/D)Aa(ta ), (3E.l) 
a 

involving N - 1 arbitrary functions Aa(ta) of a single variable. We shall consider here 

only the simple situation in which all the functions Aa are the same function A. We then 

consider various choices of this function and determine which potentials as a function of 

the Zk arise. Consider the cases 

A(t) = tN, tN+l, ... (3E.2) 

A(t) = e l , (3E.3) 

A(t) =e 2 
, (3E.4) 

for illustrative purposes. Other choices of interest can probably be thought of and linear 

superpositions of allowed potentials can be used. The results of subsection 3C allow the 

potentials (3E.l) that correspond to (3E.2 to 4) to be computed. Using (3C.lO) and (3B.6), 

we first note that (3E.3) yields a potential term proportional to 

(L zl!ek)-l. (3E.5) 
k 

That such a term can be added to the Neumann model without disturbing its integrability 

properties is a well known result due to Braden [8,91. The other choices give rise to new 

potentials. Using (3E.2), (3C.S), (3B.6) and (3B.7), we find that AN leads to the potential 

(L etzD2 - L elzl· (3E.6) 
k t 

While the sextic potential that is found in the A = t N+1 case of (3E.2) can readily be 

computed, we do not display it here. Finally we turn to (3E.4). This yields a potential 

that can be calculated using (3C.H) along with (3B.6,7). We do"not present the clumsy 

11 

." 

expression that can be written for general N as a function of the Zk, but quote only results 

valid for N = 3,4. In these cases, the potentials are, respectively 

Etekzl (3E.7)(E, zl/E,)2' 

C - Etelzl (3E.8)(E,zl/E,)2 ' 

where C is a constant. Choices A(t) of the form t-m for m > 2 are not considered because 

they yield terms in (30.5) such that t := 0 is not a regular singular point of the differential 

equation. 

3F. Integrability. 

We have seen that any potential term of the form (3E.l) can be included in the Neumann 

model without causing failure of the separation of variables procedure. Here we show that 

no failure of integrability occurs either. This in itself is no surprise. But we do the job of 

proving it by constructing explicitly N - 1 operators of which one is the Hamiltonian H, 

which commute pairwise for any choice of the Aa(ta ) in (3E.l). The construction is easy 

and generally applicable. We return to (30.5) with -It:-1 corresponding to U. replaced 

by Aa(ta ) corresponding to the gener~ potential (3E.l). Write this now as 

N-3 

KatPa(ta ) =(Et:-2 + L Pi+lt~)tPa(ta), (3F.l) 
icG 

where 

Ka = .t.a +Aa(ta ). 83F.2) 

As in section two, we now view (3F.l) roughly as a set of linear equations in N -1 unknowns 

PhP2,.••PN-2,J.'N-l:= E. (3F.3) 

More precisely, we seek to view Mat 1 S (I S N - 1, as a set of operators, with these 

eigenvalues Pa, linearly related to the Ka via the set of equations 

Ka := 2:DflaMllt (3F.4) 
fl 
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If 

where DIIQ =(fQ)II-l is the po element of a matrix whose determinant is the Vandermonde 

determinant of subsection 3C.It follows that 

Mil' = L:(D-1)IIQKII' (3F.5) 
II 

. a result which can be nicely made explicit using Kramer's rule. 'Further, the Mil' clearly 

act on • = ITQtPQ{tQ) according to 

MQ+="'Q., (3F.6) 

for a = 1, ...,N -1, with MN-l = H. The procedure followed suggests that the Mil' are 

the required integrals for the generalised Neumann models. To complete the proof, we 

must show the the Mil' commute pairwise. This is done by direct calculation in subsection 

3G. 

3G. The integrals Mil' commute. 

It is actually easy to establish the result. The proof for the generalised models seems easier 

than its counterpart [51 for the Uhlenbeck integrals for the basic Neumann model. 

Suppose that a :1= p. Set D-l = Btl' for convenience. 

[MQ,MII] = [BQ..,K.."BII,K,] 

= BQ..,[K.." BII,]K, + BII,[BQ.." K,IK.., 

=BQ,[K" BII..,]K.., - BII,[K" BQ..,1K..,. 

Here we have used the fact that KQ and KII commute because the former depends only 

on to' and the latter only on til' Also elements of B commute with each others as they do 

not involve any derivatives. We have omitted obvious summations over repeated indices. 

Next we use 

[K" Brr] = -B..,[K" D,.,]B,...,. 

Hence 

[MQ,MII] = -BQ,BII'[K"D..,]B....,K.., +BII,BQ,[K"D..,]B"...,K..,. 

13 

This now simplifies because D"p, for each value of (1', is some power of t p, and hence 

[K" D"p] can receive non zero contributions only if b = p. This is sufficient to complete 

the proof. 

The proof just given not depend in any way on the choice of AQ{tQ) in (3E.1) or (3F.5). So 

we have constructed a set of N -1 pairwise commuta.tive integrals Mil' for the generalised 

Neumann model.This construction appears to be new. 

This concludes our use of the Neumann model to illustrate a systematic approach to some 

aspects of the theory of integrable quantum mechanical systems. It is available whenever 

the Schrodinger equation of the theory can be solved by separation of variables: if one seeks 

the operators whose eigenvalues are the separa.tion constants, then one finds a suitable 

set of commutative integrals for the theory. For the Neumann model these serve as an 

alternative to the Uhlenbeck set of integrals. We shall discuss the relationship between the 

two sets elsewhere. 
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