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Abstract 

Let (P, Q, H) be a principal H-bundle over a Riemannian space Q. It is 
shown that the Poisson algebra C~((T·P)/H) is quantized by the C·-algebra 
of the gauge groupoid of P. Mackey's quantization on Q = G/ H is a special 
case, the groupoid C·-algebra in that case reducing to the crossed product 
C·(G,G/H). For H trivial one obtains a generalization of Weyl quantization 
to any Riemannian space. Physical applications include the motion of a parti­
cle on Q coupling to a Yang-Mills field with gauge group H, and quantization 
on multiply connected spaces. 
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1 	 ueformation quantization and operator alge­

bras 

Quantization may be understood as some (functorial) correspondence between Pois­

son algebras and operator algebras. We here consider Poisson algebras of the type 

C~(P), to be completed into the commutative C·-algebra Co(P), which is topolo­

gized by the sup-norm. Its 'quantization' A is taken to be a C--algebra, which is non­

commutative in general. A further essential ingredient is a family of maps {Q",},.el 

from a dense subalgebra Ao of Co(P), on which the Poisson bracket is defined, to A; 

here I is an interval containing O. This family has to be real (i.e., Q",(1) =Q",(f)*), 

and should satisfy the usual asymptotic correspondence between the algebraic struc­

ture of classical and quantum mechanics. That is, lim",_o(1/2[Q",(f), Q",(g)]+ ­

Q",(fg)) = 0 and lim",_o(i/A[Q",(f), Q",(g)l- - Q",( {f,g})) = 0 in norm. Continuity 

in A may be imposed by demanding that either the maps A -+ Q",(f) from I to A, 

or else the functions A -+/1 Q",(f) 1/, are continuous for all f E .40, d. [9, 1]. 

This notion of quantization fits in well with both the modern geometric theory of 

classical mechanics [7] and the algebraic theory of superselection sectors in quantum 

mechanics [3, 5], and, in fact, attempts to connect the two [61. It has been tested on a 

system of physical relevance, namely a particle with a nonabelian charge moving on a 

homogeneous configuration space Q = GIHi the charge couples to an external Yang­

Mills field with gauge group H. The classical mechanics of this system is described 

by the Poisson manifold P = (T'G)/H, whose symplectic leaves correspond to co­

adjoint orbits in 11* (the dual of the Lie algebra of H), which may be identified 

with classical charges the particle may have (see [7], and refs. therein to the original 

work of Sternberg, Weinstein, and others). Its quantization is the crossed product 

A = C·(G, Q), whose irreducible representations correspond to irreducible unitary 

representations of H [51. which are the quantum charges the particle may have. The 

deformation of C·(G, Q) into Co«(T·G)/H) (that is, the maps Q",) was constructed 

in [6]. 

That C·(G, Q) is indeed the correct quantization of Co«T'G)/H) could only be 
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ascertained with hindsight; a similar comment applies to the special case H = G, 

previously considered by Rieffel [9J; here the Poisson algebra C:,(g") (with the 

Lie-Kirillov Poisson bracket) is quantized by the group algebra C"(G). This case 

is of special interest in connection with quantum groups, which may be arrived at 

by deforming the Poisson structure on g", and subsequently quantizing in the way 

sketched above. 

The purpose of the present note is to generalize these results to arbitrary Rie­

mannian configuration spaces Q (and principal H-bundles over Q, where H is taken 

to be an amenable Lie group, for simplicity), and this is achieved by refonnulating 

them in terms of the so-called gauge groupoid of the bundle (P, Q, H). 

From groupoids to quantization 

A groupoid r [8, 2] is a set op points (the base space or unit space B of r), plus a 

collection of arrows between some of these points. These arrows are invertible, and 

may be composed if their endpoints match. r is fibered over B, the fiber Fb at a 

point, b € B being the set of arrows in r,that end at b. An element x € ris both 

an arrow from sex) to t(x), and an isomorphism l:~ between F.(~) and Ft(~). We 

assume that r is a manifold. Given a measure on each fiber, such that the family 

of measures thus obtained is invariant under all isomorphisms I~, one can construct 

a C"-algebra C"(r), whose representations correspond to the representations of r 

itself [8]. C"(r) is the norm-closure of the function space C:'(f), equipped with a 

generalized convolution product, and a natural norm and involution. 

Now regard ro = (T"P)/H as a trivial groupoid (that is, B = ro and every 

point is only connected to itself by a single arrow), with each point having measure 1. 

Then c*(r0) =Co(r0), the commutative algebra of classical observables of a charged 

particle moving on Q. This system is quantized by replacing r c by the groupoid r, = 
P XH P == rH(p), the gauge groupoid of the principal bundle (P, Q, H) . This 

has base space Q, and its elements are equivalence classes [Ph Pl] == [P.h, PlhJ, 

interpreted as classes of H-equivariant paths in P [2]. If 11' : P -+ Q is the bundle 

projection on P, the groupoid projection 1rg : rH(p) -+ Q is given by 1rg([P1l PlD = 

, 


1r(Pt). The arrow x =[Pt. Pl] starts at sex) =1r(Pl) and ends at t(x) = 1r(pt}, from 

which the composition rule follows. 

The reason that the passage rc -+ r, quantizes the system is that A =C"(rq ) 

turns out to be exactly the right quantum algebra of observables of the given phys­

ical system. It may be shown that A ~ ~(L2(P»H ~ ~(L2(Q)) ® COO(H), where 

~('H) is the C"-algebra of compact operators on a Hilbert space 'H, L2(M) is the 

Hilbert space of square-integrable half-densities on a manifold M, and ~(L2(P»H 

are the compact operators which are invariant under the natural unitary represen­

tation of H on L2(P). Hence A is Morita-equivalent to C"(H), and its irreducible 

representations yield the correct superselection sectors of the system, cr. [5] for the 

case P = G. In that case, C·(f) =C"(G, Q), which has been exhaustively analyzed 

as a quantum algebra of observables of a particle moving on Q [5, 6]. 

With hindsight, the passage from r c to r, has hereby been justified, but it may 

be motivated in itself in various ways (none of which is compelling). Firstly, there 

is a canonical construction due to Connes (unpublished, but reported in [4J), which, 

given an injection i : r t C-..+ r 2 of groupoids (which are manifolds) canonically pro­

duces a continuous field of C"-algebras over the interval [0, 1], that is, a deformation 

quantization (the C·-algebra defined by this field is the C"-algebra of the so-called 

normal groupoid corresponding to the injection i). If we apply this to the injection 

i : Q C-..+ rH(p) (with Q regarded as a trivial groupoid), defined by i(q) = [seq), seq)] 

(with 8 : Q -+ P an arbitrary section), we obtain the C"-algebras rc and rq above, 

as well as a full family of cross-sections interpolating between them. Hence apart 

from the construction of the quantization maps Q"" which is a separate problem 

discussed below, deformation quantization on Riemannian manifolds is equivalent 

to Connes' construction of a certain normal groupoid. (I am very grateful to R. Nest 

and G. Skandalis, who pointed this out in the special case P = G in connection with 

the deformation given in [6}). 

Alternatively, the fact that rc = (T"P)/H is 'quantized' by r, = P XH P 

appears natural if one actually constructs the quantization maps Q",. To make this 

more transparent, we put H = {e} for the moment, and give the argument for 
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rc == 'rP and r, =P x Pi the result will quantize H-invariant functions on T* P 

by H-invariant compact operators on L'J(P). so that one can simply quotient by H 

to cover the general case. 

Hence consider the diagonal embedding i : P -+ P x P. The corresponding 

normal bundle is the tangent bundle T p. and by the tubular neighbourhood the­

orem there exists a diffeomorphism <p from a neighbourhood U C T P containing 

P (identified with the zero section) to a neighbourhood V C P x P containing 

P (identified with i(P». Using the Riemannian metric on P, we define <p by 

<p-l(X) == (exp(X/2), exp(-X/2). Now choose a Lebesgue measure on each of the 

fibers of T P, so that the resulting collection is invariant under parallel transport. 

This defines a bijection between C*(T* P) = Co(rP) and C*(TP) (the C·-algebra 

of the groupoid TP with base space P, and all arrows closed, composition being 

addition in a given fiber) by a fiberwise Fourier transform F. For A > 0 fixed, one 

thus obtains a diffeomorphism <P. between U/A and V given by <p;I(X) =<p(AX). 

As will become clear shortly, this diffeomorphism is essentially quantization, which 

is thus seen to consist of 'stretching out' the tangent bundle T P into the path space 

P '< P, the stretching factor being A. Other diffeomorphisms would correspond to 

different operator ordering prescriptions. 

The dense subalgebra Ao C Co(T·P) of quantizable functions consists of those 

functions I whose 'Fourier transform' FI is in C:,(TP). Such I has a quantization 

Q.(f) for those A for which A(suppf) CU. It is given by Q.(f) == 6 <p;I, where 6 is 

an I-independent function on P x P which depends on the precise choiCe of Lebesgue 

measures mentioned above (for example, if P = G and these measures are related 

by the action of the group on itself then 6 is constant). Q.(f) is in Cc(P x P), and 

should be identified with the Hilbert-Schmidt operator defined by this kernel. An 

easy argument using the majorization of the uniform operator norm by the Hilbert­

Schmidt norm shows that this quantization satisfies the conditions stated in sect. 1. 

Application of this scheme to P == R" reproduces the Weyl quantization of functions 

on T*R", and the multiplication of Hilbert-Schmidt kernels is equivalent to the Weyl 

calculus of pseudo-differential operators, restricted to the compacts. 

5 

The connection between e.g. traditiona.l geometric quantization and our method 

is not straightforward, as we do not quantize symplectic spaces as such, but entire 

Poisson manifolds. The algebraic corresponde~ce between Co((rP) / H) and its 

quantization C·(rH(p)) is clear (and given by deformation), but their respective 

representation theories (on symplectic leaves and Hilbert spaces, respectively [6]) are 

not so clearly related. Recent techniques to quantize Poisson algebras using symplec­

tic groupoids [2J take a quite different route, too (for example, the groupoid structure 

on T* P is not taken to be the trivial one, as in our method, but the one we use on 

TP). 
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