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BRAIDED GROUPS AND DUALS OF MONOIDAL
CATEGORIES!

Shahn Majid?

ABSTRACT Let F : C—V be a functor bet idal cat-
egories. Previously we have shown that there is a dual monoidal
category C° of representations of C in V and a functor € — C** gen-
eralizing the Pontryagin duality of Abelian groups. If V is braided
then there are also such notions as a coadjoint action of C on C° and
croes products by it. In another context we have shown in this sit-
}mtion (in the rigid case) that there is a Hopf algebra Aut(C, F,V)
in a cocompletion of V together with a functor C — Aut (C.F, V)
comodules (the category of comodules in V). We report on these re-
suits and explore their relationship. We show that C*=Aut (C,F, V)
fnodulea (modules in V) and explain how these categorical dual-
ity constructions can be applied in an algebraic context to obtain
new results about ordinary quasitriangular Hopf algebras (quantum
groups), as well as their significance for physics in the context of
quantum-gravity.

1 INTRODUCTION

This paper recalls a construction of the author in [16] of the dual monoidal cat-
egory of a monoidal category, and develops it further. We begin in Section 2 by
recalling this construction and giving a number of details (including diagram-
matic proofs) that were omitted in (18] for reasons of space. We then proceed
in later sections to connect this construction with the author’s recent work on
braided groups and quantum braided groups(18), in the case when the monoidal
category is braided. The braided group Aut(C) of a braided monoidal category
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C is a group-like object and expresses in its multiplication the monoidal product
of C. Section 3 begins by summarizing this construction (with full details to
be found in the preprint {18]), and proceeds to show that in this case C° can
be identified with the category of Aut(C)-modules. This thereby develops our
duality work of [16] in the braided group context, and is the modest new result
of the paper. The results hold generally over a base category V.

These categorical constructions are all fairly straightforward once the right
... __Gefinitions are found. Yet they have important and non-trivial applications. We
) focus on the applications to Drinfeld’s theory of quasitriangular Hopf algebras
oups). Section 4 begins by recalling these and then proceeds to

e non-trivial corollaries of our general constructions from Sections 2

main result is a new category-theoretic proof of the result of (21]

that Drinffld’s quantum double D(H) of a quantum group H is a semidirect
g 5- product. Xhis was proven by algebraic means, using an involved theorem of
!.w — g Hadf5id [25]; we recover it now as a simple corollary of the main result of
) T ;’ -~Section_3{ applied in the case where C is the category of H-modules. The
5 TR e e 4 semidirect product explicitly takes the form Aut(C)>H.
g : i |
; i SR | N We npte that a number of other applications of braided groups in this same
£ P

hcon{ext f quantum groups have recently been given in [19}{20}(with further

Lo “applications in physics[14][15]). These applications use the general construction
P e AU, 2‘,)’) (i.e., over base V) as a way to shift the category in which an
e e ’ algebn;ic structure is defined. We begin with an algebraic structure of_ one sort,

‘atid usg it to generate a category C. By targeting C in another category V we

; o can then transfer our original structure to one of the form Aut(C, F,V) in V.
é" v This Qfoceu of ‘transmutation’ can be very useful in physics. For example,
,” e we may be presented with a group or quantum group in an ordinary sense
T but vihich lives more naturally (and looks simpler) when transmuted to the

cat;:Eory of super-spaces, or vice-versa[14]. For a braided example, we have

h 1

shown in [15] how the Wey! algebra of quantum ics of a one-di
particle lives more naturally in a braided category, where it mr@onds simply
to the braided line. These applications are all connected with braided monoidal
categories and Yang-Baxter equations etc, which are quite a popular topic in
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physics and certain areas of mathematics. However, from our point of view they
are a special case of more general duality considerations of quite wide validity.

It is not within our scope to discuss these detailed applications here. Instead,
the paper concludes in Section 5 with a brief outline for category theorists of a
vision of physics based on these duality considerations and category theory. This
section is strictly optional but we hope it will be interesting for a reader who
wants to know why the author, with a background in physics, should be led into
category theory. Roughly speaking, one can argue[23] that complete theories
of physics have two aspects, a combinatorial (quantum) and a geometrical, and

these are in duality. During this conference I benefited from discussions with

F.W. Lawvere and A. Kock who convinced me that there were some connections
between these duality ideas and Lawvere’s notions of ‘extrinsic’ and ‘intrinsic’
in topos theory. To explore such a connection would certainly be an interesting

line for further work.

2 DUALS OF MONOIDAL CATEGORIES

In this section we recall the notion of duals of braided monoidal categories,
with details of some of the proofs omitted in our report {16}, and some further
results. We use the standard definitions of a monoidal category and (weak)
monoidal functor as in the text of Mac Lane{i1]. Such a functor F : C — V
means F(X)QF(Y)2F(X®Y) by functorial isomorphisms which we denote
cx,v, compatible with the associativity isomorphisms & in the two categories.
These functorial iativity isomorphisms &x v,z : X®(Y®Z) — (X®Y)®2Z
and $y.vw : US(VOW) — (UQV)@W will generally be suppressed for clarity,
as also the isomorphisms X®12X, 1@ X2 X for the unit object ] (and similarly
for the unit in V). Throughout the paper, X,Y, Z etc denote general objects of
C and U, V, W etc general objects of V.

Definition 2.1 [I6]/ Let F: C—V be a idal functor bet monoidal
categories. We define a right (C, F,V)-module in V to be & pair (V,Ay) where
V is an object of V and Av € Nat(V@F, F®V) is an invertible natural trans-
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Jormation Avx : VOF(X) — F(X)®V obeying

'\V.L =id, (id@:\v.y)()v_x@id) = (C}fy@id)kv‘x@y (id@cx,y ).

This clearly ‘rep ts’ the monoidal product in a natural way, and gener-

alizes the definition of rep tations of groups and Hopf algebras as we will

see in the next section. The main results are

Theorem 2.2 [16] The collection of right (C, F,V)-modules in Definition 2.1
form a monoidal calegory, denoted C°. The morphisms (V,dv) — (W, Aw) are
morphisms ¢ : V — W in V such that the modules are intertwined in the form

(1d®¢)Av.x = dwx(¢®id), VX inC.
The monoidal structure is (1, A1), Apx = id and
(V, M)W, Aw) = (VOW, Avew), Avew.x = (Av,x®id)(id®Aw,x)-

Proposition 2.3 [16] In the setting of the preceding theorem, there is a monoidal
functor 1 C — C*° defined tautologically by

X = (F(X), 200 Avxnvan) = Wk

There is also a notion of left (C, F,V)-module, the collection of which is
denoted °C and a functor € — *(C°) given by Av,x without inversion in Propo-
sition 2.3. In these results it is clear that there are also monoidal functors
F° : C° — V etc (given by the forgetful functor) so that (C°, F*,V) and
(°C,*F,V) are dusl systems of the same type as (C,F,V). We can think of
V as a fixed category over which C,C°,°C, C°° etc are functored. We consider
a morphism between such triples as a mc idal functor bet the first mem-
bers that is compatible with the functors to V. This is the setting in which we
work. For example, the functor ¢ :C — €*° is such a morphism.

The p@f of these results is in [16]. In fact, once the right statements
are known, it is not hard to verify them by elementary and standard diagram
filling. The results show clearly the similarity between the construction of
* and the classical duality of Abelian groups, with their canonical inclusion
G¢C é. However, by generalizing this Pontryagin duality to monoidal categories
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we extend it to non-Abelian groups also (as well as beyond these to include
Hopf aigebra duality). Many constructions for groups and Hopf algebras can
be extended in the same way to the setting of monoidal categories over a base.

An example of such a result, when the base is braided, is

Theorem 2.4 [16] Given (C, F,V) with V braided monoidal in the sense of (7],
there is a functor a : C x C* — C° (compatible with F, F*) with isomorphisms
of the form a( X, a(Y, ))Za(X®Y, ) for all X,Y inC, i.c. the two functors

alidx a),a(@xid): CxCx C* —C*

are naturally equivalent. We call o the left coadjoint action of C on C*. It is
given tautologically by a(X, (V,Av)) = (F(X)®V, Aa(x (v.av))) with

Ao(x,(v.;‘,))‘y = (id@/\v'x)(Av‘zv@id)(id@\'v}(y))();“x‘sid).

Proof This (and similar proofs) were omitted in [16} for lack of space. We give
it now in detail as a demonstration of the new techniques needed when working
with monoidal categories in this way. Recall first that a braided monoidal
category V is a monoidal one equipped with a braiding or ‘quasisymmetry’ of
Yvw : VW — W@V obeying two hexagon condition;s and compatible with 1.
We do not assume ¥w,v ¥v,w = id. Omitting the associativity, the hexagons
take the form Wy wev = ¥y uy¥v,w and Yygwy = ¥y ¥wy. This is well
known by now, as is the resulting coherence theorem for braided categories(7].
A useful technique for our proofs is a diagrammatic one. In this, all morphisms
are written pointing downwards, ¥ and ¥™! are written as braid crossings and
other morphisms are written in boxes or as nodes. Functoriality of ¥, ¥~!
says that such boxes can be translated through braid crossings. Recently, such
short-hand notation has been given an ambient topological interpretation in [8].
Thus the braiding and Definition 2.1 take the form,

VRF(X)®F(Y) VRF(X)®F(Y)

= Flvrer

wev weVv F(X)OF(Y)oV  F(X)F(Y)eV

Vew
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F(X)@VeF(Y)®F(Z) F(X)8VOF(Y)®F(Z) F(X)®VOF(Y)®F(Z)

-l
Avx

Av,x

F(Y)®F(Z)@VF(X) F(Y)®F(Z)@VOF(X) F(Y)®F(Z)8VeF(X)
Figure 1: Proof that coadjoint action € x C* — C* is defined

The proof that a(X, (V, Av)) obeys Definition 2.1 is then easily seen from the
diagram in Figure 1. The upper three boxes on the left are the definition of
Aa(x,(v.av)).y and the lower three of Aq(x,(v.av)),z- After cancelling inverses
and using the braid relation for ¥ we obtain c~!da(x (v.1v)).¥@2¢ 38 required.
The action of & on morphisms is the obvious one given by F®id, with its result
viewed as a morphism in C°. The proof that this functor « is a left action in
the form stated is more complicated and shown in Figure 2. On the left is the

definition of

Aa(X ¥ VAINE = AoV Vav) X ¥ (Va2 ¥ FOOFEA Sy, (v avn.X

which, after cancellation, the braid relations and Definition 2.1 for Av,xey
computes to ¢~1dyxpy,(v,av)),z¢. Thus the natural equivalence required in
the theorem is induced by c. Functoriality follows at once from that of c. This
completes the proof.

The ordinary coadjoint action plays a fundamental role in many applica-
tions of groups in physics (in the realm of quantization), %o it is intémting that
it generalizes to our setting. An application in category theory was given in
[16] where we used it to construct a double cross product € o4 C® in the case
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F(X)F(Y)®VOF(2) F(X)QF(Y)®VRF(Z) F(X)®F(Y)RVRF(2Z)

[ Wy

[ Av,z Av,z

lc“lv,x@ycl

F(Z)®F(X)@F(Y)®V F(Z)®F(X)®F(Y)® F(J)@F(X)@F(Y)@V
Figure 2: Proof that coadjoint action C x C* — C° is an action

when C=C®°. Here there is an action 3 : € x C* — C analogous to the above
and Cpbd,C° is a double semidirect product (along the lines of [22, Sec. 3.2]
for groups and Hopf algebras) by these two mutual coadjoint actions simulta-
neously. When it exists, it is a monoidal category that non-trivially factorizes
into the monoidal categories C and C°, and can be called the outer quantum
double D(C) of C.

Returning now to the general situation, let us describe some results that do
not have familiar group analogues, i.e. some genuinely new phenomena. One
such canonical fact is that the dual in the special case Z(C) = (C,id,C)* is
tautologically braided (with W(v ) (w.Aw) = Av,w). This has been observed
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by Drinfeld[3] in another context, as well as independently in [9]. This Z(C) -
can be called the inner quantum double and provides a way to generate braided
monoidal categories from monoidal ones. We note also that our general C°
bsequently been g lized still further in [10] in the setting

construction has

of 2-categories. For a different type of result we observe also

Proposition 2.5 Given (C, F,V) with C braided there is ¢ monoidal functor
R:C — C°® defined iaulologically by

R(X) = (F(x),xmx)), AR(X),Y = C}}YF(WX_Y)CX_Y, VX,Y in C.

Proof The output of R lies in C° due to F applied to one of the hexagon
identities for the braiding ¥ of C and is a monoidal functor due to F applied
to the other. The other facts are equally easy.

3 BRAIDED GROUPS

We have said that the duality constructions above have been modeled on Hopf
algebras, with C° considered heuristically as the modules of some Hopf algebra
whose multiplication corresponds to the monoidal product of €. In nice cases
this can be made precise, i.e. the underlying Hopf algebra for the data F : C ~
V actually exists and C® can be identified with its modules. This is the main
result of the present section. The necessary Hopf algebra (in V) that we need
here has already been introduced in (18}, cf{17] and we begin by briefly recalling
it.

Recall that an algebra (or monoid) in a monoidal category is an object
A and a morphism A®A — A which is associative, and has a suitable unit
morphism ] — A. A coalgebra (comonoid) is the same thing with the arrows
reversed. It has a comultiplication A : A — A®A and counit ¢ : 4 — 1.
A bialgebra (bimonoid) is usually defined in a symmetric monoidal category
and has both of these structures with the additional condition that A are
algebra homomorphisms. Here A®A has the tensor product algebra struc-
ture (i@A)@(A@A) —~+ A®A defined by applying first the symmetry W4 4 in
the middle two factors and then multiplications for A. This definition can be

adopted also in the case when ¥ is a braiding not a symmetry, i.e. A®4 is still
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associative. Bialgebras in braided monoidal categories were introduced in this
way, and studied, in [17]. A Hopf algebra (Hopf monoid) is a bialgebra with an
additional antipode morphism S : A — A playing the role of inversion. Finally,
a (right) module of A is an object V and a morphism V@A — V obeying the
obvious axioms. A (right) comodule is an object ¥ and a morphism V — V@A
obeying analogous axioms with the arrows reversed. It is clear that when the
category is rigid, i.e. there are suitable dual objects, then A® is also a Hopf
algebra and comodules of A* correspond to modules of A of appropriate (left
or right) form.

Theorem 3.1 [18], ¢f{17] Let F : € — V be as in Section 8, with V braided,
rigid and cocomplete. Then there is a bialgebra Aut(C, F,V) in V, character-
ized as universal with the property that F factors through its category of right
comodules in V via the forgetful functor. If C is also rigid then Aut(C, F, V) is
a Hopf algebra in V.

This Aut(C,F,V) can be realized explicitly (cf [27][1]) as a representing
object for a certain functor to Sets or, in the language of [1 1], the coend

X
Aut(C,F,V) = / F*(X)®F(X).

Here F* is a contravariant functor provided by the rigidity in V and cocom-
pleteness in needed for the existence of the coend to be assured. In another
variant we can take C rigid instead of V. Details are in [18].

The factorization of F in the theorem is via a monoidal functor C —
VARCEV) Ghere VARCEW) gonotes the category of right Aut(C,F,V) -
comodules in V. Thus C is mapped to the comodules of this underlying Hopf
algebra. However, except in special cases (such as V=Vec), this functor is
not an equivalence. Thus we are not dealing here with a (braided version
of) a full Tannaka-Krein reconstruction theorem as in (27]{1)[24]. Nevertheless,
Aut(C, F, V) exists and contains a lot of information about the system (C,F,v).
Indeed, we now show

Theorem 3.2 In the sitsation of Theorem 3.1, there is an isomorphism of

monoidal categories

c.gvm.z(c.ry)

10 SHABN MAJID
where V Aw(C.FV) denotes the category of right Aut(C, F,V)-modules in V.

Proof Firstly, rigidity of V means more precisely that for every object V
there is a dual V* and morphisms xy : 1 — VOV*, evy : V*®V — ] obeying
some axioms. Omitting the associativity morphisms etc as usual, we require
that (id@evy )(ry @id) and (evy ®id)(id@xv ) compose to the identity on V and
V* respectively. Using these maps it is not hard to see that there is a bijection

hom(W@U*@T, V)= hom(WaT, UQYV) (43

for any objects T,U,V, W in V. The proof is similar to Lemma 2.1 of 18], for
example if f : WQU*®T — V is given, the corresponding morphism on the
right is

WRTSWRURU ST X UsWeU 8T-LUeV.

The automorphism bialgebra A = Aut(C, F, V) was defined in [18], cf[17] as the
representing object of a functor V +— hom(F, F®V), i.e. there is a bijection
hom(Aut (C, F, V), V)=Nat(F, F®V). We then used rigidity of V in [18] and an
observation like (1) (with W trivial) to give the coend realization mentioned

above. We now use (1) in a similar way to conclude that
hom(V@Aut(C, F, V), V)=Nat(VRF, FV)

for all objects V. This gives the correspondence that we need for the theorem.
Explicitly, if @ : V®A — V is a morphism the corresponding natural trans-
formation is Av,x = (id®a)¥y, r(x)(id®fx) where fx : F(X) — F(X)®A is
the natural transformation in Nat(F, F®A) corresponding to the identity mor-
phism A — A (it is the A-comodule associated to X in Th 3.1). Figure 3
then shows that a a right module corresponds to Ay a right (C, F, V)-module in
the sense of Definition 2.1. The left hand side is the definition of ¢~!Av xgye
after using ¢! fxgye = (id®-)¥ 4 r(v)(Ax®PFy) (this is the definition of the
multiplication in A from [18, Lemma 2.4]). The right hand side is Av,yAv,x
and the two are equal as shown if (and only if) a is a right A-ﬁodule. The

proof can also be done by more conventional diagram-filling. This completes

the proof of the theorem.
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VRF(X)®F(Y)  VRF(X)®F(Y) VOF(X)®F(Y

Bx
Bx By Bx gy
AR
YO (ﬁ
\&/

e o
F(X)oF(Y)V F(X)®F(Y)8V F(X)RF(Y)V

Figure 3: Diagram in proof of Theorem 3.2

This representation of C* in terms of Aut(C, F,V), has a number of corol-
laries for the work of Section 2, at least in these nice cases where Aut(C,F, V)

exists. For example,

Corollary 3.3 Let F : C — V as in Section £, with both C,V rigid and V
braided. Then C° is rigid.

Proof If Aut(C,F,V) actually lives in V (rather than a cocompletion), it is
a Hopf algebra in V and hence its category of modules in V is also rigid. This
is an elementary feature of the category of modules, or of comodules, of a Hopf
algebra in a rigid braided monoidal category. The case of comodules (in the
braided setting) was spelied out in {18, Lemma 1.1}. More generally we can
argue by continuity. In fact the necessary maps x and ev are induced by those
in V (viewed now as morphisms in C*) and hence serve quite generally.

In addition, if C is also braided then Aut(C, F, V) is a (dual) quantum group,
i.e. 8 dual quasitriangular bialgebra or Hopf algebra in V, with various con-
sequences for the structure of C*. We will discuss quantum groups in detail
in the next section, in the simplest algebraic setting, and refer to [18] for the
general case. Suffice it to say that ‘dual quasitriangular’ means that there is
a morphism R : Aut(C, F, V)®Aut(C, F,V) — 1 and Aut(C, F,V) is ‘commu-
tative’ in a certain sense (in the braided category) up to conjugation by this

in the relevant convolution algebra. In addition, the morphism R in suitable

i1
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conventions converts comodules to modules, along the lines of an extension of -
Proposition 2.5.

We mention that in general terms, the dual quasitriangular structure R of
Aut(C, F, V) measures the failure of F to respect the braidings: it is given by
the ratio of the braidings in C and V and is trivial in the case Aut(C) where V
is a cocompletion of € and F is the identity. This Aut(C) is therefore exactly
‘commutative' in a certain braided sense and hence can be called a ‘braided
group’ (in analogy with affine group schemes), while the general case can be
called a ‘quantum braided group’. See (18].

4 APPLICATION TO QUANTUM GROUPS

In this section we apply the category theoretic constructions above to obtain
a result in the theory of quantum groups. Various applications of Aut(C, F,V)
and Aut(C) have already been made in this way in {19](20] as well as in {13](6].
Our new application is based on the connection with the duality of Section 2
as found in Theorem 3.2.

Briefly, an ordinary quantum group for us is a pair (H,R) where H is a Hopf
algebra over a field or commutative ring &, and R € HOH (the quasitriangular
element) is invertible and obeys the axioms of Drinfeld[4]

A®P =R(A)R™!, (i[d®A)R = RisRia, (ARI)R =R13Ras.

Here A° denotes A followed by the usual permutation. If G is a group, its
group algebra kG is trivially a quantum group with R = 191 (it is cocommu-
tative). Quantum groups are important in mathematics and physics because
they provide, in their representation theory, a source of braided monoidal cat-
egories. The monoidal product (tensor product) of two H-modules is obtained
by pulling back along the comultiplication A, in the usual way. The braiding ¥
is provided by the action of R followed by usual permutation of the underlying

vector spaces.
If H is any Hopf algebra, say finite dimensional for simplicity, Drinfeld

showed how to construct from it a quantum group D(H). Most other quantum

groups are quotients of such quantum doubles, so this is one of the key con-
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structions of the theory. In the conventions of [21] it coincides as a linear space
and coalgebra with H*®H, but has a modified algebra structure

(a®h)(b®g) = 25(2)085(2)! < Shqy by >< hesy, bsy >, h,g€ H,a,b€ H*

where Ah = ¥ h(1)®@hz) etc [20) and <, > denotes evaluation. The quasitrian-
gular structure is R = 3°_(f°®1)@(1®¢,) where {e,} is a basis of H and {/°}
a dual one. The structure of D(H) is a double cross product H*°P ba H[22, Sec.
4]. This is an example of the factorization of a Hopf algebra into two factors
H™P and H. 1t is clear that D(H)-modules are vector spaces on which both
H and H™® act, in a compatible way, (or on which H acts and also coacts,
in a compatible way, i.e. crossed H-modules as in [30}). Moreover, if C is the
category of H-modules then Z(C) = (C,id,C)° in Section 2 is the category of
D(H)-modules(3].

Knowing this, a corollary of Proposition 2.5 for example is that if H is
itselfl 3 quantum group, then there is a Hopf algebra projection p : D(H)—H
inducing the functor € — C°. It can be easily be computed in terms of R, and

was the starting point of {21]. Now, as a corollary of Theorem 3.2 we have,

Corollary 4.1 Let H be a finite di ional quasitri ngular Hopf algebra (quan-
tum group) and let C be the category of finite-dimensional H-modules. Then

D(H)2Aut(C)>aH

as a semidirect product algebra and idirect product coalgebra by an action

¢4

and coaction respectively of H.

Proof Identifying C° as the category of D(H )-modules as explained, Theo-
rem 3.2 now says that these correspond to Aut(C)-modules in C. This means
vector spaces V on which Aut(C) acts H-equivariantly. Here H acts on both V'
and Aut(C) as objects in the category. It is clear that such V' are the same thing
as Aut(C)>aH-modules where the semidirect product is by the canonical action
of H on Aut (C). This establishes a correspond bet D(H)-modules and
Aut(C)>aH-modules, which one can easily see to be monoidal and compatible

with the forgetful functors to Vec (i.e. it does not change the underlying vector
space). As a result, by standard Tannaka-Krein ideas Aut(C)>aH is a Hopf
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algebra and isomorphic to D(H). The coalgebra structure here comes out as a
semidirect coproduct by the H-comodule structure induced by a functor from
H-modules to H*-modules (given by pull back along R as a map H* — H).

Let us note that the explicit form of Aut(C) in this example is known from
[18]. Writing A = H* so that C is the category of A-comodules, we have
from [18] that Aut(C) = A, realised on the same linear space and coalgebra as
H*® but with a modified multiplication and a non-trivial H-module structure.

Explicitly,
(Ag)(h@9g) = ¢(hg), (g-8)(h) =) #((S901))he(a))

B¥)(h) = 3_(RD.9)(hqy)) d(hyR™)

for h,g € H and ¢,9 € H* and R = T R(VQR@). This gives an algebra
and coalgebra but not a Hopf algebra in the ordinary sense. This explains the
structure of D(H') found by algebraic means in [21]. There, using a theorem of
Radford[25] it was shown that D(H)2B>aH where B was a mysterious algebra-
coalgebra. We recognize it now as a Hopf algebra in a braided category. After
this we can go further and express Radford’s theorem itself in this language.
It then reads: if H; — H is a Hopf algebra projection between ordinary Hopf
algebras then there exists a bialgebra B in the category of D(H)-modules such
that Hy2B>aH by the corresponding action and coaction of H.

Our Corollary 4.1 can also be viewed as an example of a general ‘bosoniza-
tion’ theorem in [20]. Using ideas of transmutation mentioned in the introduc-
tion, this asserts that any Hopf algebra B in the braided monoidal category of
H-modules of a quantum group H, can be converted by a tautological semidi-
rect product to an ordinary Hopf algebra B><H. In these terms, Corollary 4.1
says that Drinfeld’s celebrated quantum double D(H) is the ‘bosonization’ of
the braided group 4 = Aut(C).

5 A VISION OF QUANTUM-GRAVITY

This section aims to indicate how the above duality considerations fit into an

approach to the unification of quantum theory and gravity in [22]{23]. Such
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a unification is of course a fundamental problem in theoretical physics and I

believe that category theory provides some fundamental insight into it.

The idea behind this application is very simple. Firstly, it should be stressed
that theoretical physics is not so much concerned with ‘what’ is observed but
with the question ‘why is it observed’, i.e. always seeks to explain structures
in terms of still more fundamental structures or principles. This reductionist
programme takes the naive view that there are indeed some fundamental laws of
nature of which our experiments and observations are representations. Thus it
is supposed that something is absolutely true, and that something else measures

or observes it.

However, every mathematician knows that such evaluations should generally
be thought of more symmetrically as a *pairing’ of one structure with another.
An evaluation f(z) can also be read z(f) where f is an element of a dual
structure. Since theoretical physics adopts the language of mathematics, such
an ‘observer-observed’ reversed interpretation of the mathematical structure can
always be forced, but will the dual interpretation also describe physics? The
idea behind [22][23] was that the answer should be ‘Yes’, i.e. that a fundamental
theory 9(' physics is incomplete unless such a role-revarsal is possible. We can
go further and hope to fully determine the (supposed) structure of fundamental
laws of nature among all mathematical stuctures by this self-duality condition.
See {23] and the introduction of [22}.

Certainly, such duality considerations in some form are evident in the con-
text of quantum theory and gravity (and may also be relevant to recent devel-
opments of duality in string theory). The situation is summarized to the left in
Figure 4. For example, Lie groups provide the simplest examples of Riemannian
geometry, while the representations of related Lie groups provide the quantum
numbers of elementary particles in quantum theory. Thus both quantum the-
ory and non-Euclidean geometry are needed for a self-dual picture. Now, Hopf
algebras (in the form of Hopf-von Neumann or Kac algebras) precisely serve
to unify these mutually dual structures. Motivated by this we described in
[23] systems of particles on homogeneous spaces where this was achieved. The
algebra of observables was indeed a Hopf (von Neumann) algebra of self-dual
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Figure 4: Representation-theoretic approach to quantum-gravity

type provided the homogeneous space and its dual one were suitably matched.
The dual von Neumann algebra is built on the Banach space predual, so that
roughly speaking, the role of obervables and states in the quantum theory can
be interchanged. For example, the quantum (von Neumann) algebra of observ-
ables of a 1+ 1-dimensional differentiable dynamical system was shown to be a
self-dual Hopf algebra if and only if the effective dynamics was that of a particle

moving in the background of a 2-dimensional black hole-type metric.

The duality considerations of Section 2 and [16] are then motivated by the
question of what is the right mathematical structure to unify more complex
quantum and gravitational systems. We have established that (small) monoidal
categories over a base make up a self-dual category, with the duality €+ C°
covering Hopf algebra duality (which in turn covers the duality operation on
Abelian groups), and that one can begin to do physics in this setting (for exam-
ple, in the form of the coadjoint action in Section 2). It should be mentioned
here that the functors in Figure 4 are intended to be of the nature of embed-
dings and to respect the relevant duality functors. Moreover, the collection
of monoidal categories over a base is large enough to receive various functors

from both quantum systems (as in [2], as well as the modular functor in confor-
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mal field theory) and from Riemannian geometry. Precisely which functors we
should take here and the search for self-dual objects are topics for ongoing re-
search. If they can be found then such self-dual objects would be interpretable
as (poesibly generalized) quantum theories and (possibly generalized) geome-

tries, simultaneously. This is our approach to quantum-gravity.

Finally, we note that in addition to the ‘end’ of theoretical physics in the
form of quantum-gravity, we can ask also about its ‘birth’. We take the view
that the simplest theories of physics are based on classical logic or, roughly
speaking, Boolean algebras. Some physical (not mathematical) arguments in
the last of [23] suggest that the relevant duality here is provided by complemen-
tation. The situation is summarized on the right in Figure 4. Boolean algebras
are considered self-dual according to De Morgan's theorem. Going above the
axis to Heyting algebras and beyond takes us into intuitionistic logic and pre-
sumabley embeds (ultimately) into an axiomatic framework of quantum field
theory. Dual to this, below the axis, F.W. Lawvere and his school have shown
that coHeyting algebras can be viewed as the ‘birth’ of geoemtry{12}. Specifi-
cally, it has been observed that in a coHeyting algebra one can view da = aA”a

as the ‘boundary’ of a, with the relevant derivation property[12]

anb)=(8a) AbV a A (Bh).

Here "a is the smallest element such that av~a = 1. To develop this geometrical
interpretation of cointuitionistic logic to embed (ultimately) in metric spaces

and Riemannian (or Lorentzian) geometry is a task for further work.

Finally, we can ask if such problems as the unification of quantum theory and
gravity have a useful parallel for the unification of (generalized) intuitionistic
and (generalized) cointuitionistic logical systems. For example, this might be
achieved using suitable forms of Hopf algebras or in the more general setting
of monoidal categories. We note in this context that monoidal structures are
now used routinely in various models of logic since the fundamental work of (5],
see [28]. This unification is an interesting question suggested by the above. 1

would like to note the recent work [26] as a concrete step in this direction.
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