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Abstract 

We study geodesic flow on a totally geodesic submanifold of a moduli space of 

solutions to Nahm's equations, and draw conclusions about the dynamics of 5U(3) 

monopoles with minimal symmetry breaking. 

1. Introduction 

A powerful technique for obtaining results about soliton dynamics is due to Manton 

(1982). The key idea is that the dynamics of a soliton should, at least at low velocities, 

be closely approximated by geodesic motion on the moduli space of static solitons. To 

actually implement this programme involves identifying the moduli space, calculating 

its metric, and analysing the resulting geodesic flow. This was carried out in the case 

of sigma-model lumps by Ward (1985) and Leese (1990), and for 5U(2) monopoles of 

charge two by Atiyah and Hitchin (1988). It is monopole dynamics that will concern 

us in this paper. 

N en 
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The first author (Dancer 199180) introduced ":!l 8-dimensional moduli space }.f8 of 

solutions to Nahm's equations, which are the nonlinear system of C.D.E.s 

dTtdt + [To,T.] = [Tj, Tk ], (1) 

where Ti are matrix-valued functions of one variable, and (i,;, k) ranges over cyclic 

permu tations of (1, 2, 3) . 

}.f8 carries a natural Riemannian metric, which was calculated. The metric on N5, 

the quotient of }.f8 by an isometric action of 5U(2)/Z" was also found. 

The significance of the geometry of }.f8 for the study of monopoles arises as fol. 

lows. Nahm (1982) has described a procedure, inspired by the ADHM construction for 

instantons, to produce monopoles from solutions to the equations (1). The dimension 

of the N ahm ma.trices becomes the charge of the monopole, while the behaviour of 

the matrices at the endpoints of the interval on which they are defined determines the 

gauge group. There a.re natural actions on the Nahm matrices which correspond un­

der this procedure to spatial translation, spatial rotation, and gauging of monopoles. 

Moreover in the case of 5U(2) monopoles the transform from Nahm data to monopoles 

is known to be an isometry (Hurtubise 1990, Nakajima 1991). 

It has been shown previously (Dancer 1991b) that points of M8 give rise to 5U(3) 

monopoles with symmetry breaking to U(2) (that is, with two eigenvalues of the 

asymptotic Higgs field being equal). If the Nahm transform is indeed an isometry, we 

can deduce dynamical properties of 5U(3) monopoles from the geodesic flow on M8. 

We shall make this assumption for the remainder of the paper. 

The expressions for the metric on }.f8 are very complicated, and somewhat implicit. 

In order to study geodesic motion it is desirable to restrict ourselves to totally geodesic 

submanifolds where the geodesic problem is more tractable. It is, of course, the defining 

characteristic of such submanifolds that geodesics on them are also geodesics on the 

ambient space. Fortunately, a standard result of differential geometry guarantees that 

. each component of the fixed point set of an isometry of a Riemannian manifold is 

totally geodesic. This was used (Dancer 1991a,1991b) to identify a totally geodesic 

surface of revolution E in M8 and analyse its geodesic flow. 

'. In this paper we shall study a totally geodesic surface Y in M8. The metric is now 

more complicated than that of :E, involving elliptic functions rather than elementary 

functions, and Y has only a discrete group of symmetries. The increased difficulty of 

the problem of analysing the geodesic flow leads us to adopt a numerical approach. We 

calculate the metric in terms of elliptic integrals and Jacobi functions, and numerically 

integrate the resulting geodesic equations. Finally, a physical interpretation of the 
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resulting geodesics is given. 
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2. Moduli spaces 

We first review some material (Dancer I99Ia,I99Ib) concerning our moduli spaces. 

Consider quadruples (To, TI, T2 , Ta) where Ti are u(2)-valued functions on [0,3] 

satisfying the following conditions: 

(i) TI, T2 , T3 are analytic on (0,3] with simple poles at t = 0 of residue 

-10"11 -~0"2' -~0"3 respectively, where 0"; are the Pa.uli spin matrices. To is analytic 

on [O,3J. 

(ii) The Ti satisfy Nahm's equations (1). 

The gauge group G of analytic U(2)-valued functions on [0,3] which are the iden­

tity at t = 0 acts on the space of such data by 

To 1-+ gTog-1 _ Og-I 

Tj 1-+ gTjg-l (j = 1,2,3) 

(we use . to denote differentia.tion with respect to the parameter t E [0,3]). 

Let Gdenote the normal subgroup of G consisting of gauge transformations which 

are the identity at t = 0,3. 

Let -M12 denote the quotient of the data satisfying (i),(ii) by G. 

Theorem 2.1 

M12 is a twelve-dimensional manifold admitting commuting actions of Spin(3) and 

GIG i:!1 U(2). The Spin(3) action is given by 

3 

To 1-+ gTog-1 _ Og-1 

11 1-+ g(EaijTj )g-1 (i = 1,2,3). 

Hereg is a function from [0,3] to SU(2), g(O) E Spin(3) descends to (aij) E SO(3) 

under the double cover 1r : Spin(3) - 50(3) and g(3) = Id. 

M12 also admits an action of IR a defined by 

To 1-+ To 

Tj 1-+ Tj - i:Ejld (j = 1,2,3) 

Let M8 be the quotient of A/12 by R a x U(I), where the U(I) group hel'e is the 

centre of U(2). 

M8 is an eight-dimensional manifold with commuting actions of 50(3) and 

5U(2)IZ2! induced by the actions of Spin(3) and U(2) on MI2 respectively. 

Let Nt:. denote the quo~ient of M' by SU(2)/Z2' Nt:. is a five-dimensional manifold 

homeomorphic to IR t:. I and admits a non-free SO(3) action. 

Points of M12 give rise, via the ADHM-Nahm construction, to 5U(3) monopoles 

of charge two with symmetry breaking to U(2). 

o 

We can view M8 as a moduli space of monopoles centred at the origin and with a 

circle phase fixed. The metric on the double cover of Mil is the Riemannian product 

of the metric on the double cover of M' and the flat metric on R a x U( 1). Physically, 

this means that the centre of mass motion and the time-evolution of the circle phase 

of the monopole can be split off, so to study the dynamics of centred monopoles it is 

sufficient to consider geodesic flow on M'. 

It will be helpful to associate spectral curves to our monopoles. To define these we 

follow the discussion due to Hitchin (1987). 

Nahm's equations can be put in the Lax form 
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dT + [T+,TI = 0,
dt 

where 

T+ = To + iTl +((T3 - iT2)' 

T = T3 + iT, + 2i(Tl + (2(T3 - iT2) 

and ( is a spectral parameter. 

It follows that the spectrum of T is constant in t, so the curve S with equation 

{(Tf, () : det(Tf +T) = O} 

is independent of t. 

We call S the spectral curve associated to our solution of Nahm's equations. 

It is clear that S is unchanged under the action of SU(2)/Z,. In fact the coeffi­

cients of the spectral curve provide global coordinates on the quotient N5 of M S by 

SU(2)/Z2' 

We can view S as a curve in 1lP 1, the tangent bundle of (C IP 1 , by interpreting 

( as a coordinate on (C IP 1 and Tf as a fibre coordinate (Hitchin 1982). Now TIP 1 is 

just the space of pairs (u, v) where u and v are orthogonal vectors in (C 2 with the 

norm of u equal to one. This space may be identified with the set of oriented straight 

lines in R 3 , by letting u be the direction of the line and v the point where it is closest 

to the origin. In the language of twistor theory, 1lP 1 is the minitwistor space of R 3 • 

Reversing the orientation of lines defines a real sttucture on 1lP 1; in our coordinates 

this is 

T: (Tf,()...-. (-fif(2,-I/?'). 

Now any point (Xl! x" X3) in R 3 defines a family of straight lines passing through 

that point; this family is just the curve in TIP 1 with equation 
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Tf + iX3 - r, - 2Xl( + (iX3 + X2)(2 = 0. (2) 

Note that this is real with respect to our real structure on minitwistor space. We 

shall use this correspondence between points of It 3 and real sections in TIP 1 later in 

the paper. 

The spectral curve description exhibits N5 as an open set WO in' the irreducible 

five-dimensional representation W of SO(3). It will also be convenient, following 

Hurtubise (1983), to think of W as the set of 3 x 3 real symmetric tracefree matrices, 

. with SO(3) acting by conjugation. This description will be useful when we come to 

associate principal ares to our monopoles in §3. 

3. A totally geodesic surface 

As promised, we shall now look for totally geodesic submanifolds of M8. Let "D denote 

the Z2 x Z2 subgroup of diagonal matrices in SO(3), and let 

~ = ((a,a) E (SU(2)/Z,) x SO(3) : a E V} 

It can be checked that the fixed point set of the A action consists of four isometdc 

components, one of which is the set Y of Nahm data of the form 

1 1 1 
To = 0, Tl = 2ltO'1' T2 = 2f2O'2, T3 = 2hO'3. 

where the Ii are real-valued functions. 

As a component of a fixed point set of a group of isometries, Y is totally geodesic. 

Let us now discuss the geometry of this space. 

Nahm's equations force It, 12, h to satisfy the Euler equations 

it hf3 (3) 

i2 = hft (4) 

i3 fIl2' (5) 
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After imposing our boundary conditions on the Nahm matrices we find that the 

space Y of solutions is two-dimensional. The quantities 

%' li-J; 

y' = I; - J: 

are constant in 1 because of equations (3-5), and are global coordinates on Y. 

In fact, it will be convenient for our depiction of the geodesic flow on Y to make a 

linear change of variables and use as coordinates 

% x'+y' (6) 

y = v'3(%' ­ y'). (7) 

If Jl :$ n:$ Ii. we have 

_Dcnk(Dt)
II(t) 

snk(Dt) 
_Ddnk(Dt)

h(t) 
snk(Dt) 
D

!J(t) - snk(Dt)' 

where 

k = +~ y - v'3x 

~ J3z-yD = + 2J3 
and cnh snk, dnk are the Jacobi elliptic functions ~ith modulus k. 

We have required the Nahm matrices to be analytic on (0,3], so we have the 

constraint D < jI«k) where I«k) denotes the complete elliptic integral with modulus 

k. 

Similar expressions for III 12, 13, D, k exist with other choices of ordering of Jl, n 
and n. 

If two or more of the !l are equal the Jacobi functions reduce to elementary 

functions. If Jl :$ n=Ii they are given by 

II(t} = -Dcot(Dt) 

h(t) = -Dcosec(Dt) 

13(t) -Dcosec(Dt}, 

while if Jl= Ii :$ Ii we have 

11(t) = -Dcosech(Dt) 

h(t) = -Dcosech(Dt) 

13(t) -Dcoth(Dt). 

These solutions correspond to taking the elliptic modulus k to be 0 or 1 respec­

tively. In both cases the isotropy subgroup for the (5U(2)/Z2) x 50(3) action on the 

Nahm data is isomorphic to 51 x Z'l, so we refer to the solutions as being trigonometric 

axisymmetric or hyperbolic axisymmetric as appropriate. 

There is also the spherically symmetric solution 

11(t) = 12(1) = 13(t) = -'"i'1 

which, as its name suggests, has isotropy subgroup isomorphic to 50(3). This solution 

is given in terms of the coordinates %, y by x = y = O. The modulus k becomes 

indeterminate here. 

A schematic representation of the surface Y is shown in Figure 1. We emphasise 

that this diagram is not intended to reflect the metric properties of Y. 

We see that Y is divided up into six regions, which correspond to the six ways of 

ordering the quantities Jl, n, Ii. There is an isometric action on Y of the symmetric 

group on three letters, which interchanges the six regions. The lines between the 

regions represent axisymmetric monopoles, while the origin, at which they all meet, 
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represents the spherically symmetric solution. Trigonometric monopoles are given by 

the three half lines 

(a) 	Y = O,x > 0, 


Y= -v'3x, x < 0 


(c) Y=v'3x, x < O. 


Hyperbolic monopoles correspond to the half 1in~ 


(d) y = 0, x < 0, 

(e) y = -v'3x, x > 0 

(f) y =v'3x, x > o. 


In terms of our coordinates x, y, the spectral curve has equation 


112 _ _ Y_(4 + :'(1 - -Y- =O. 	 (8)
4v'3 2 4v'3 

We see that the hyperbolic ,?-xisymmetricmonopoles of (d), (e) and (f) have spectral 

curves given by 

X 
112 + 2"(2 0 (x < 0), 	 (9) 

, 	 X x, x411 +-( +-( + - = 0 (x > 0) 	 (10)
424 

and 

2 x 4 x, X ( )11 - -( +-( - - = 0 x > 0
424 

The spectral curves for trigonometric axisymmetric monopoles have the same equa­

tions but with x of the opposite sign. The spherically symmetric monopole has spectral 

curve 112 = O. 

We observe that the spectral curves for hyperbolic axisymmetric monopoles are the 

union of two real sections. For example the curve with equation (9) is the union of the 

sections 

lI=h( 
9 

and 

11 -h( 
which are each real provided x < O. 

Using (2) we see that these sections correspond to the points (h/;;j·, 0, 0) and 

(-!R, 0, 0) in IR 3, which lie on the axis of symmetry of the monopole. 

The spectral curves in the trigonometric case, however, cannot be expressed as a 

union of real sections. Recalling the correspondence between real sections and points of 

IR 3 , we see that hyperbolic monopoles have an interpretation as two separated points on 

the axis of symmetry, but that this breaks down in the trigonometric situation. Further 

evidence for this comes from the calculations of the first author (Dancer 1991b), which 

show that the norm squared of the Higgs field of hyperbolic monopoles has two distinct 

minima, while in the trigonometric case it has just one minimum. Moreover the energy 

density peaks at two points on the axis of symmetry in the hyperbolic case, but in a 

ring around the axis in the trigonometric case. 

We have three asymptotic regions in Y given 

(i) x large and negative 

(ii) 	x, y large and positive 


x large and positive, y large and negative. 


Looking at case (i), we see that asymptotically the spectral curve is approximately 

112 + ~" = 0 , that is, the union of two sections corresponding to points of R 3. A 

similar analysis holds if we consider (ii), (iii). We deduce that the asymptotic regions 

of Y represent well-separated monopoles, with the separation increasing as we go off 

to infinity in Y. 

Observe that the boundary of Y represents Nahm matrices with poles at t = 0,3, 

that is, Nahm data for SU(2) monopoles. It seems reasonable to conjecture that 

motion towards the boundary of Y should be interpreted as convergence of SU(3) 

monopoles to embeddings of SU(2) monopoles in SU(3). 

We observed earlier that there is a map from M8 onto an open set WO in the space 

of real 3 x 3 symmetric tracefree matrices. Under this map Y is carried bijectively 
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onto the set of diagonal matrices in WO. The spherically symmetric monopole corre­

sponds to the zero matrix, the only element of WO with all eigenvalues equal. The 

axisymmetric monopoles correspond to those matrices with two equal eigenvalues; if 

the two equal eigenvalues are larger than the third we have trigonometric solutions, 

while if they are smaller than the third we are in the hyperbolic case. 

We can use this description to associate a set of three mutually orthogonal principal 

axes to our monopoles. Let a monopole be represented by a matrix ~ E WO with 

eigenvalues Al :5 A2 :5 A3' We define the main, third and Higgs axes to be the 

unoriented directions in IR 3 defined by unit eigenvectors of AI, A2 and A3 respectively. 

These are known collectively as the principal axes of the monopole. 

If all the eigenvalues of ~ are distinct the principal axes are well-defined as un­

__ 	 oriented axes in space. If two eigenvalues coincide only one of the principal axes is 

defined; the others become indeterminate. In the spherically symmetric case, when all 

eigenvalues are equal, all the axes are indeterminate. In particular, we see that in the 

trigonometric case the third and Higgs axes are indeterminate, while for hyperbolic 

monopoles this occurs for the main and third axes. 

Y consists of monopoles whose main, Higgs and third axes are fixed as an un­

ordered set; each of the six regions represents a particular ordering. As we cross a 

line representing trigonometric monopoles the Higgs and third axes are interchanged. 

If we cross a line of hyperbolic solutions, on the other hand, the main and third axes 

are interchanged. On the lines between the regions axes lose their identity. In the 

well-separated domain, where our monopoles have a particle interpretation, the Higgs 

axis should be thought of of as the axis joining these particles. We deduce that a 

geodesic crossing a line of trigonometric solutions represents scattering of monopoles 

through ninety degrees. 
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4. The geodesic flow 

We shall now calculate the metric on Y induced by considering it as a submanifold of 

MS. 

Let us work first in the region where R :5 Ii :s Ii. From work of the first 

author (Dancer 1991a) we know that the tangent vectors (Eo, Ell f.2, E3) to MS at 

(0, t/lO"h ~i20"2' ~/30"3) are given by 

AI. ) 
i213+7:­~=[ 
- i312-7: 

illl ) 
E} = i~12 +T, 

[ 
iJl 3 +]; 

-i112 ) 

E2 = i2~1 +7:­
[ 

- 131.-]!­

-i113 ) 

E3 = i~l. +7:" ' 
[ 

hI} +7!­

where 

- r (~ -.!!:L) dt'IAt) - 10 fi(t' ) + !i(t') 

and mj, nj are real constants. 

It follows from our description of Y that the tangent vectors to Y at 

(0, l/lO"h !i20"2, ~h0"3) are obtained by taking m2 = m3 =m. =n2 =n3 =n. =0 in 
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our expressions above for Eo, ••• , fa. The vector fields 1;,1; on Y dual to the coor­

dinates x, y are obtained by setting ml = nl = ~ and ml = -nl = ~ respectively. 

On evaluating the inner products < -/;' I; > etc. we find that the metric is given by 

ds2 = Edx2+ 2Fdxdy + Hdy2, 

where 

1
E = 16(h1 +2h2 + h3 +91 +92) 

v'3F -(hI - h3 + 91 - 92)
48 
1

H 48(h1 - 2h2 + h3 +91 +92) 

--and 

3 
1 2hI = 1t(3)h(3)h(3)(10 n) 

3 
1 L3 1h2 /1 (3)/2(3)/3(3)(10 n)( 0 /1) 

3 
1 2h3 = It (3)12(3)13(3)(10 /1) 

3 

91 
 11

o Ii 
31 192 

o /f 
We can obtain similar expressions in the other regions of Y. 

We see that our metric is written in terms of Jacobi functions and integrals of 

squares of Jacobi functions, or equivalently in terms of Jacobi functions, complete 

elliptic integrals and incomplete elliptic integrals. 'Furthermore the derivatives of the 

metric coefficients also just involve these three kinds of special function. 

The upshot is that we can write down the Christoffel symbols of the metric, that 

is, the coefficients of the geodesic equations, explicitly in terms of Jacobi functions 

and elliptic integrals. The geodesic equations can then be integrated numerically. We 
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evolved them using a fifth-order Runge-Kutta scheme with adaptive step size. The 

elliptic functions and elliptic integrals were calculated using Bulirsch's algorithms, as 

described by Press et al (1988). There was no need to use any great computing powerj 

we found no problems in using a very modest PC, based on a 386SX microprocessor. 

As a check on the numerics we can calculate the kinetic energy T = EZ2 + 2Fzy + 
Hil which should remain constant throughout the geodesic motion (here' denotes 

differentiation with respect to the geodesic parameter). We found that T was typically 

conserved to within one part in 106 • 

Soine of the resulting geodesics are shown in Figures 2-5. 

Let us now discuss the interpretation of the geodesic flow in terms of monopoles. 

We first of all observe that the lines y =0, y =V3x and y = -V3x are geodesics, 

because they are the fixed point sets of involutions in the symmetric group on three 

letters which acts isometrically on Y. These geodesics represent monopoles axisym­

metric about a fixed axis in space. We deduce that a possible process in monopole 

dynamics is for a monopole to remain axisymmetric about a fixed axis, either converg­

ing to an embedding of an SU(2) monopole in SU(3) or else coming to resemble two 

well-separated particles with the separation increasing as time goes on. 

In figures 2-4 we have shown families of geodesics starting from the following three 

different initial configurations: 

(i) a hyperbolic axisymmetric monopole, 

a trigonometric axisymmetric monopole, 


a non-axisymmetric monopole. 


For each choice of initial point P we have plotted eighteen geodesics starting from 

there. Of course, the geodesic equations are invariant under time reversal, so our curves 

fit together to form nine full geodesics through P. 

We observe that the geodesic behaviour is qualitatively similar in all cases. Generi­

cally the geodesics ultimately move out into the well-separated region and never return. 

However before they do this they may perform up to three crossings between regions 

in the core region of Y. In particular, we may have up to two ninety-degree scat­
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terings. By keeping track of which regions of Y correspond to which orderings of 

the principal axes, we can see that when there are two ninety-degree scatterings these 

scatterings take place in two orthogonal planes. This process has not been observed in 

the dynamics of SU(2) monopoles. 

It appears that for each monopole there are three critical geodesics which represent 

motion towards the boundary of the moduli space, staying away from the well-separated 

region. The geodesics of axisymmetric monopoles discussed above are examples of this 

phenomenon. 

A closed geodesic would represent a bound state of an SU(3) monopole. No such 

geodesics were encountered in our study of geodesic motion on Y. 

In Figure 5 we have plotted geodesics starting at an axisymmetric monopole in 

an asymptotic area of Y. Again, the geodesics generically move out into asymptotic 

regions and do not return. We see that the geodesics diverge from each other rapidly, 

suggesting that Y is negatively curved. 

Finally, notice that all of our geodesics stay within Y and do not reach the boundary 

in finite time. Physically, we interpret this as meaning that monopoles do not get 'lost'. 
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Legends 

Figure 1. The two-dimensional submanifold Y. Each pair of regions (A,B) , (C,D) 

and (E,F) corresponds to monopoles lying along one of three mut ually orthogonal a.xes 

in space. 

Figure 2. Geodesics in Y pa.ssing through the point (x,y) = (1, -J3). 


Figure 3. Geodesics in Y pa.ssing through the point (x,y) = (1,0). 


Figure 4. Geodesics in Y pa.ssing through the point (x,y) = (~,-~). 


Figure 5. Geodesics in Y pa.ssing through the point (x,y) = (~, -"¥). 
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FIGURE 4 FIGURE 5 
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